JPH06184199A - Target protein of low-molecular weight g protein rab3a p25 - Google Patents

Target protein of low-molecular weight g protein rab3a p25

Info

Publication number
JPH06184199A
JPH06184199A JP34405592A JP34405592A JPH06184199A JP H06184199 A JPH06184199 A JP H06184199A JP 34405592 A JP34405592 A JP 34405592A JP 34405592 A JP34405592 A JP 34405592A JP H06184199 A JPH06184199 A JP H06184199A
Authority
JP
Japan
Prior art keywords
protein
rabphilin
gly
pro
rab3a
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP34405592A
Other languages
Japanese (ja)
Other versions
JP3378600B2 (en
Inventor
Yoshimi Takai
義美 高井
Kozo Kaibuchi
弘三 貝淵
Hiromichi Shirataki
博通 白瀧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eisai Co Ltd
Original Assignee
Eisai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eisai Co Ltd filed Critical Eisai Co Ltd
Priority to JP34405592A priority Critical patent/JP3378600B2/en
Publication of JPH06184199A publication Critical patent/JPH06184199A/en
Application granted granted Critical
Publication of JP3378600B2 publication Critical patent/JP3378600B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an amino acid sequence in the target protein of a low- molecular weight G protein rab3A p25 and a DNA base sequence capable of coding the amino acid sequence thereof. CONSTITUTION:The target protein of a low-molecular weight G protein rab3A p25 is extracted and isolated from a bovine cerebral membrane to determine the partial amino acid sequence thereof. An oligonucleotide synthesized on the basis thereof and a bovine cDNA library are used to determine the DNA base sequence capable of coding the whole amino acid sequence thereof.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】低分子量G蛋白質 rab3A p25の標
的蛋白質およびそれをコードするDNA に関するもので、
医薬の分野で有効に利用される。
[Industrial application] The present invention relates to the target protein of the low molecular weight G protein rab3A p25 and the DNA encoding it.
It is effectively used in the field of medicine.

【0002】[0002]

【従来の技術】生体の細胞はホルモンや神経伝達物質な
どに反応し、お互いに情報を交換することにより生理機
能を発現する。細胞の情報伝達はまず標的細胞の表面受
容体に因子が結合し、次いで細胞膜を横切る受容体が作
動して内部のエフェクター分子を介し、多くの過程を経
て情報の伝達が完了する。近年、この情報伝達機構に関
し飛躍的進展がもたらされ、 GTP結合蛋白質(以下G蛋
白質と略記する)が受容体刺激をエフェクター分子へ伝
達するトランスデューサーとして機能し、ホルモン分
泌、筋肉の収縮、認識などに至る細胞活動において中心
的役割を果たしていることがわかっている。さらに最
近、細胞膜受容体の刺激伝達以後の反応過程に別種のG
蛋白質が関与していることが明らかになった。このG蛋
白質は細胞膜受容体のトランスデューサーとして働いて
いる一群のG蛋白質とは異なり、分子量2万前後の低分
子量G蛋白質の一群である。すなわち細胞の分泌機構に
関して記すと、最初に細胞質で合成された分泌蛋白質が
細胞外へ分泌される場合、小胞形成、小胞と細胞膜との
融合、分泌蛋白の細胞外放出という分泌反応にこの低分
子量G蛋白質が深く関与していることが判明した(Taka
i, Y. et al., Int. Rev. Cytol., 133, 187−230, 199
2)。
2. Description of the Related Art Living cells respond to hormones, neurotransmitters and the like, and exchange physiological information with each other to express physiological functions. In cell signal transduction, factors are first bound to surface receptors of target cells, and then receptors across the cell membrane are activated to mediated via internal effector molecules, and the signal transduction is completed through many processes. In recent years, breakthroughs have been made in this information transduction mechanism, and GTP-binding proteins (abbreviated as G proteins below) function as transducers that transmit receptor stimulation to effector molecules, resulting in hormone secretion, muscle contraction, and recognition. It is known to play a central role in cell activities leading to More recently, another type of G has been involved in the reaction process after stimulation transmission of cell membrane receptors.
It became clear that proteins were involved. This G protein is a group of low molecular weight G proteins having a molecular weight of about 20,000, which is different from the group of G proteins functioning as a transducer of cell membrane receptors. In other words, regarding the secretory mechanism of cells, when the secretory protein synthesized in the cytoplasm is secreted to the outside of the cell, the secretory reaction of vesicle formation, fusion of vesicles with cell membrane, and extracellular release of secretory protein It was found that the low molecular weight G protein is deeply involved (Taka
i, Y. et al., Int. Rev. Cytol., 133, 187-230, 199
2).

【0003】これまでに、 ras(Ha−, Ki−, N−)、
rho (A, B , C)、ral 、rab (1-4)など40種以上の低分
子量G蛋白質をコードする遺伝子が哺乳類組織から酵母
に至るまでクローニングされ、これら遺伝子の蛋白質も
順次精製されている。本発明者らはウシ大脳から低分子
量G蛋白質を15種類分離し、均一化に成功した。この中
で新しい低分子量G蛋白質としてrab3A p25 がある(Ki
kuchi, A. et al., J.Biol. Chem., 263, 2897−2904,
1988)。rab3A p25 は ras p21類似低分子G蛋白質の
サブファリーである rabサブファミリーに属している。
この rabファミリーは分泌反応やエンドサイトシスなど
の細胞内小胞輸送の制御に関与していることが明らかに
なっている(Balch,W.B.etal.,Trends Biochem.Sci.,1
5,473-477,1990) 。rab3A p25 は、プレシナプスに存在
し特にアクティブゾーン付近のプレシナプティックメン
ブランとシナプティックベジクルに多く分布しており、
プレシナプスからの神経伝達物質の放出を制御している
ことが明らかになりつつある (Mizoguchi,A.et al.,J.B
iol.Chem.,265,11872-11879,1990) 。 rab3A p25には、
GDP結合型の不活性型と GTP結合型の活性型が存在し、
GDP結合型からGTP 結合型への交換反応は、 GDP結合型
から GTP結合型への変換を制御するGDP/GTP exchange p
rotein(GEP)により制御されている。本発明者らは rab
3A p25に作用する GEPとして、smg p25 GDI (GDP解離抑
制蛋白質)をウシ大脳可溶性画分より精製しその一次構
造を決定している。さらに、本発明者らは smg p25 GDI
が、rab3A p25 の GDP/GTP変換反応を制御するだけでな
く rab3A p25の膜画分から可溶性画分へのトランスロ−
ケションを制御していること、および rabファミリーに
属する rab11 p24やSEC4 p24にも作用することを明らか
にしている。現在までの知見をもとに、本発明者らは、
rab3A p25の作用機構について以下のように考えた。 GT
P結合型の rab3A p25は smg p25 GDIと複合体を形成し
シナプス細胞質に存在しており、 rab GDIと解離すると
rab3A p25は GTP結合型に変換されシナプティックベジ
クル上の標的蛋白質に結合する。この GTP結合型の rab
3A p25が結合したシナプティックベジクルはシナプティ
ックメンブランにtargetしfusionする。
So far, ras (Ha-, Ki-, N-),
Genes encoding more than 40 kinds of low molecular weight G proteins such as rho (A, B, C), ral, and rab (1-4) were cloned from mammalian tissues to yeast, and the proteins of these genes were also purified sequentially. There is. The present inventors separated 15 kinds of low molecular weight G proteins from bovine cerebrum and succeeded in homogenizing them. Among these, a new low molecular weight G protein is rab3A p25 (Ki
kuchi, A. et al., J. Biol. Chem., 263, 2897-2904,
1988). rab3A p25 belongs to the rab subfamily, which is a subfamily of small G proteins similar to ras p21.
This rab family has been shown to be involved in the regulation of intracellular vesicle transport such as secretory response and endocytosis (Balch, WB et al., Trends Biochem. Sci., 1
5,473-477, 1990). rab3A p25 is present in the presynapse, and is especially distributed in presynaptic membranes and synaptic vesicles near the active zone.
It is becoming clear that it regulates neurotransmitter release from presynapses (Mizoguchi, A. et al., JB
iol. Chem., 265, 11872-11879, 1990). rab3A p25 has
There are inactive type of GDP binding type and active type of GTP binding type,
The exchange reaction from GDP-bound type to GTP-bound type controls the conversion from GDP-bound type to GTP-bound type.
It is controlled by rotein (GEP). We have rab
As a GEP that acts on 3A p25, smg p25 GDI (GDP dissociation inhibitory protein) was purified from the soluble fraction of bovine cerebrum to determine its primary structure. Furthermore, we have found that smg p25 GDI
However, it not only regulates the GDP / GTP conversion reaction of rab3A p25 but also translocates it from the membrane fraction to the soluble fraction of rab3A p25.
It has been shown that it regulates cations and also acts on rab11 p24 and SEC4 p24 belonging to the rab family. Based on the findings to date, the present inventors have
The mechanism of action of rab3A p25 was considered as follows. GT
P-linked rab3A p25 forms a complex with smg p25 GDI, exists in the synaptic cytoplasm, and dissociates with rab GDI.
rab3A p25 is converted to GTP-bound form and binds to target proteins on synaptic vesicles. This GTP-bound rab
The synaptic vesicle bound to 3A p25 targets and fuses to the synaptic membrane.

【0004】小胞輸送の経路はきわめて厳密に制御され
ており、多くの低分子量G蛋白質が小胞輸送に関与して
いるのは種々の小胞がそれぞれ異なったアクセプター膜
にtargeting するために必要であると推定されている。
しかし、これまで標的蛋白質の単離、構造確認はされて
おらず、分泌機構の解明さらに疾患との関係解明のため
にも、標的蛋白質の構造確認が重要な課題となってい
る。
The vesicle transport pathway is very tightly controlled, and many low molecular weight G proteins are involved in vesicle transport, which is necessary for different vesicles to target different acceptor membranes. Is estimated to be
However, the target protein has not yet been isolated and its structure has been confirmed, and confirmation of the structure of the target protein has become an important issue for elucidation of the secretory mechanism and relationship with disease.

