JPH06184628A - Vacuum heat treatment method - Google Patents

Vacuum heat treatment method

Info

Publication number
JPH06184628A
JPH06184628A JP33580192A JP33580192A JPH06184628A JP H06184628 A JPH06184628 A JP H06184628A JP 33580192 A JP33580192 A JP 33580192A JP 33580192 A JP33580192 A JP 33580192A JP H06184628 A JPH06184628 A JP H06184628A
Authority
JP
Japan
Prior art keywords
gas
vacuum
cooling
heat treatment
cooling gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33580192A
Other languages
Japanese (ja)
Inventor
Kazuhiro Watanabe
和弘 渡辺
Minoru Morikawa
穣 森川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Material Engineering Ltd
Hitachi Ltd
Original Assignee
Hitachi Material Engineering Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Material Engineering Ltd, Hitachi Ltd filed Critical Hitachi Material Engineering Ltd
Priority to JP33580192A priority Critical patent/JPH06184628A/en
Publication of JPH06184628A publication Critical patent/JPH06184628A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Articles (AREA)

Abstract

PURPOSE:To secure strength and ductility by introducing a pressurized cooling gas exceeding the atmospheric pressure to make a quenching speed larger after a member to be heat treated is placed in a vacuum container and heated in vacuum. CONSTITUTION:At introducing a compressed gas into a high temp. vacuum furnace, a gas temp. is lowered due to adiabatic expansion, producing the cooling effect of gas. Because a temp. range of 400-750 deg.C makes the heat transfer due to heat conduction and heat convection rather than heat radiation the main stream, in order to improve heat transfer, the gas pressure is elevated, increasing the gas density. The way of gas cooling is different in a cooling speed depending on material and thickness, accordingly, it is preferable to control a pressure applying method and gas introducing speed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は新規な真空熱処理方法に
関する。
FIELD OF THE INVENTION The present invention relates to a novel vacuum heat treatment method.

【0002】[0002]

【従来の技術】鋼及び非鉄合金は熱処理によってその材
質特性を発揮するものが多い。精密形状の部品は酸化防
止のため、真空下で、溶体化処理,焼入れまたは焼き戻
しすることが一般的である。このような部品には、低合
金鋼製機械部品,高クロム耐熱鋼製蒸気タービン部品,
18−8ステンレス製機械部品,17−4PHステンレ
ス製機械部品及びアルミニウム青銅製ポンプ,舶用部品
等の精密鋳造,精密鍛造及び機械加工部品等がある。
2. Description of the Related Art Many steels and non-ferrous alloys exhibit their material characteristics by heat treatment. In order to prevent oxidation, precision shaped parts are generally subjected to solution treatment, quenching or tempering under vacuum. Such parts include low alloy steel machine parts, high chrome heat resistant steel steam turbine parts,
18-8 stainless machine parts, 17-4PH stainless machine parts and aluminum bronze pumps, precision casting, precision forging and machining parts such as marine parts.

【0003】真空熱処理炉内での冷却は水及び油が使用
できないため、通常アルゴンまたは窒素ガスを封入して
冷却する。しかし、焼入れ性の劣る材質または肉厚品は
十分な焼入れ冷却速度が得られず、要求される材料特性
が得られないと言う欠点があった。このために、精密形
状品に対しては仕上しろを付けた材料を大気または不活
性雰囲気での熱処理した後に仕上加工をする。大気での
熱処理では酸化のため仕上しろが大きくなり、不活性雰
囲気では完全には表面酸化が防止できない。
Since water and oil cannot be used for cooling in the vacuum heat treatment furnace, it is usually filled with argon or nitrogen gas for cooling. However, a material or a thick product having poor hardenability has a drawback that a sufficient quenching and cooling rate cannot be obtained, and required material properties cannot be obtained. For this reason, a precision shaped product is subjected to a finishing process after heat-treating a material having a finishing margin in the air or an inert atmosphere. The heat treatment in the atmosphere causes a large finishing margin due to oxidation, and surface oxidation cannot be completely prevented in an inert atmosphere.

【0004】[0004]

【発明が解決しようとする課題】本発明の目的は、真空
熱処理時の真空炉内での冷却速度を大にし、大きな冷却
速度が必要な溶体化処理又は焼入れを容易にし、要求さ
れる材料特性が得られる真空熱処理法を提供するにあ
る。
SUMMARY OF THE INVENTION An object of the present invention is to increase the cooling rate in a vacuum furnace during vacuum heat treatment, to facilitate solution treatment or quenching that requires a high cooling rate, and to obtain required material properties. It is to provide a vacuum heat treatment method by which the above can be obtained.