【0005】[0005]

【発明が解決しようとする課題】本発明は低分子量G蛋
白質 rab3A p25の標的蛋白質の単離、構造解析を行いア
ミノ酸配列およびそれをコードするcDNAを提供すること
にある。
DISCLOSURE OF THE INVENTION The present invention provides an amino acid sequence and a cDNA encoding the same by isolating and structurally analyzing the target protein of the low molecular weight G protein rab3A p25.

【0006】[0006]

【課題を解決するための手段】上記現状に鑑み、本発明
者らはウシ大脳膜画分より rab3A p25と結合する蛋白質
を見いだし部分精製した(Sirataki, H., et al., J. B
iol. Chem., 267, 10946−10949, 1992)。この蛋白質は
分子量 85000で GTP結合型の rab3A p25と結合するが、
GDP結合型 rab3A p25との親和性は低い。またc−ki−
ras p21 やrhoA p21 、smg p21 、rab11 p24 などの低
分子量G蛋白質とは結合しない。さらに本蛋白質は GAP
(GTPase活性促進蛋白質)、GDI (GDP/GTP交換反応を抑
制する GDP解離抑制蛋白質)、GDS (GDP/GTP交換反応を
促進する GDP解離促進蛋白質)活性を有していないこと
から、 rab3A p25の標的蛋白質である可能性が高い。
[Means for Solving the Problems] In view of the above situation, the present inventors found a protein that binds to rab3A p25 from a bovine cerebral membrane fraction and partially purified it (Sirataki, H., et al., J. B.
iol. Chem., 267, 10946-10949, 1992). This protein has a molecular weight of 85,000 and binds to GTP-bound rab3A p25,
Low affinity for GDP-bound rab3A p25. Also c-ki-
It does not bind to low molecular weight G proteins such as ras p21, rhoA p21, smg p21 and rab11 p24. Furthermore, this protein is GAP
(GTPase activity promoting protein), GDI (GDP dissociation suppressing protein that suppresses GDP / GTP exchange reaction), and GDS (GDP dissociation promoting protein that promotes GDP / GTP exchange reaction) are not active. It is likely to be a target protein.

【0007】そこで本発明者らは本標的蛋白質をコード
する塩基配列の解析を鋭意試み、全構造を解明したこと
により本発明を完成するに至った。一次構造解析の結
果、本発明の rab3A p25の標的蛋白質は 704個のアミノ
酸からなる分子量 77、976 の新規蛋白質であり、本発明
者らは rabphilin−3Aと命名した。以下、本標的蛋白質
は rabphilin−3Aと記載する。すなわち、本発明は rab
philin−3Aの全アミノ酸配列、それをコードする DNAお
よび抗 rabphilin−3A抗体に関するものである。rabphi
lin−3Aの機能から神経伝達物質分泌機構および各種脳
疾患病理解明の試薬として、さらに同疾患の治療、診断
への応用が期待される。以下に本発明を詳細に説明す
る。
Therefore, the inventors of the present invention have eagerly tried to analyze the nucleotide sequence encoding this target protein, and have completed the present invention by elucidating the entire structure. As a result of primary structure analysis, the target protein of rab3A p25 of the present invention is a novel protein consisting of 704 amino acids and having a molecular weight of 77 and 976, and the present inventors named it rabphilin-3A. Hereinafter, this target protein is described as rabphilin-3A. That is, the present invention is rab
The present invention relates to the entire amino acid sequence of philin-3A, the DNA encoding it, and the anti-rabphilin-3A antibody. rabphi
From the function of lin-3A, it is expected to be applied as a reagent for elucidating the neurotransmitter secretion mechanism and pathology of various brain diseases, and further for treatment and diagnosis of the same diseases. The present invention will be described in detail below.

【0008】(1) rabphilin−3Aの精製 本発明者らの方法(Sirataki, H., et al., J. Biol. C
him., 267, 10946−10949, 1992)に従い、ウシ大脳を原
料としてコール酸抽出により粗膜画分を得る。この粗膜
画分をコール酸含有 Buffer A (20mM HEPES−NaOH, pH
7.4, 5mM MgCl2, 1mMジチオスレイトール)を用いる
食塩濃度勾配抽出法にて Q−Sepharoseカラムで精製す
る。得られた目的画分を CHAPS含有 Buffer A を用いる
Mono Qカラム、CHAPS およびKH2PO4含有 Buffer A を
用いるヒドロキシアパタイトカラムにて精製し、次い
で、5 - 20%ショ糖密度勾配超遠心法により高純度精製
品を得ることができる。最後にこの高純度 rabphilin−
3Aを SDS−PAGEにて分画し、PVDF膜(ポリデニリデンジ
フルオリド膜)に転写する。転写後 Ponceau Sで染色
し、 rabphilin−3Aに相当するバンドを切り出し単離し
た。
(1) Purification of rabphilin-3A Our method (Sirataki, H., et al., J. Biol. C
him., 267, 10946-10949, 1992), a crude membrane fraction is obtained by cholic acid extraction using bovine cerebrum as a raw material. This crude membrane fraction was used as a buffer containing cholate in buffer A (20 mM HEPES-NaOH, pH
7.4, 5 mM MgCl 2 , 1 mM dithiothreitol) is used for purification with a Q-Sepharose column by a salt gradient extraction method. Use CHAPS-containing Buffer A for the obtained target fraction
A highly purified product can be obtained by purification with a hydroxyapatite column using a Mono Q column, CHAPS and Buffer A containing KH 2 PO 4 and then 5-20% sucrose density gradient ultracentrifugation. Finally, this high-purity rabphilin−
Fractionate 3A by SDS-PAGE and transfer to a PVDF membrane (polydenylidenedifluoride membrane). After transfer, it was stained with Ponceau S and the band corresponding to rabphilin-3A was cut out and isolated.

【0009】(2) rabphilin−3Aの同定法 上記精製過程における rabphilin−3Aの同定はクロスリ
ンキング法により rab3A p25との結合性を測定すること
により行う。すなわち放射性ヨードラベルしたGTPγS
結合型のrab3A p25 と各カラムによる分画した画分を反
応させ、反応液を SDS−PAGE(10%ポリアクリルアミド
ゲル)にかけて、分子量約 110、000のバンドの有無を測
定することにより rabphilin−3Aの同定・確認すること
ができる。大腸菌由来 rab3A p25は Arakiらの方法によ
り rab3A p25をoverexpressionした大腸菌より調製する
ことができる(Araki, S. et al., Mol. Cell. Biol.,
11, 1438−1447, 1991)。
(2) Method for identifying rabphilin-3A In the above purification process, rabphilin-3A is identified by measuring the binding property to rab3A p25 by the cross-linking method. That is, radioiodinated GTPγS
The bound rab3A p25 was reacted with the fractionated fractions from each column, and the reaction mixture was subjected to SDS-PAGE (10% polyacrylamide gel), and the presence or absence of a band with a molecular weight of about 110,000 was measured to detect rabphilin-3A. Can be identified and confirmed. Escherichia coli-derived rab3A p25 can be prepared from Escherichia coli overexpressing rab3A p25 by the method of Araki et al. (Araki, S. et al., Mol. Cell. Biol.,
11, 1438-1447, 1991).

【0010】(3) rabphilin−3Aの構造解析 イ)部分ペプチドアミノ配列 前記の方法により得られた rabphilin−3AをAchromobac
ter preteaseIにて分解処理し、その処理液をC8 逆相
カラムクロマトグラフィにかけ、出現するペプチドのピ
ークをそれぞれ分取しアミノ酸シークエンサーによりア
ミノ酸配列の解析を行い部分ペプチドアミノ酸配列を決
定することができる。 ロ) rabphilin−3A cDNA のクローニングと構造解析 rabphilin−3Aの部分アミノ酸配列をもとにして、適宜
選択しそれに相当するオリゴヌクレオチドを合成しプロ
ーブとする。ウシ大脳cDNAライブラリーからこれらプロ
ーブとハイブリダイズするクローンを選び出し塩基の構
造解析を行うことにより rabphilin−3A cDNA を決定す
ることができる。クローニングする方法はプラークハイ
ブリダイゼーション法(Sambrook, J. et al., Molecul
ar cloning, a laboratory manual. Cold Spring Harbo
r Laboratory, Cold Spring Harbor, N. Y. 1989)によ
ればよく、選び出されたクローンは必要に応じてプラス
ミドまたはファージベクターなどにサブクローニングす
る。塩基配列の構造はマキサム、ギルバート法(Maxam,
A. M. and Gilbert, W.,Proc. Natl. Acad. Sci. USA,
74, 560, 1977)あるいはジデオキシ法(Messing,J. et
al., Nucl. Acids Res., 9, 309, 1981)によって決定
することができる。最終的に rabphilin−3A cDNA は配
列番号1の如く決められ、そのアミノ酸配列は配列番号
1に記載される如く演繹された。
(3) Structural analysis of rabphilin-3A (i) Partial peptide amino sequence rabphilin-3A obtained by the above method was achromobac
It is possible to determine the partial peptide amino acid sequence by degrading with ter pretease I, subjecting the treated solution to C 8 reverse phase column chromatography, collecting the peaks of the appearing peptides, and analyzing the amino acid sequence with an amino acid sequencer. B) Cloning and structural analysis of rabphilin-3A cDNA Based on the partial amino acid sequence of rabphilin-3A, select an appropriate one and synthesize an oligonucleotide corresponding to it and use it as a probe. The rabphilin-3A cDNA can be determined by selecting clones that hybridize with these probes from the bovine cerebral cDNA library and performing base structure analysis. The method for cloning is the plaque hybridization method (Sambrook, J. et al., Molecul.
ar cloning, a laboratory manual. Cold Spring Harbo
r Laboratory, Cold Spring Harbor, NY 1989), and the selected clones are subcloned into a plasmid or a phage vector as required. The structure of the nucleotide sequence is Maxam, Gilbert method (Maxam,
AM and Gilbert, W., Proc. Natl. Acad. Sci. USA,
74, 560, 1977) or dideoxy method (Messing, J. et.
al., Nucl. Acids Res., 9, 309, 1981). Finally, the rabphilin-3A cDNA was determined as SEQ ID NO: 1 and its amino acid sequence was deduced as described in SEQ ID NO: 1.