【0005】[0005]

【課題を解決するための手段】本発明は、被熱処理部材
を真空容器内に入れ、真空下で加熱保持した後、真空炉
内での冷却過程で、窒素,アルゴン等の不活性ガスを大
気圧より大きい1気圧を越えて導入することにより冷却
速度を大にしたものである。加圧の圧力は2〜10kg/
cm2が好ましく、特に3〜7kg/cm2が好ましい。
According to the present invention, a member to be heat-treated is placed in a vacuum vessel, heated and held under a vacuum, and then an inert gas such as nitrogen or argon is increased in a cooling process in a vacuum furnace. The cooling rate is increased by introducing it at a pressure exceeding 1 atm, which is higher than the atmospheric pressure. Pressurized pressure is 2-10kg /
cm 2 is preferable, and 3 to 7 kg / cm 2 is particularly preferable.

【0006】[0006]

【作用】Cu合金,Ni基合金,フェライト系,オース
テナイト系ステンレス等の精密鋳造品,加工品,鍛造品
等の溶体化処理は、冷却速度が小さいと機械的性質が低
下し、著しいときは結晶粒界に炭化物を析出して耐食性
を劣化する。また、マルテンサイト及びベーナイト変態
を示す材料は焼入れ冷却速度が小さいとこれらの変態組
織にならないため、十分な硬さが得られない。特に30
0〜750℃の温度範囲が重要である。
[Function] In solution treatment of precision castings, processed products, forged products, etc. of Cu alloys, Ni-based alloys, ferritic and austenitic stainless steels, mechanical properties deteriorate when the cooling rate is low, and when remarkable, crystallization occurs. Carbide precipitates at the grain boundaries and deteriorates corrosion resistance. In addition, materials exhibiting martensite and bainite transformation do not have these transformation structures when the quenching and cooling rate is low, so that sufficient hardness cannot be obtained. Especially 30
The temperature range from 0 to 750 ° C is important.

【0007】高温の真空炉内に圧縮されたガスを導入す
ると、断熱膨張によりガス温度が低下し、ガスの冷却効
果が生じる。温度の低下にともなってガスの圧力が低下
するのでガスを補給するが、従来の真空熱処理炉は耐圧
を1気圧にしているから、1気圧以下のガス圧までしか
上げられない。このため、400〜750℃の温度範囲
は輻射によるよりも熱伝導及び対流による熱移動が主流
になるから、1気圧以下では、ガスの密度が低いため冷
却効果は大きくならない。この温度範囲の熱伝導を向上
するためには、耐圧の高い真空炉でガス圧を高め、ガス
の密度を大きくすることが、冷却効果を大きくする上で
重要である。この間の冷却に当ってはガス圧力を段階的
に高めることにより冷却速度を調整することが好まし
い。ガス冷却の仕方は材質とその肉厚によってその冷却
速度が異なるので、それらに応じて圧力のかけ方及びガ
スの導入速度を調整することが好ましい。急速な冷却に
は急速な導入と加圧とを行うようにする。焼入れ及び溶
体化処理としての冷却速度は通常8000℃/h以上と
なるようにするのが好ましい。
When a compressed gas is introduced into a high temperature vacuum furnace, the gas temperature is lowered by adiabatic expansion, and a gas cooling effect is produced. The gas pressure decreases as the temperature decreases, so the gas is replenished, but since the conventional vacuum heat treatment furnace has a pressure resistance of 1 atm, it can only be raised to a gas pressure of 1 atm or less. For this reason, in the temperature range of 400 to 750 ° C., heat conduction and heat transfer due to convection become the mainstream rather than radiation, so that the cooling effect does not become large below 1 atm because the gas density is low. In order to improve the heat conduction in this temperature range, it is important to increase the gas pressure and increase the gas density in a vacuum furnace having a high pressure resistance in order to increase the cooling effect. For cooling during this period, it is preferable to adjust the cooling rate by gradually increasing the gas pressure. Since the cooling rate of the gas is different depending on the material and the thickness thereof, it is preferable to adjust the pressure application method and the gas introduction rate according to them. For rapid cooling, rapid introduction and pressurization should be performed. It is preferable that the cooling rate for quenching and solution treatment is usually 8000 ° C./h or more.