【0011】(4)抗 rabphilin−3A抗体の作製 抗原は rabphilin−3Aまたはそのアミノ酸配列をもとに
その部分構造を有するペプチドを用いる。抗原とキャリ
ア蛋白質の複合体の調製は常法の縮合剤を用い、牛血清
アルブミン、サイログロブリン、ヘモシアニンなどの常
用の蛋白質を用いることができる。免疫される動物とし
てはマウス、ラット、ウサギ、モルモットなどがあげら
れ、接種方法は皮下、筋肉あるいは腹腔内に投与され
る。投与に際しては完全フロイントアジュバンドや不完
全フロイントアジュバンドを混和してよく、投与は通常
2〜5週毎に1回ずつ行われる。ポリクローナル抗体は
充分に免疫した動物から採血、血清分離し得ることがで
きる。抗体の精製は既知の方法を用いればよく、硫安分
画法、 PEG分画法、エタノール分画法、陰イオン交換体
の利用、さらにアフィニティクロマトグラフィなどの手
段により容易に達成することができる。モノクローナル
抗体は公知の方法により作製し得る。例えば、免疫され
た動物の脾臓あるいはリンパ節から得られた抗体産生細
胞は骨髄腫細胞と細胞融合させられハイブリドーマとし
て単離される。骨髄腫細胞としては、マウス、ラット、
ヒト等由来のものが使用され、抗体産生細胞と同種由来
のものであることが好ましいが、異種間においても可能
な場合もある。
(4) Preparation of anti-rabphilin-3A antibody As the antigen, rabphilin-3A or a peptide having a partial structure based on the amino acid sequence thereof is used. For the preparation of a complex of an antigen and a carrier protein, a conventional condensing agent can be used, and a commonly used protein such as bovine serum albumin, thyroglobulin and hemocyanin can be used. Examples of animals to be immunized include mice, rats, rabbits, and guinea pigs. The method of inoculation is subcutaneous, intramuscular or intraperitoneal. Upon administration, complete Freund's adjuvant and incomplete Freund's adjuvant may be mixed, and the administration is usually performed once every 2 to 5 weeks. The polyclonal antibody can be collected from blood or serum from a fully immunized animal. The antibody can be purified by a known method and can be easily achieved by means such as ammonium sulfate fractionation method, PEG fractionation method, ethanol fractionation method, use of anion exchanger, and affinity chromatography. The monoclonal antibody can be prepared by a known method. For example, antibody-producing cells obtained from the spleen or lymph node of an immunized animal are fused with myeloma cells and isolated as a hybridoma. Myeloma cells include mice, rats,
Those derived from humans and the like are used, and those derived from the same species as the antibody-producing cells are preferable, but it may be possible between different species.

【0012】細胞融合の操作は既知の方法、例えばケー
ラーとミルスタインの方法(Nature, 256, 495, 1975)
に従い実施できる。融合促進剤としては、ポリエチレン
グリコールやセンダイウイルスなどがあげられるが、通
常20〜50%程度の濃度のポリエチレングリコール(平均
分子量1000〜4000)を用いて20〜40℃、好ましくは30〜
37℃の温度下、抗体産生細胞数と骨髄腫細胞数の比は通
常1:1〜10:1程度、約1〜10分間程度反応させるこ
とにより、細胞融合を実施することができる。抗 rab3A
p25抗体産生ハイブリドーマのスクリーニングには種々
の免疫化学的方法が使用できる。例えば、 rab3A p25を
コートしたマイクロプレートを用いるELISA (Enzyme−
Linked immunosorbent assay)法、抗免疫グロブリン抗
体をコートしたマイクロプレートを用いる EIA(Enzyme
immunoassay)法などがあげられる。これら免疫化学的
手法により、目的とする抗体を産生しているウエルを得
る。このようなウエルから、更に例えば限界希釈法によ
ってクローニングを行いクローンを得る。ハイブリドー
マの選別、育種は通常 HAT(ヒポキサンチン、アミノプ
テリン、チミジン)を添加して、10〜20%牛胎児血清を
含む動物細胞用培地(例、RPMI 1640)で行われる。
The operation of cell fusion is known, for example, the method of Kohler and Milstein (Nature, 256, 495, 1975).
It can be carried out according to. Examples of the fusion promoter include polyethylene glycol and Sendai virus. Usually, polyethylene glycol (average molecular weight 1000 to 4000) at a concentration of about 20 to 50% is used at 20 to 40 ° C, preferably 30 to
Cell fusion can be carried out by reacting at a temperature of 37 ° C. for a ratio of the number of antibody-producing cells to the number of myeloma cells of usually about 1: 1 to 10: 1 for about 1 to 10 minutes. Anti-rab3A
Various immunochemical methods can be used for screening p25 antibody-producing hybridomas. For example, an ELISA (enzyme-based assay) using a microplate coated with rab3A p25.
Linked immunosorbent assay) method, EIA (Enzyme) using microplate coated with anti-immunoglobulin antibody
immunoassay) method and the like. Wells producing the desired antibody are obtained by these immunochemical techniques. From such wells, cloning is further performed by, for example, the limiting dilution method to obtain a clone. Hybridomas are usually selected and bred by adding HAT (hypoxanthine, aminopterin, thymidine), and using an animal cell medium containing 10 to 20% fetal bovine serum (eg, RPMI 1640).

【0013】このようにして得られたクローンはあらか
じめプリスタンを投与したBALB/Cマウスの腹腔内へ移植
し、10〜14日後にモノクローナル抗体を高濃度に含む腹
水を採取し、抗体精製の原料とすることができる。ま
た、該クローンを培養し、その培養物を抗体精製の原料
とすることもできる。モノクローナル抗体の回収は免疫
グロブリンの精製法として前記の方法を用いればよい。
これら抗体を用いる免疫学的測定法によりヒト生体試料
中のヒトプロヒビチンの同定や定量を可能とし、癌診断
試薬への応用が期待される。ヒトプロヒビチンの免疫学
的測定法は、公知の方法に準ずればよく、例えば蛍光抗
体法、受身凝集反応法、酵素抗体法などいずれの方法に
おいても実施できる。本発明のモノクローナル抗体はIg
G 、IgA 、IgM いかなるクラスのものでもよく、また該
抗体のFc' あるいはFc領域を除去したFab'あるいは Fab
画分、あるいはその重合体を用いてもよい。また、その
キメラ抗体であってもよい。
The clones thus obtained were transplanted into the abdominal cavity of BALB / C mice to which pristane had been administered in advance, and 10 to 14 days later, ascites containing a high concentration of monoclonal antibody was collected and used as a raw material for antibody purification. can do. Alternatively, the clone can be cultured and the culture can be used as a raw material for antibody purification. For the recovery of the monoclonal antibody, the above method may be used as the immunoglobulin purification method.
Immunoassays using these antibodies enable the identification and quantification of human prohibitin in human biological samples, and are expected to be applied to cancer diagnostic reagents. The immunological measurement method of human prohibitin may be based on a known method, for example, a fluorescent antibody method, a passive agglutination reaction method, an enzyme antibody method and the like. The monoclonal antibody of the present invention is Ig
G, IgA, IgM may be of any class, and the Fc 'or Fab' or Fab in which the Fc region is removed from the antibody
Fractions or polymers thereof may be used. Further, it may be a chimeric antibody thereof.

【0014】(5)本発明の rabphilin−3A構造解析の
結果、アミノ酸番号 105および 590付近の2個所に疎水
性部分を有していた。また rabphilin−3Aアミノ酸番号
396−530 位および 548−669 位の配列が、 protein k
inase C やsynaptotagmin に存在するC2 領域とホモロ
ジーのある配列を有することが判明した(Perin, M. S.
et al., Nature, 345, 260−263, 1990)。synaptotagm
in はシナプティックベジクルに存在し神経伝達物質の
放出に関与していると考えられている物質であり、C端
側にC2 領域を2つ保有している。 rabphilin−3AはC
端側に2つのC2領域を保有しており、分泌反応に関与
すると考えられている低分子量G蛋白質 rab3A p25の標
的蛋白質であり、脳組織に特異的に分布していることか
ら神経伝達物質の放出に関与し各種脳疾患と密接に関係
していると予想される。
(5) As a result of structural analysis of rabphilin-3A of the present invention, it was found to have hydrophobic moieties at two positions near amino acid numbers 105 and 590. Also the rabphilin-3A amino acid number
The sequences at positions 396-530 and 548-669 are protein k
It was found to have a sequence with a homology to the C 2 region present in inase C and synaptotagmin (Perin, MS
et al., Nature, 345, 260-263, 1990). synaptotagm
In is a substance that is present in synaptic vesicles and is considered to be involved in the release of neurotransmitters, and has two C 2 regions on the C-terminal side. rabphilin-3A is C
It is a target protein of rab3A p25, a low molecular weight G protein that has two C 2 regions on the end side and is considered to be involved in secretory reaction, and is a neurotransmitter because it is specifically distributed in brain tissue. It is expected to be involved in the release of erythrocyte and is closely related to various brain diseases.

【0015】[0015]

【実施例】以下の実施例により本発明を詳細に且つ具体
的に説明するが、本発明はこれらの実施例に限定される
ものではない。
The present invention will be described in detail and specifically with reference to the following examples, but the present invention is not limited to these examples.