【0008】真空中の加熱は材質によってAl,Ti等
の酸化し易い元素を含有するもの、光輝熱処理を行うも
のについては10-3torr以上の高真空下で行い、それ以
外はそれ以下の真空下で行うのが好ましい。特に、前者
は10-3〜10-5torr、後者は0.1 〜10torrが好ま
しい。
Heating in a vacuum is carried out under a high vacuum of 10 -3 torr or more for a material containing an easily oxidizable element such as Al or Ti depending on the material, or for a material subjected to a bright heat treatment, and a vacuum of less than that otherwise. It is preferable to do it below. Particularly, the former is preferably 10 -3 to 10 -5 torr, and the latter is preferably 0.1 to 10 torr.

【0009】冷却ガス導入に当っては冷却ガスをファン
で撹拌することが好ましい。
When introducing the cooling gas, it is preferable to stir the cooling gas with a fan.

【0010】本発明を適用する製品の例として、12%
Cr鋼よりなる蒸気タービンの高圧タービンの初段ノズ
ル、18Cr−8Ni鋼よりなる電子顕微鏡用ネック、
原子炉内部材、17−4PHステンレス鋼よりなる都市
ガス用流量計のクロージャー,アルミニウム青銅よりな
るポンプの羽根等の精密鋳造品がある。
As an example of a product to which the present invention is applied, 12%
First stage nozzle of high pressure turbine of steam turbine made of Cr steel, neck for electron microscope made of 18Cr-8Ni steel,
There are precision castings such as reactor internal members, closures for city gas flow meters made of 17-4PH stainless steel, and pump blades made of aluminum bronze.

【0011】[0011]

【実施例】【Example】

(実施例1)オーステナイト系ステンレス鋼製精密鋳造
品の熱処理を表1に示す条件で実施した。
(Example 1) Austenitic stainless steel precision castings were heat-treated under the conditions shown in Table 1.

【0012】表1に用いた材料の化学組成(重量%)を
示す。
Table 1 shows the chemical composition (% by weight) of the materials used.

【0013】表1のNo.1成分で表2のNo.1のAとB
の熱処理条件で比較した。その結果を表3に示す。表3
のNo.1Aと1Bの機械的性質より分かるように1Bの
機械的性質は伸び率が低く規格値を満足しなかった。
No. 1 component of Table 1 and No. 1 A and B of Table 2
The heat treatment conditions were compared. The results are shown in Table 3. Table 3
As can be seen from No. 1A and No. 1B, the mechanical properties of No. 1B had a low elongation and did not satisfy the standard values.

【0014】尚、No.1〜3のいずれの製品も10-1to
rr以下の真空中で加熱保持した後、製品の冷却速度を製
品の各部署で同等になるように調整するため冷却ガスを
3段階に分けて導入加圧し、最終圧力まで加圧すること
により冷却したもので、焼戻しも同様の加熱を行い、冷
却はガス加圧をせずに行ったものである。
All products No. 1 to 3 are 10 -1 to
After heating and holding in a vacuum of rr or less, the cooling gas was introduced and pressurized in three stages in order to adjust the cooling rate of the product to be equal in each department of the product, and then cooled to the final pressure. The same heating was performed for tempering, and the cooling was performed without pressurizing gas.

【0015】(実施例2)11%Cr耐熱鋼製精密鋳造
品の熱処理を表2に示す条件で実施した。表1のNo.2
成分についてAとBの熱処理条件で比較した。その結
果、表3のNo.2Aと2Bの機械的性質から分かるよう
に2Bの機械的性質は引張強さの規格値が満足しなかっ
た。
(Example 2) Heat treatment of an 11% Cr heat-resistant steel precision casting was carried out under the conditions shown in Table 2. No. 2 of Table 1
The components were compared under the heat treatment conditions of A and B. As a result, as can be seen from the mechanical properties of Nos. 2A and 2B in Table 3, the mechanical properties of 2B did not satisfy the standard value of tensile strength.

【0016】(実施例3)17−4PH鋼製精密鋳造品
の熱処理を表2に示す条件で実施した。表1のNo.3成
分についてAとBの熱処理条件で比較した。その結果、
表3のNo.3Aと3Bの機械的性質から分かるように、
3Bの機械的性質は引張強さの規格値が満足しなかっ
た。
(Example 3) A 17-4PH steel precision casting product was heat-treated under the conditions shown in Table 2. The No. 3 components in Table 1 were compared under the heat treatment conditions of A and B. as a result,
As can be seen from the mechanical properties of No. 3A and 3B in Table 3,
Regarding the mechanical properties of 3B, the specified value of tensile strength was not satisfied.