【0016】実施例1 rabphilin−3Aの同定法( Cross−linking Assay) 放射性ヨード標識した GTPγS 結合型のrab3A p25 (1
pmol, 2.2 −2.6 ×105 cpm )を検体試料溶液45μl
(22.2mM HEPES/NaOH pH 7.4, 5.56mM MgCl2,1.11 μM
GTPγS , 222mM NaCl, 0.056% Na cholate)と30℃5
分反応後、20mM disuccinimidyl suberate /20% DMSO
5μl の添加。さらに30℃ 30 分反応を続行し、25μl
の溶液(200mM Tris/HCl pH 6.7,9% SDS、6% 2−
メルカプトエタノール、15%グリセロール)を添加し反
応を停止した。反応液の一部60μl を SDS−PAGE
(10%ポリアクリルアミドゲル)にかけた後、Fujix BA
S 2000Bio−imaging analyzerにより放射活性を測定し
た(標準は放射性ヨード標識 rab3A p25)。 rab3A p25
は分子量25,000の位置に検出され、 rabphilin−3Aと結
合すると分子量 110,000の位置に検出されることで同定
することができる。 rab3A p25は大腸菌より調製し、放
射性ヨードの標識はBolton−Hunter試薬を用いて行うこ
とができる(Shirataki, H. et al., J. Biol. Chem.,
267, 10946−10949, 1992)。下記の rabphilin−3Aの精
製過程において、各精製画分をこの方法に処し rabphil
in−3Aの同定を行った。
Example 1 Identification of rabphilin-3A (Cross-linking Assay) Radioiodinated GTPγS-binding rab3A p25 (1
pmol, 2.2 −2.6 × 10 5 cpm) 45 μl of sample solution
(22.2mM HEPES / NaOH pH 7.4, 5.56mM MgCl 2, 1.11 μM
GTPγS, 222mM NaCl, 0.056% Nacholate) and 30 ℃ 5
After reaction for 20 minutes, 20 mM disuccinimidyl suberate / 20% DMSO
Add 5 μl. Continue the reaction at 30 ° C for 30 minutes to obtain 25 μl.
Solution (200 mM Tris / HCl pH 6.7, 9% SDS, 6% 2-
The reaction was stopped by adding mercaptoethanol and 15% glycerol). SDS-PAGE of 60 μl of the reaction mixture
After applying (10% polyacrylamide gel), Fujix BA
Radioactivity was measured by S 2000 Bio-imaging analyzer (standard is radioiodinated rab3A p25). rab3A p25
Can be identified by being detected at the position of molecular weight 25,000, and when it is bound to rabphilin-3A, it is detected at the position of molecular weight 110,000. rab3A p25 is prepared from Escherichia coli, and radioactive iodine can be labeled using Bolton-Hunter reagent (Shirataki, H. et al., J. Biol. Chem.,
267, 10946-10949, 1992). In the following purification process of rabphilin-3A, each purified fraction was treated by this method.
The in-3A was identified.

【0017】実施例2 rabphilin−3Aの精製 ウシ脳を原料として kikuchiらの方法(Kikuchi, A. et
al., J. Biol. Chem., 263. 2897−2904, 1988)に準
じて粗膜画分を調製した。この粗膜画分(800ml, 9.6g
protein)を20,000×g 、1時間遠心分離を行いペレット
を得た。このペレットを 320mlの2%コール酸ナトリウ
ム含有 Buffer A (20mM HEPES/NaON pH7.4,5mM MgCl2,
1mMジチオスレイトール)に溶解し 100,000×g 、1
時間遠心分離を行い不溶物を除去し上澄液(320ml, 2.9
g protein)を以下の精製に処した。上澄液80mlを、1%
コール酸ナトリウム含有 Buffer A にて平衡化した Hil
oad 26/10 Q−Sepharose カラム( 2.6×10cm)に負荷
し同Buffer 148mlで洗浄後、同Buffer(600ml)を用いる
0−1.0M食塩の濃度勾配グラジエント溶出を行い12mlず
つ分取し活性画分37−39を得た。残りの上澄液 240mlも
同操作を行いプールした。この活性画分を濃縮後、 0.6
% CHAPS含有 Buffer A を添加しコール酸ナトリウムを
除いた溶液(144ml, 72mg protein)を、 0.6% CHAPS含
有 Buffer Aにて平衡化した Mono Q HR 10/10カラム
(1×10cm)に負荷した。同 Buffer 56mlにて洗浄後、
同 Buffer (240ml)を用い0−0.5M食塩濃度勾配溶出を
行い2mlずつ分取し活性画分 128−141 を得た。次いで
この画分(28ml, 1.4mg protein)を、 0.6% CHAPSおよ
び 50mM KH2PO4含有 Buffer A にて平衡化したハイドロ
オキシアパタイトカラム( 0.8×20cm)に負荷、 0.6%
CHAPSおよび 80mM KH2PO4含有 Buffer A 42ml で洗浄
後、 0.6% CHAPSおよび 120mM KH2PO4 含有 Buffer A
にて溶出、 1.5mlずつ分取し、活性画分49−52を得た。
この活性画分(6ml,10μg protein)を 1.2mlに濃縮
し、5−20%ショ糖濃度勾配超遠心分離(チューブ液量
4.8ml) 238,000×g 、19時間行い、チューブの底から
0.25mlずつ分取し検定の結果、7−10の画分(6ml,5
μg protein)を高純度 rabphilin−3Aとして得た。上記
の精製操作を20回繰り返し約 100μg の rabphilin−3A
を得た。最後に、これら高純度品を SDS−PAGEにて分離
しPVDF膜へ転写した後、Ponceau S で染色し rabphilin
−3Aに相当するバンドを切り出し rabphilin−3Aを単離
した。このようにして得られた rabphilin−3Aと rab3A
p25との複合体形成について実施例1の方法により確認
した。 GDP結合型 rab3A p25存在下では rabphilin−3A
は分子量約85,000の位置に出現した。 GTPγS 結合型 r
ab3A p25存在下では rabphilin−3Aは分子量約 110,000
の位置に移動し、 rab3A p25の一部が分子量 110,000の
位置に移動した。このことから単離した rabphilin−3A
は GTPγS 結合型 rab3A p25とのみ複合体を形成するこ
とが確認された。
Example 2 Purification of rabphilin-3A Using bovine brain as a raw material, the method of Kikuchi et al. (Kikuchi, A. et.
al., J. Biol. Chem., 263. 2897-2904, 1988) to prepare a crude membrane fraction. This crude membrane fraction (800ml, 9.6g
(protein) was centrifuged at 20,000 × g for 1 hour to obtain a pellet. 320 ml of 2% sodium cholate Buffer A (20 mM HEPES / NaON pH7.4, 5 mM MgCl 2 ,
1 mM dithiothreitol) 100,000 × g, 1
Centrifuge for 2 hours to remove insoluble matter and remove the supernatant (320 ml, 2.9
g protein) was subjected to the following purification. 80% of supernatant is 1%
Hil equilibrated with Buffer A containing sodium cholate
Load on an oad 26/10 Q-Sepharose column (2.6 x 10 cm), wash with 148 ml of the same buffer, and then perform gradient elution of a 0-1.0 M sodium chloride gradient using the same buffer (600 ml). 37-39 were obtained. The remaining 240 ml of the supernatant was pooled by performing the same operation. After concentration of this active fraction, 0.6
A solution (144 ml, 72 mg protein) obtained by adding Buffer A containing% CHAPS and removing sodium cholate was loaded on a Mono Q HR 10/10 column (1 × 10 cm) equilibrated with Buffer A containing 0.6% CHAPS. After washing with 56 ml of the same buffer,
The same buffer (240 ml) was used for elution with a 0-0.5 M sodium chloride concentration gradient, and 2 ml each was collected to obtain an active fraction 128-141. Next, this fraction (28 ml, 1.4 mg protein) was loaded onto a hydroxyapatite column (0.8 × 20 cm) equilibrated with Buffer A containing 0.6% CHAPS and 50 mM KH 2 PO 4 , and 0.6%
Buffer A containing CHAPS and 80 mM KH 2 PO 4 After washing with 42 ml of 0.6% CHAPS and 120 mM KH 2 PO 4 Buffer A
Was eluted with 1.5 ml of each fraction to obtain active fractions 49-52.
This active fraction (6 ml, 10 μg protein) was concentrated to 1.2 ml and subjected to 5-20% sucrose concentration gradient ultracentrifugation (tube volume).
4.8ml) 238,000 × g, perform for 19 hours, from the bottom of the tube
As a result of assaying by collecting 0.25 ml each, fractions 7-10 (6 ml, 5
μg protein) was obtained as high-purity rabphilin-3A. The above purification procedure was repeated 20 times to obtain about 100 μg of rabphilin-3A.
Got Finally, these high-purity products were separated by SDS-PAGE and transferred to a PVDF membrane, then stained with Ponceau S and rabphilin
A band corresponding to −3A was cut out to isolate rabphilin-3A. Rabphilin-3A and rab3A thus obtained
The formation of a complex with p25 was confirmed by the method of Example 1. Rabphilin-3A in the presence of GDP-bound rab3A p25
Appeared at a molecular weight of about 85,000. GTPγS-bound r
In the presence of ab3A p25, rabphilin-3A has a molecular weight of approximately 110,000.
, And part of rab3A p25 moved to the position of molecular weight 110,000. Rabphilin-3A isolated from this
Was confirmed to form a complex only with GTPγS-bound rab3A p25.

【0018】実施例3 rabphilin−3Aの部分アミノ酸配列の解析 実施例2により得た rabphilin−3AをAchromopacter pr
oteaseI(API)にて 0.2M Tris/HCl pH 9.0,8%アセト
ニトリル溶液中で37℃24時間、酵素分解処理(モル比
1:50=API : rabphilin−3A)した後、C8 逆相カラ
ムクロマトグラフィにかけ約30のペプチドピークを分取
した。この内11個のピークにつき自動気相シークエンサ
ー(Applied Biosystems, Model 470A)を用いアミノ酸
配列を解析した。その結果は表1に示した。
Example 3 Analysis of partial amino acid sequence of rabphilin-3A The rabphilin-3A obtained in Example 2 was subjected to Achromopacter pr
After enzymatic degradation (molar ratio 1:50 = API: rabphilin-3A) in 0.2M Tris / HCl pH 9.0, 8% acetonitrile solution with otease I (API) for 24 hours at 37 ° C, C 8 reverse phase column chromatography. Then, about 30 peptide peaks were collected. Of these 11 peaks, the amino acid sequence was analyzed using an automatic gas phase sequencer (Applied Biosystems, Model 470A). The results are shown in Table 1.

【0019】[0019]

【表1】 [Table 1]

【0020】実施例4 rabphilin−3A cDNA のクローニングと塩基配列の解析 実施例3の rabphilin−3A部分ペプチドアミノ酸配列の
結果をもとに、ピーク10に含まれるペプチド LysMetGlu
GluMetGluGlnGlu およびピーク11に含まれるペプチド G
luPheAsnGluGluPhePheTyr をコードするオリゴヌクレオ
チドを DNA合成基(Applied Biosystems, Model 380A)
にて合成しプローブとして用いた。λgt10 を用いるcDN
Aクローニングキット(Amersham社)を用いウシ脳cDNA
ライブラリーの約60万個のファージプラークより、両プ
ローブとハイブリダイズする24個のクローンを得た。プ
ラークハイブリダイゼイションはManiatisらの方法に準
ずる公知の方法により行った。得られたクローンはPlas
mid pUC 19を用いリクローニングを行いそれぞれの塩基
配列を解析した。その中の1つ、約 2.7kbのcDNAを含む
クローンを得、ジデオキシ法で塩基配列を決定した。そ
の塩基配列およびそれから演繹されるアミノ酸配列を配
列番号1に記載した。このcDNAは 704個のアミノ酸から
なるオープンリーディングフレームを有しており、表1
に示される rabphilin−3Aの部分ペプチドアミノ酸配列
を全て含んでいた。また開始コドンATG の前に Kozak配
列を有していた。演繹されたアミノ酸配列から rabphil
in−3Aの分子量は77,976で、精製した rabphilin−3Aの
SDS−PAGEおよびショ糖密度勾配遠心法から得られた分
子量約85,000に近い。このことから rabphilin−3Aはサ
ブユニット構造を持たない単鎖ペプチドからなると考え
られる。単離された24個のクローンの内、4個のクロー
ンが2種類のプローブとハイブリダイズし、1個のクロ
ーンがN末端部翻訳領域を有しており、残りはC末端部
翻訳領域を有していた。このようにして単離されたcDNA
が rabphilin−3Aをコードしているかどうかを検討する
ため、そのcDNAを含む発現ベクターでCOS7細胞を形質転
換し rabphilin−3Aを表現させた細胞のホモジネイトを
後記実施例5記載と同様の方法で SDS−PAGE後抗 rabph
ilin−3A抗体にてイムノブロットした。形質転換の方法
はまず、 rabphilin−3A cDNA の開始コドンとストップ
コドンの端に BamHIとKpnI制限酵素のsiteをつないだ
2.1kbのフラグメントをPCR により作製した。その PCR
産物を BamHIで切断し、外来遺伝子の発現がSRα promo
ter でコントロールされているpCEV4 のBamHI siteに挿
入し、DEAEデキストラン法でCOS7細胞にトランスフェク
トした。トランスフェクト後を72時間培養して細胞を回
収し、 rabphilin−3Aの発現を抗 rabphilin−3Aポリク
ローナル抗体によるイムノブロットで検討した。その結
果、ウシ大脳 rabphilin−3Aと同じく分子量約85,000の
位置にバンドが認められ、単離したcDNAは rabphilin−
3Aをコードしていることが確認された。
Example 4 Cloning of rabphilin-3A cDNA and analysis of nucleotide sequence Based on the results of the amino acid sequence of the partial peptide of rabphilin-3A of Example 3, the peptide LysMetGlu contained in peak 10 was identified.
GluMetGluGlnGlu and peptide G contained in peak 11
Oligonucleotides encoding luPheAsnGluGluPhePheTyr were converted to DNA synthetic groups (Applied Biosystems, Model 380A).
Was used as a probe. cDN using λgt10
Bovine brain cDNA using A cloning kit (Amersham)
Twenty-four clones hybridizing with both probes were obtained from about 600,000 phage plaques in the library. The plaque hybridization was performed by a known method according to the method of Maniatis et al. The obtained clone is Plas
Recloning was performed using mid pUC 19 and the respective nucleotide sequences were analyzed. A clone containing one of them, a cDNA of about 2.7 kb, was obtained and the nucleotide sequence was determined by the dideoxy method. The base sequence and the amino acid sequence deduced therefrom are shown in SEQ ID NO: 1. This cDNA has an open reading frame consisting of 704 amino acids and is shown in Table 1.
The partial peptide amino acid sequence of rabphilin-3A shown in (3) was included. It also had a Kozak sequence before the start codon ATG. Derived amino acid sequence from rabphil
The molecular weight of in-3A is 77,976, and that of purified rabphilin-3A
The molecular weight obtained from SDS-PAGE and sucrose density gradient centrifugation is close to about 85,000. This suggests that rabphilin-3A consists of a single-chain peptide that does not have a subunit structure. Of the 24 clones isolated, 4 clones hybridized with 2 kinds of probes, one clone had an N-terminal translation region, and the other had a C-terminal translation region. Was. CDNA isolated in this way
In order to examine whether or not rabphilin-3A is encoded, homogenates of cells expressing Cb7 cells transformed with an expression vector containing the cDNA and expressing rabphilin-3A were treated with SDS by the same method as described in Example 5 below. -PAGE after anti-rabph
It was immunoblotted with ilin-3A antibody. The transformation method was to first ligate BamHI and KpnI restriction enzyme sites to the ends of the start and stop codons of the rabphilin-3A cDNA.
A 2.1 kb fragment was generated by PCR. That PCR
The product is cleaved with BamHI and the expression of the foreign gene is SRα promo
It was inserted into the BamHI site of ter-controlled pCEV4 and transfected into COS7 cells by the DEAE dextran method. The cells were collected by culturing for 72 hours after the transfection, and the expression of rabphilin-3A was examined by immunoblotting with an anti-rabphilin-3A polyclonal antibody. As a result, a band was observed at a position of a molecular weight of about 85,000 as in bovine cerebrum rabphilin-3A, and the isolated cDNA was rabphilin-
It was confirmed that it coded 3A.

【0021】実施例5 抗 rabphilin−3A抗体の作製および rabphilin−3Aの組
織分布 表1に示される rabphilin−3A部分アミノ酸配列の中か
らピーク2のペプチドのN端 Hisを除いた18個のアミノ
酸からなるペプチドを合成し抗原として使用した。この
合成ペプチドをキャリア蛋白質 KLHと縮合剤マレイミド
活性エステルを用い複合体を調製した後、完全フロイン
トアジュバンドと混和しウサギの皮下に2週間ごと合計
5回免疫し抗体を作製した。抗体産生の確認はそれぞれ
の抗原ペプチドをマイクロプレートに固相化し、採血し
た血清を添加、次いで西洋ワサビペルオキシダーゼ標識
した抗ウサギ免疫グロブリン抗体を用いる ELISA法によ
り行った。得られた抗血清は同抗原に対するアフィニテ
ィカラムにかけ精製を行い、抗 rabphilin−3Aポリクロ
ーナル抗体を作製した。この抗体を用いて rabphilin−
3Aの組織分布を検討した。ラットの種々の臓器(約0.1
g)を10mlの20mM Tris/HCl pH 7.5,0.25M ショ糖、 0.
017%デオキシコール酸ナトリウム、10μM p−amidino
phenyl −methanesulfonyl fluoride溶液でホモジナイ
ズした後トリクロロ酢酸を最終濃度6%になるように添
加。遠心分離後沈殿をLaemmli's ハッファーに溶解し加
熱処理した後、 SDS−PAGE(12%ポリアクリルアミドゲ
ル)にかけた。電気泳動後ニトロセルロース膜に蛋白を
転写し抗 rabphilin−3Aポリクローナル抗体、次いでパ
ーオキシデイス標識羊抗ウサギ免疫グロブリン抗体を反
応させ陽性バンドの有無を検定した。その結果、免疫反
応陽性バンドは脳だけに認められ、膵臓、肝臓、脾臓、
腎臓、肺臓には認められなかった。
Example 5 Preparation of anti-rabphilin-3A antibody and tissue distribution of rabphilin-3A From the 18 amino acids excluding the N-terminal His of the peptide of peak 2 from the rabphilin-3A partial amino acid sequence shown in Table 1. Was synthesized and used as an antigen. This synthetic peptide was used to prepare a complex using carrier protein KLH and a condensing agent maleimide active ester, and then mixed with complete Freund's adjuvant, and rabbits were subcutaneously immunized 5 times every 2 weeks to prepare an antibody. Confirmation of antibody production was carried out by immobilizing each antigenic peptide on a microplate, adding blood serum, and then performing an ELISA method using an anti-rabbit immunoglobulin antibody labeled with horseradish peroxidase. The obtained antiserum was purified by applying it to an affinity column against the same antigen to prepare an anti-rabphilin-3A polyclonal antibody. Rabphilin− using this antibody
The tissue distribution of 3A was examined. Various organs of rat (about 0.1
g) with 10 ml of 20 mM Tris / HCl pH 7.5, 0.25 M sucrose, 0.
017% sodium deoxycholate, 10 μM p-amidino
After homogenizing with phenyl-methanesulfonyl fluoride solution, add trichloroacetic acid to a final concentration of 6%. After centrifugation, the precipitate was dissolved in Laemmli's Huffer, heat-treated, and then subjected to SDS-PAGE (12% polyacrylamide gel). After electrophoresis, the protein was transferred to a nitrocellulose membrane and reacted with an anti-rabphilin-3A polyclonal antibody and then with a peroxydis labeled sheep anti-rabbit immunoglobulin antibody to test for the presence of a positive band. As a result, an immunoreactive positive band was found only in the brain, and the pancreas, liver, spleen,
Not found in kidney or lung.