【0017】[0017]

【表1】 [Table 1]

【0018】[0018]

【表2】 [Table 2]

【0019】[0019]

【表3】 [Table 3]

【0020】(実施例4)表4に示すA1BC3製精密
鋳造品の熱処理を表5に示す条件で実施した。
(Example 4) A1BC3 precision castings shown in Table 4 were heat-treated under the conditions shown in Table 5.

【0021】950℃及び550℃の加熱は10-3torr
の真空下で行った。表4のNo.4成分について表5に示
すAとBの熱処理条件で比較した。その結果、表6のN
o.4Aと4Bの機械的性質から分かるように4Bの機械
的性質は引張強さの規格値が満足しなかった。冷却にお
けるガス導入の仕方は実施例1と同じである。
Heating at 950 ° C. and 550 ° C. is 10 −3 torr
Under vacuum. The No. 4 components of Table 4 were compared under the heat treatment conditions of A and B shown in Table 5. As a result, N in Table 6
o As can be seen from the mechanical properties of 4A and 4B, the mechanical properties of 4B did not satisfy the specified tensile strength. The method of introducing the gas in the cooling is the same as in the first embodiment.

【0022】[0022]

【表4】 [Table 4]

【0023】[0023]

【表5】 [Table 5]

【0024】[0024]

【表6】 [Table 6]

【0025】[0025]

【発明の効果】真空熱処理において、高圧冷却ガスを適
用し、焼入れ冷却速度を大にすることによって強さ及び
延性を確保し、要求規格値を満足できる。
EFFECT OF THE INVENTION In the vacuum heat treatment, high pressure cooling gas is applied to increase the quenching cooling rate to secure strength and ductility, and the required standard value can be satisfied.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】被熱処理部材を真空容器内に入れて真空下
で加熱し、所定の温度で保持した後、冷却用ガスを前記
真空容器内に導入するとともに、該冷却用ガスを大気圧
を越えて加圧導入することを特徴とする真空熱処理法。
1. A member to be heat treated is placed in a vacuum container, heated under vacuum, and held at a predetermined temperature, and then a cooling gas is introduced into the vacuum container, and the cooling gas is kept at atmospheric pressure. A vacuum heat treatment method characterized by introducing pressure over.
【請求項2】精密鋳造品を真空容器内に入れて真空下で
加熱し、所定の温度で保持した後、冷却用ガスを前記真
空容器内に導入するとともに、該冷却用ガスを1気圧を
越えて加圧導入し冷却することを特徴とする精密鋳造品
の真空熱処理方法。
2. A precision casting product is placed in a vacuum vessel, heated under vacuum, and held at a predetermined temperature, and then a cooling gas is introduced into the vacuum vessel and the cooling gas is kept at 1 atm. A method for vacuum heat treatment of a precision casting product, which comprises introducing pressure to exceed and cooling.
【請求項3】精密鍛造品を真空容器内に入れて真空下で
加熱し、所定の温度で保持した後、冷却用ガスを前記真
空容器内に導入するとともに、該冷却用ガスを1気圧を
越えて加圧導入し冷却することを特徴とする精密鍛造品
の真空熱処理方法。
3. A precision forged product is placed in a vacuum container, heated under vacuum, and held at a predetermined temperature, and then a cooling gas is introduced into the vacuum container, and the cooling gas is kept at 1 atm. A vacuum heat treatment method for a precision forged product, which is characterized by introducing pressure over and cooling.
【請求項4】精密加工品を真空容器内に入れて真空下で
加熱し、所定の温度で保持した後、冷却用ガスを前記真
空容器内に導入するとともに、該冷却用ガスを1気圧を
越えて加圧導入し冷却することを特徴とする精密加工品
の真空熱処理方法。
4. A precision processed product is placed in a vacuum container, heated under vacuum, and held at a predetermined temperature, and then a cooling gas is introduced into the vacuum container, and the cooling gas is kept at 1 atm. A vacuum heat treatment method for a precision processed product, which comprises introducing pressure over and cooling.
【請求項5】被熱処理部材を真空容器内に入れて真空下
で加熱し、所定の温度で保持した後、冷却用ガスを前記
真空容器導入するとともに、該冷却用ガスとして窒素或
いはアルゴン及びその混合ガスを1気圧を越えて加圧導
入し、冷却することを特徴とする真空熱処理方法。
5. A member to be heat treated is placed in a vacuum container, heated under vacuum, and held at a predetermined temperature, and then a cooling gas is introduced into the vacuum container, and nitrogen or argon and its cooling gas are used as the cooling gas. A vacuum heat treatment method comprising introducing a mixed gas under a pressure of more than 1 atm and cooling the mixture.
JP33580192A 1992-12-16 1992-12-16 Vacuum heat treatment method Pending JPH06184628A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33580192A JPH06184628A (en) 1992-12-16 1992-12-16 Vacuum heat treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33580192A JPH06184628A (en) 1992-12-16 1992-12-16 Vacuum heat treatment method