【0022】[0022]

【発明の効果】本発明は低分子量G蛋白質 rab3A p25の
新規な標的蛋白質 rabphilin−3Aのアミノ酸配列、それ
をコードするcDNAおよび抗 rabphilin−3A抗体を提供す
る。 rabphilin−3Aは脳組織に特異的に分布し、神経伝
達物質の放出に関与するものであり、そのcDNAも含めて
分泌機構解明の研究試薬として有用である。さらにその
抗体を用いる免疫学的手法により生体試料の rabphilin
−3Aの同定、定量を行うことができ、各種脳神経疾患と
の関係を研究することにより、診断薬の分野においても
その応用が期待される。
INDUSTRIAL APPLICABILITY The present invention provides an amino acid sequence of a novel target protein rabphilin-3A of low molecular weight G protein rab3A p25, a cDNA encoding the same and an anti-rabphilin-3A antibody. Rabphilin-3A is specifically distributed in brain tissues and is involved in the release of neurotransmitters, and its cDNA, including its cDNA, is useful as a research reagent for elucidating the secretory mechanism. In addition, rabphilin of biological samples was examined by immunological techniques using the antibody.
-3A can be identified and quantified, and its application in the field of diagnostic agents is expected by studying the relationship with various cranial nerve diseases.

【0023】[0023]

【配列表】[Sequence list]

配列番号:1 配列の長さ:2135 配列の型:核酸 鎖の数:二本鎖 トポロジー:直鎖状 配列の種類:cDNA to mRNA 起源 生物名:ウシ 配列の特徴 特徴を表す記号:Peptide 存在位置:21..2132 特徴を決定した記号:S 配列 TGGAGTGCTG GGCTTCAGCC ATG ACT GAC ACC GTG TTC AGC AGC AGC TCA AGC 53 Met Thr Asp Thr Val Phe Ser Ser Ser Ser Ser 1 5 10 CGT TGG ATG TGT CCC AGT GAC CGA CCC CTG CAG TCA AAT GAT AAA GAG 101 Arg Trp Met Cys Pro Ser Asp Arg Pro Leu Gln Ser Asn Asp Lys Glu 15 20 25 CAG CTC CAG ACA GGA TGG TCT GTC CAC CCC AGC GGT CAG CCG GAC AGA 149 Gln Leu Gln Thr Gly Trp Ser Val His Pro Ser Gly Gln Pro Asp Arg 30 35 40 CAG AGG AAA CAG GAA GAG CTG ACA GAT GAG GAG AAG GAA ATC ATC AAC 197 Gln Arg Lys Gln Glu Glu Leu Thr Asp Glu Glu Lys Glu Ile Ile Asn 45 50 55 AGG GTG ATC GCT CGC GCT GAG AAG ATG GAA GAG ATG GAA CAG GAG CGA 245 Arg Val Ile Ala Arg Ala Glu Lys Met Glu Glu Met Glu Gln Glu Arg 60 65 70 75 ATC GGG CGC CTG GTG GAC CGC CTA GAG AAC ATG AGG AAG AAC GTG GCC 293 Ile Gly Arg Leu Val Asp Arg Leu Glu Asn Met Arg Lys Asn Val Ala 80 85 90 GGG GAC GGG GTG AAC CGC TGC ATC CTG TGT GGA GAA CAG CTG GGG ATG 341 Gly Asp Gly Val Asn Arg Cys Ile Leu Cys Gly Glu Gln Leu Gly Met 95 100 105 CTG GGC TCT GCC TGT GTG GTG TGT GAG GAC TGT AAG AAG AAT GTC TGC 389 Leu Gly Ser Ala Cys Val Val Cys Glu Asp Cys Lys Lys Asn Val Cys 110 115 120 ACC AAG TGT GGG GTG GAG ACC TCC AAC AAC CGC CCA CAC CCT GTG TGG 437 Thr Lys Cys Gly Val Glu Thr Ser Asn Asn Arg Pro His Pro Val Trp 125 130 135 CTC TGC AAA ATC TGC ATC GAG CAG AGA GAG GTG TGG AAG CGC TCT GGA 485 Leu Cys Lys Ile Cys Ile Glu Gln Arg Glu Val Trp Lys Arg Ser Gly 140 145 150 155 GCA TGG TTC TTC AAG GGC TTC CCC AAA CAG GTC CTC CCA CAG CCT ATG 533 Ala Trp Phe Phe Lys Gly Phe Pro Lys Gln Val Leu Pro Gln Pro Met 160 165 170 CCC ATA AAG AAG AAC AAG CCC CAG CAG CCA GTC AGT GAG CCT GTG CCC 581 Pro Ile Lys Lys Asn Lys Pro Gln Gln Pro Val Ser Glu Pro Val Pro 175 180 185 GCT GCC CCT GAG CCA GCC ACT CCT GAG CCC AAG CAC CCT GCC CGG GCT 629 Ala Ala Pro Glu Pro Ala Thr Pro Glu Pro Lys His Pro Ala Arg Ala 190 195 200 CCA ACT CGA GGT GAC ACT GAA GAC AGG AGG GGC CCA GGT CAG AAG ACA 677 Pro Thr Arg Gly Asp Thr Glu Asp Arg Arg Gly Pro Gly Gln Lys Thr 205 210 215 GGC CCT GAC ATG ACT TCT GCT CCT GGG CGA GGA AGC TAC GGG CCT CCT 725 Gly Pro Asp Met Thr Ser Ala Pro Gly Arg Gly Ser Tyr Gly Pro Pro 220 225 230 235 GTG CGC AGG GCC TCT GAG GCA CGA ATG AGC TCC TCT GGC CGG GAC TCA 773 Val Arg Arg Ala Ser Glu Ala Arg Met Ser Ser Ser Gly Arg Asp Ser 240 245 250 GAC AGC TGG GAC CAG GGC CAC GGC ATG GCT GCT GGG GAC CCC AGC CAG 821 Asp Ser Trp Asp Gln Gly His Gly Met Ala Ala Gly Asp Pro Ser Gln 255 260 265 AGC CCA GCA GGT TTG AGA CGG GCC AAC TCA GTC CAG GCT TCT AGA CCT 869 Ser Pro Ala Gly Leu Arg Arg Ala Asn Ser Val Gln Ala Ser Arg Pro 270 275 280 GCC CCA GCC TCA ATG CAG AGC CCG GCA CCT CCC CAG CCG GGG CAA CCA 917 Ala Pro Ala Ser Met Gln Ser Pro Ala Pro Pro Gln Pro Gly Gln Pro 285 290 295 GGA CCC CCA GGA GGC AGC AGA CCC AGT CCG GGG CCG ACG GGA CGC TTT 965 Gly Pro Pro Gly Gly Ser Arg Pro Ser Pro Gly Pro Thr Gly Arg Phe 300 305 310 315 CCA GAT CAG AGA CCA GAG GTG GCT CCC AGT GAC CCC GAC TAT ACA GGG 1013 Pro Asp Gln Arg Pro Glu Val Ala Pro Ser Glu Pro Glu Tyr Thr Gly 320 325 330 GCC GCC GCC CAA CCC CGG GAG GAG AGA ACC GGG GGA ATC GGA GGC TAC 1061 Ala Ala Ala Gln Pro Arg Glu Glu Arg Thr Gly Gly Ile Gly Gly Tyr 335 340 345 TCG GCA GCT GGA ACC AGG GAG GAC CGA GCG GGC CAC CCC CCG GGC TCC 1109 Ser Ala Ala Gly Thr Arg Glu Asp Arg Ala Gly His Pro Pro Gly Ser 350 355 360 TAT ACC CAA GCC TCT GCG GCT GCT CCC CAG CCG GTG GTG GCC TCG GCC 1157 Tyr Thr Gln Ala Ser Ala Ala Ala Pro Gln Pro Val Val Ala Ser Ala 365 370 375 CGT CAG CCC CCA CCC CCT GAG GAG GAC GAG GAG GAA GCT AAC AGC TAC 1205 Arg Gln Pro Pro Pro Pro Glu Glu Asp Glu Glu Glu Ala Asn Ser Tyr 380 385 390 395 GAT TCG GAT GAA GCA ACC ACC CTG GGT GCC CTG GAG TTC AGC CTT CTC 1253 Asp Ser Asp Glu Ala Thr Thr Leu Gly Ala Leu Glu Phe Ser Leu Leu 400 405 410 TAT GAC CAG GAC AAC AGC TCC CTG CAC TGC ACC ATC ATA AAG GCC AAG 1301 Tyr Asp Gln Asp Asn Ser Ser Leu His Cys Thr Ile Ile Lys Ala Lys 415 420 425 GGA CTG AAG CCC ATG GAT TCG AAT GGC TTG GCC GAT CCC TAC GTT AAG 1349 Gly Leu Lys Pro Met Asp Ser Asn Gly Leu Ala Asp Pro Tyr Val Lys 430 435 440 CTG CAC CTC CTG CCG GGA GCC AGC AAG TCC AAC AAG CTT CGT ACA AAA 1397 leu His Leu Leu Pro Gly Ala Ser Lys Ser Asn Lys Leu Arg Thr Lys 445 450 455 ACC CTG CGG AAC ACC AGA AAC CCC ATC TGG AAC GAA ACT CTG GTC TAC 1445 Thr Leu Arg Asn Thr Arg Asn Pro Ile Trp Asn Glu Thr Leu Val Tyr 460 465 470 475 CAT GGC ATC ACA GAC GAG GAC ATG CAA AGG AAG ACC CTC AGA ATC TCT 1493 His Gly Ile Thr Asp Glu Asp Met Gln Arg Lys Thr Leu Arg Ile Ser 480 485 490 GTC TGT GAT GAG GAC AAA TTC GGC CAT AAT GAG TTT ATT GGT GAG ACC 1541 Val Cys Asp Glu Asp Lys Phe Gly His Asn Glu Phe Ile Gly Glu Thr 495 500 505 AGA TTC TCC CTC AAG AAA CTG AAG CCC AAT CAG AGG AAG AAC TTC AAC 1589 Arg Phe Ser Leu Lys Lys Leu Lys Pro Asn Gln Arg Lys Asn Phe Asn 510 515 520 ATC TGT CTG GAG CGG GTG ATC CCG ATG AAG CGT GCC GGA ACC ACT GGG 1637 Ile Cys Leu Glu Arg Val Ile Pro Met Lys Arg Ala Gly Thr Thr Gly 525 530 535 TCA GCC CGA GGC ATG GCC CTC TAT GAG GAG GAG CAG GTG GAA CGT ATT 1685 Ser Ala Arg Gly Met Ala Leu Tyr Glu Glu Glu Gln Val Glu Arg Ile 540 545 550 555 GGT GAC ATA GAG GAA CGC GGC AAG ATC CTG GTG TCC CTC ATG TAC AGC 1733 Gly Asp Ile Glu Glu Arg Gly Lys Ile Leu Val Ser Leu Met Tyr Ser 560 565 570 ACA CAG CAG GGA GGC CTC ATC GTG GGC ATC ATA CGC TGC GTG CAC CTG 1781 Thr Gln Gln Gly Gly Leu Ile Val Gly Ile Ile Arg Cys Val His Leu 575 580 585 GCG GCC ATG GAT GCC AAT GGC TAC TCA GAT CCA TTT GTC AAG CTC TGG 1829 Ala Ala Met Asp Ala Asn Gly Tyr Ser Asp Pro Phe Val Lys Leu Trp 590 595 600 CTG AAA CCA GAC ATG GGA AAG AAA GCC AAA CAC AAG ACT CAA ATT AAG 1877 Leu Lys Pro Asp Met Gly Lys Lys Ala Lys His Lys Thr Gln Ile Lys 605 610 615 AAG AAA ACC TTG AAT CCT GAA TTT AAT GAG GAA TTT TTC TAT GAC ATC 1925 Lys Lys Thr Leu Asn Pro Glu Phe Asn Glu Glu Phe Phe Tyr Asp Ile 620 625 630 635 AAA CAC AGT GAC CTG GCG AAG AAG TCA CTG GAC ATC TCA GTC TGG GAC 1973 Lys His Ser Asp Leu Ala Lys Lys Ser Leu Asp Ile Ser Val Trp Asp 640 645 650 TAT GAC ATC GGC AAG TCC AAT GAT TAC ATT GGA GGC TGC CAG CTG GGG 2021 Tyr Asp Ile Gly Lys Ser Asn Asp Tyr Ile Gly Gly Cys Gln Leu Gly 655 660 665 ATC TCG GCC AAG GGA GAG CGC TTA AAA CAC TGG TAC GAG TGT CTG AAA 2069 Ile Ser Ala Lys Gly Glu Arg Leu Lys His Trp Tyr Glu Cys Leu Lys 670 675 680 AAC AAG GAC AAG AAG ATC GAA CGC TGG CAC CAG CTA CAG AAC GAG AAC 2117 Asn Lys Asp Lys Lys Ile Glu Arg Trp His Gln Leu Gln Asn Glu Asn 685 690 695 CAC GTG TCG AGC GAT TAG 2135 His Val Ser Ser Asp 700 SEQ ID NO: 1 Sequence length: 2135 Sequence type: Nucleic acid Number of strands: Double strand Topology: Linear Sequence type: cDNA to mRNA Origin Biological name: Bovine Sequence characteristics Characteristic symbol: Peptide Location :twenty one. . 2132 Character that determined the feature: S sequence TGGAGTGCTG GGCTTCAGCC ATG ACT GAC ACC GTG TTC AGC AGC AGC TCA AGC 53 Met Thr Asp Thr Val Phe Ser Ser Ser Ser Ser Ser 1 5 10 CGT TGG ATG TGT CCC AGT GAC CGA CCC CTG CAG TCA AAT GAT AAA GAG 101 Arg Trp Met Cys Pro Ser Asp Arg Pro Leu Gln Ser Asn Asp Lys Glu 15 20 25 CAG CTC CAG ACA GGA TGG TCT GTC CAC CCC AGC GGT CAG CCG GAC AGA 149 Gln Leu Gln Thr Gly Trp Ser Val His Pro Ser Gly Gln Pro Asp Arg 30 35 40 CAG AGG AAA CAG GAA GAG CTG ACA GAT GAG GAG AAG GAA ATC ATC AAC 197 Gln Arg Lys Gln Glu Glu Leu Thr Asp Glu Glu Lys Glu Ile Ile Asn 45 50 55 AGG GTG ATC GCT CGC GCT GAG AAG ATG GAA GAG ATG GAA CAG GAG CGA 245 Arg Val Ile Ala Arg Ala Glu Lys Met Glu Glu Met Glu Gln Glu Arg 60 65 70 75 ATC GGG CGC CTG GTG GAC CGC CTA GAG AAC ATG AGG AAG AAC GTG GCC 293 Ile Gly Arg Leu Val Asp Arg Leu Glu Asn Met Arg Lys Asn Val Ala 80 85 90 GGG GAC GGG GTG AAC CGC TGC ATC CTG TGT GGA GAA CAG CTG GGG ATG 341 Gly Asp Gly Val Asn Arg Cys Ile Leu Cys Gly Glu Gln Leu Gly Met 95 100 105 CTG GGC TCT GCC T GT GTG GTG TGT GAG GAC TGT AAG AAG AAT GTC TGC 389 Leu Gly Ser Ala Cys Val Val Cys Glu Asp Cys Lys Lys Asn Val Cys 110 115 120 ACC AAG TGT GGG GTG GAG ACC TCC AAC AAC CGC CCA CAC CCT GTG TGG 437 Thr Lys Cys Gly Val Glu Thr Ser Asn Asn Arg Pro His Pro Val Trp 125 130 135 CTC TGC AAA ATC TGC ATC GAG CAG AGA GAG GTG TGG AAG CGC TCT GGA 485 Leu Cys Lys Ile Cys Ile Glu Gln Arg Glu Val Trp Lys Arg Ser Gly 140 145 150 155 GCA TGG TTC TTC AAG GGC TTC CCC AAA CAG GTC CTC CCA CAG CCT ATG 533 Ala Trp Phe Phe Lys Gly Phe Pro Lys Gln Val Leu Pro Gln Pro Met 160 165 170 CCC ATA AAG AAG AAC AAG CCC CAG CAG CCA GTC AGT GAG CCT GTG CCC 581 Pro Ile Lys Lys Asn Lys Pro Gln Gln Pro Val Ser Glu Pro Val Pro 175 180 185 GCT GCC CCT GAG CCA GCC ACT CCT GAG CCC AAG CAC CCT GCC CGG GCT 629 Ala Ala Pro Glu Pro Ala Thr Pro Glu Pro Lys His Pro Ala Arg Ala 190 195 200 CCA ACT CGA GGT GAC ACT GAA GAC AGG AGG GGC CCA GGT CAG AAG ACA 677 Pro Thr Arg Gly Asp Thr Glu Asp Arg Arg Gly Pro Gly Gln Lys Thr 205 210 215 GGC C CT GAC ATG ACT TCT GCT CCT GGG CGA GGA AGC TAC GGG CCT CCT 725 Gly Pro Asp Met Thr Ser Ala Pro Gly Arg Gly Ser Tyr Gly Pro Pro 220 225 230 235 GTG CGC AGG GCC TCT GAG GCA CGA ATG AGC TCC TCT GGC CGG GAC TCA 773 Val Arg Arg Ala Ser Glu Ala Arg Met Ser Ser Ser Gly Arg Asp Ser 240 245 250 GAC AGC TGG GAC CAG GGC CAC GGC ATG GCT GCT GGG GAC CCC AGC CAG 821 Asp Ser Trp Asp Gln Gly His Gly Met Ala Ala Gly Asp Pro Ser Gln 255 260 265 AGC CCA GCA GGT TTG AGA CGG GCC AAC TCA GTC CAG GCT TCT AGA CCT 869 Ser Pro Ala Gly Leu Arg Arg Ala Asn Ser Val Gln Ala Ser Arg Pro 270 275 280 GCC CCA GCC TCA ATG CAG AGC CCG GCA CCT CCC CAG CCG GGG CAA CCA 917 Ala Pro Ala Ser Met Gln Ser Pro Ala Pro Pro Gln Pro Gly Gln Pro 285 290 295 GGA CCC CCA GGA GGC AGC AGA CCC AGT CCG GGG CCG ACG GGA CGC TTT 965 Gly Pro Pro Gly Gly Ser Arg Pro Ser Pro Gly Pro Thr Gly Arg Phe 300 305 310 315 CCA GAT CAG AGA CCA GAG GTG GCT CCC AGT GAC CCC GAC TAT ACA GGG 1013 Pro Asp Gln Arg Pro Glu Val Ala Pro Ser Glu Pro Glu Tyr Thr Gly 320 325 330 GCC GCC GCC CAA CCC CGG GAG GAG AGA ACC GGG GGA ATC GGA GGC TAC 1061 Ala Ala Ala Gln Pro Arg Glu Glu Arg Thr Gly Gly Ile Gly Gly Tyr 335 340 345 TCG GCA GCT GGA ACC AGG GAG GAC CGA GCG GGC CAC CCC CCG GGC TCC 1109 Ser Ala Ala Gly Thr Arg Glu Asp Arg Ala Gly His Pro Pro Gly Ser 350 355 360 TAT ACC CAA GCC TCT GCG GCT GCT CCC CAG CCG GTG GTG GCC TCG GCC 1157 Tyr Thr Gln Ala Ser Ala Ala Ala Pro Gln Pro Val Val Ala Ser Ala 365 370 375 CGT CAG CCC CCA CCC CCT GAG GAG GAC GAG GAG GAA GCT AAC AGC TAC 1205 Arg Gln Pro Pro Pro Pro Glu Glu Asp Glu Glu Glu Ala Asn Ser Tyr 380 385 390 395 GAT TCG GAT GAA GCA ACC ACC CTG GGT GCC CTG GAG TTC AGC CTT CTC 1253 Asp Ser Asp Glu Ala Thr Thr Leu Gly Ala Leu Glu Phe Ser Leu Leu 400 405 410 TAT GAC CAG GAC AAC AGC TCC CTG CAC TGC ACC ATC ATA AAG GCC AAG 1301 Tyr Asp Gln Asp Asn Ser Ser Leu His Cys Thr Ile Ile Lys Ala Lys 415 420 425 GGA CTG AAG CCC ATG GAT TCG AAT GGC TTG GCC GAT CCC TAC GTT AAG 1349 Gly Leu Lys Pro Met Asp Ser Asn Gly Leu Ala Asp Pro Tyr Val Lys 430 435 440 CTG CAC CTC CTG CCG GGA GCC AGC AAG TCC AAC AAG CTT CGT ACA AAA 1397 leu His Leu Leu Pro Gly Ala Ser Lys Ser Asn Lys Leu Arg Thr Lys 445 450 455 ACC CTG CGG AAC ACC AGA AAC CCC ATC TGG AAC GAA ACT CTG GTC TAC 1445 Thr Leu Arg Asn Thr Arg Asn Pro Ile Trp Asn Glu Thr Leu Val Tyr 460 465 470 475 CAT GGC ATC ACA GAC GAG GAC ATG CAA AGG AAG ACC CTC AGA ATC TCT 1493 His Gly Ile Thr Asp Glu Asp Met Gln Arg Lys Thr Leu Arg Ile Ser 480 485 490 GTC TGT GAT GAG GAC AAA TTC GGC CAT AAT GAG TTT ATT GGT GAG ACC 1541 Val Cys Asp Glu Asp Lys Phe Gly His Asn Glu Phe Ile Gly Glu Thru 495 500 505 AGA TTC TCC CTC AAG AAA CTG AAG CCC AAT CAG AGG AAG AAC TTC AAC 1589 Arg Phe Ser Leu Lys Lys Leu Lys Pro Asn Gln Arg Lys Asn Phe Asn 510 515 520 ATC TGT CTG GAG CGG GTG ATC CCG ATG AAG CGT GCC GGA ACC ACT GGG 1637 Ile Cys Leu Glu Arg Val Ile Pro Met Lys Arg Ala Gly Thr Thr Gly 525 530 535 TCA GCC CGA GGC ATG GCC CTC TAT GAG GAG GAG CAG GTG GAA CGT ATT 1685 Ser Ala Arg Gly Met Ala L eu Tyr Glu Glu Glu Gln Val Glu Arg Ile 540 545 550 555 GGT GAC ATA GAG GAA CGC GGC AAG ATC CTG GTG TCC CTC ATG TAC AGC 1733 Gly Asp Ile Glu Glu Arg Gly Lys Ile Leu Val Ser Leu Met Tyr Ser 560 565 570 ACA CAG CAG GGA GGC CTC ATC GTG GGC ATC ATA CGC TGC GTG CAC CTG 1781 Thr Gln Gln Gly Gly Leu Ile Val Gly Ile Ile Arg Cys Val His Leu 575 580 585 GCG GCC ATG GAT GCC AAT GGC TAC TCA GAT CCA TTT GTC AAG CTC TGG 1829 Ala Ala Met Asp Ala Asn Gly Tyr Ser Asp Pro Phe Val Lys Leu Trp 590 595 600 CTG AAA CCA GAC ATG GGA AAG AAA GCC AAA CAC AAG ACT CAA ATT AAG 1877 Leu Lys Pro Asp Met Gly Lys Lys Ala Lys His Lys Thr Gln Ile Lys 605 610 615 AAG AAA ACC TTG AAT CCT GAA TTT AAT GAG GAA TTT TTC TAT GAC ATC 1925 Lys Lys Thr Leu Asn Pro Glu Phe Asn Glu Glu Phe Phe Tyr Asp Ile 620 625 630 635 AAA CAC AGT GAC CTG GCG AAG AAG TCA CTG GAC ATC TCA GTC TGG GAC 1973 Lys His Ser Asp Leu Ala Lys Lys Ser Leu Asp Ile Ser Val Trp Asp 640 645 650 TAT GAC ATC GGC AAG TCC AAT GAT TAC ATT GGA GGC TGC CAG CTG GGG 2021 T yr Asp Ile Gly Lys Ser Asn Asp Tyr Ile Gly Gly Cys Gln Leu Gly 655 660 665 ATC TCG GCC AAG GGA GAG CGC TTA AAA CAC TGG TAC GAG TGT CTG AAA 2069 Ile Ser Ala Lys Gly Glu Arg Leu Lys His Trp Tyr Glu Cys Leu Lys 670 675 680 AAC AAG GAC AAG AAG ATC GAA CGC TGG CAC CAG CTA CAG AAC GAG AAC 2117 Asn Lys Asp Lys Lys Ile Glu Arg Trp His Gln Leu Gln Asn Glu Asn 685 690 695 CAC GTG TCG AGC GAT TAG 2135 His Val Ser Ser Asp 700