Publications (1)

Publication Number Publication Date
JPH06184628A true JPH06184628A (en) 1994-07-05

Family

ID=18292584

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33580192A Pending JPH06184628A (en) 1992-12-16 1992-12-16 Vacuum heat treatment method

Country Status (1)

Country Link
JP (1) JPH06184628A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100289143B1 (en) * 1997-03-26 2001-05-02 니시히라 순지 A method for the treatment of stainless steel suraces, treatment apparatus and vacuum apparatus
EP1619266A1 (en) * 2003-03-12 2006-01-25 Toyo Seikan Kaisya, Ltd. Method and apparatus for chemical plasma processing of plastic container
KR100657560B1 (en) * 2005-09-09 2006-12-14 한국생산기술연구원 Method for heating treatment blade by controlling surfaces pressure of oil
JP2008237953A (en) * 2007-03-23 2008-10-09 Sapporo Breweries Ltd Method and device for removing dirt of stainless steel-made components

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100289143B1 (en) * 1997-03-26 2001-05-02 니시히라 순지 A method for the treatment of stainless steel suraces, treatment apparatus and vacuum apparatus
EP1619266A1 (en) * 2003-03-12 2006-01-25 Toyo Seikan Kaisya, Ltd. Method and apparatus for chemical plasma processing of plastic container
EP1619266A4 (en) * 2003-03-12 2008-07-23 Toyo Seikan Kaisha Ltd Method and apparatus for chemical plasma processing of plastic container
KR100657560B1 (en) * 2005-09-09 2006-12-14 한국생산기술연구원 Method for heating treatment blade by controlling surfaces pressure of oil
JP2008237953A (en) * 2007-03-23 2008-10-09 Sapporo Breweries Ltd Method and device for removing dirt of stainless steel-made components

Similar Documents

Publication Publication Date Title
JP4455579B2 (en) Fine-grained martensitic stainless steel and method for producing the same
CN110438310B (en) Hot work die steel and heat treatment method thereof
US7507306B2 (en) Precipitation-strengthened nickel-iron-chromium alloy and process therefor
CN1140640C (en) Method for manufacture of steel products of precipitation hardened martensitic steel, steel products obtained with such method and use of said steel products
JP2005513261A (en) Nanocomposite martensitic steel
US5841046A (en) High strength, corrosion resistant austenitic stainless steel and consolidated article
EP0109436A1 (en) Divorced eutectoid transformation process and product of ultrahigh carbon steels.
JP2005513262A5 (en)
US4769214A (en) Ultrahigh carbon steels containing aluminum
CN110408850A (en) The super-steel and preparation method thereof of nanocrystalline intermetallics precipitation strength
JPH06184628A (en) Vacuum heat treatment method
JP3535299B2 (en) Large-sized cast and forged products of duplex stainless steel excellent in corrosion resistance and toughness, and methods for producing the same
JP3328967B2 (en) Manufacturing method of martensitic stainless steel seamless steel pipe excellent in toughness and stress corrosion cracking resistance
JPH09310121A (en) Production of martensitic seamless heat resistant steel tube
Parimin et al. Influence of solution treatment temperature on the microstructure of Ni-based HR-120 superalloy
JPS59136421A (en) Preparation of rod steel and wire material having spheroidal structure
Li Heat Treating of Precipitation-Hardenable Stainless Steels and Iron-Base Superalloys
US2363736A (en) Stainless steel process
US20060081309A1 (en) Ultra-high strength weathering steel and method for making same
JP2556029B2 (en) Method for producing high corrosion resistant iron-based precipitation hardening alloy
RU2020163C1 (en) Process of thermomechanical treatment of products of austenite steel
JP7501802B1 (en) Stainless steel and its manufacturing method, and stainless steel product and its manufacturing method
JP4732694B2 (en) Nanocarbide precipitation strengthened ultra high strength corrosion resistant structural steel
SU1659497A1 (en) Method of thermal and mechanical treatment of maraging steels
JP2659354B2 (en) Manufacturing method of tough malleable cast iron