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 G01N 33/50 T 7055−2J // C12Q 1/68 Z 7823−4B G01N 33/58 A 7055−2J ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Internal reference number FI Technical display location G01N 33/50 T 7055-2J // C12Q 1/68 Z 7823-4B G01N 33/58 A 7055- 2J

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 配列番号1記載のアミノ酸配列を有する
低分子量G蛋白質 rab3A p25の標的蛋白質。
1. A target protein of a low molecular weight G protein rab3A p25 having the amino acid sequence of SEQ ID NO: 1.
【請求項2】 請求項1記載の低分子量G蛋白質 rab3A
p25の標的蛋白質をコードする、配列番号1記載のDNA
2. The low molecular weight G protein rab3A according to claim 1.
DNA of SEQ ID NO: 1 encoding the p25 target protein
.
【請求項3】 請求項1記載の標的蛋白質またはその部
分ペプチドを抗原とする抗体。
3. An antibody whose antigen is the target protein or its partial peptide according to claim 1.
JP34405592A 1992-12-24 1992-12-24 Target protein of low molecular weight G protein rab3A p25 Expired - Lifetime JP3378600B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34405592A JP3378600B2 (en) 1992-12-24 1992-12-24 Target protein of low molecular weight G protein rab3A p25

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34405592A JP3378600B2 (en) 1992-12-24 1992-12-24 Target protein of low molecular weight G protein rab3A p25

Publications (2)

Publication Number Publication Date
JPH06184199A true JPH06184199A (en) 1994-07-05
JP3378600B2 JP3378600B2 (en) 2003-02-17

Family

ID=18366309

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34405592A Expired - Lifetime JP3378600B2 (en) 1992-12-24 1992-12-24 Target protein of low molecular weight G protein rab3A p25

Country Status (1)

Country Link
JP (1) JP3378600B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016223774A (en) * 2015-05-26 2016-12-28 国立大学法人名古屋大学 Test reagent for lymphocytic infundibulo-neurohypophysitis and use thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016223774A (en) * 2015-05-26 2016-12-28 国立大学法人名古屋大学 Test reagent for lymphocytic infundibulo-neurohypophysitis and use thereof

Also Published As

Publication number Publication date
JP3378600B2 (en) 2003-02-17

Similar Documents

Publication Publication Date Title
Kiehart et al. Cytoplasmic myosin from Drosophila melanogaster.
JP4790836B2 (en) Parathyroid hormone receptor and DNA encoding it
US5766860A (en) Screening method using a recombinant kinase insert domain containing receptor and gene encoding same
Ruiz-Opazo et al. Comparison of α-tropomyosin sequences from smooth and striated muscle
JPH09504030A (en) CNTF family antagonist
JPH11514224A (en) Novel hemopoietin receptor and gene sequence encoding it
JP2002525024A (en) 5'EST of secreted proteins expressed in various tissues
JP2001503612A (en) Novel hemopoietin receptor and gene sequence encoding it
JPH10501411A (en) Cell cycle-independent glioma cell surface antigen-specific human monoclonal antibody
JPH06211898A (en) Neural alpha-catenin
JP3378600B2 (en) Target protein of low molecular weight G protein rab3A p25
JP2688481B2 (en) Method for in vitro detection of malignant cells of gastrointestinal origin
EP0524173B1 (en) Solubilization and purification of the gastrin releasing peptide receptor
US5871916A (en) ECDN protein and DNA encoding the same
JPH10201485A (en) New g-protein coupled receptor huvct36
WO1997032982A1 (en) Human adhesion molecule occludin
JPH0892285A (en) Human clap protein and dna coding for the same
JP4187249B2 (en) Presynaptic protein p120
WO1997031110A1 (en) Traf family molecule, polynucleotide coding for the molecule, and antibody against the molecule
JP2002530056A (en) Nucleic acids encoding transferrin receptor-like proteins and related products
JPH06125784A (en) Monoclonal antibody, hybridoma, its production and use
JP3739445B2 (en) ECDN protein and DNA encoding the same
JP2003116562A (en) Tsll2 gene
JPH06293800A (en) Novel physiologically active substance, epimorphine, gene coding the same and antibody against epimorphine
JP2002501723A (en) Orphan receptor

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071206

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20081206

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091206

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20091206

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101206

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111206

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111206

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20121206

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20131206

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131206

Year of fee payment: 11