JPH06183889A - Production of diamond thin film device having high bonding strength - Google Patents

Production of diamond thin film device having high bonding strength

Info

Publication number
JPH06183889A
JPH06183889A JP35708992A JP35708992A JPH06183889A JP H06183889 A JPH06183889 A JP H06183889A JP 35708992 A JP35708992 A JP 35708992A JP 35708992 A JP35708992 A JP 35708992A JP H06183889 A JPH06183889 A JP H06183889A
Authority
JP
Japan
Prior art keywords
thin film
diamond thin
substrate
diamond
adhesion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP35708992A
Other languages
Japanese (ja)
Other versions
JP3195093B2 (en
Inventor
Shoji Miyanaga
昭治 宮永
Toru Inoue
亨 井上
Shinya Sumino
真也 角野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP35708992A priority Critical patent/JP3195093B2/en
Publication of JPH06183889A publication Critical patent/JPH06183889A/en
Priority to JP2000280654A priority patent/JP3472253B2/en
Application granted granted Critical
Publication of JP3195093B2 publication Critical patent/JP3195093B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a diamond thin film device having high bonding strength with a simple procedure by forming a diamond thin film on a substrate and heating the film together with the substrate under a reduced pressure, thereby forming an intermediate layer between the substrate and the diamond thin film. CONSTITUTION:A diamond thin film is formed on the surface of a substrate material by an arbitrary conventional method. The substrate having the diamond thin film is annealed by heating in a vessel containing oxygen or nitrogen atmosphere under a reduced pressure to form an intermediate layer between the substrate and the diamond thin film and improve the bonding strength of both components. The bonding strength of the diamond thin film can remarkably be improved by the above simple process compared with conventional method to form an intermediate layer consisting of a different kind of material. A practical diamond thin film device can be produced by thus process.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体用基板材料や焼
結体材料あるいは金属材料の表面に密着性良好でかつ優
れた膜質を備えたダイヤモンド薄膜を形成する方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming a diamond thin film having good adhesion and excellent film quality on the surface of a semiconductor substrate material, a sintered material or a metal material.

【0002】[0002]

【従来の技術】人工ダイヤモンド材料合成の研究が古く
から行われ発展してきた。人工ダイヤモンドの合成方法
は、高圧合成法と大気圧ないし低圧の気相成長法に分け
ることが出来る。高圧合成法では温度差法・融剤法・爆
発等を利用した衝撃法によって、微結晶粒子・多結晶焼
結体・ミリメートルサイズの単結晶粒子等の様々な形式
のダイヤモンド材料を形成することが出来る。また気相
成長法はダイヤモンド薄膜を各種基板材料表面に形成す
る方法であり、ダイヤモンドライクカーボン(結晶構造
を持たず、かつダイヤモンドに近い硬度を持つ炭素材料
である。以下DLCと呼称する)を含めて広く研究が成
されている。
2. Description of the Related Art Research on the synthesis of artificial diamond materials has been conducted and developed for a long time. The synthetic method of artificial diamond can be divided into a high pressure synthesis method and an atmospheric pressure or low pressure vapor phase growth method. In the high-pressure synthesis method, various types of diamond materials such as fine crystal particles, polycrystalline sintered bodies, millimeter-sized single crystal particles, etc. can be formed by the impact method using temperature difference method, flux method, explosion, etc. I can. The vapor phase growth method is a method of forming a diamond thin film on the surface of various substrate materials, and includes diamond-like carbon (a carbon material that does not have a crystal structure and has a hardness close to that of diamond; hereinafter referred to as DLC). Has been widely researched.

【0003】人工ダイヤモンドに関しては特有の硬度・
透明度・熱伝導性・高絶縁性等を利用して、様々な応用
が提案されてきた。例えば硬度と熱伝導性を利用して長
寿命切削工具材料や電子材料用ヒートシンクに、可視光
〜赤外線領域の透明度を利用して赤外線レーザ等の光学
窓材料に、高絶縁性を生かして電子デバイス材料にと、
多くの提案や研究が行われてきた。
Hardness peculiar to artificial diamond
Various applications have been proposed by utilizing transparency, thermal conductivity, and high insulation. For example, by utilizing hardness and thermal conductivity, for long-life cutting tool materials and heat sinks for electronic materials, by utilizing transparency in the visible to infrared range, for optical window materials such as infrared lasers, etc. With the material
Many proposals and studies have been made.

【0004】高圧合成法では、上記の応用例の内で切削
工具材料やヒートシンクに関してはようやく初歩的な実
用化が成されつつある様であるが、板や棒等単純形状の
試料しか得られず、また大きさも最大で10数mm角が限
度であるなどいまだ制約がある。ゆえに工作機械分野で
要求される複雑な形状の工具を提供するには、非常に不
利であると言える。
In the high-pressure synthesis method, it seems that the cutting tool materials and heat sinks are finally being put to practical use among the above-mentioned application examples, but only simple samples such as plates and rods can be obtained. Also, there are still restrictions such as the maximum size being 10 mm square. Therefore, it can be said that there is a great disadvantage in providing a tool having a complicated shape required in the field of machine tools.

【0005】気相成長法は各種基体上にダイヤモンド薄
膜を形成する方法であり、上記の高圧合成ダイヤモンド
の持っていた大きさや形状の限界を解消し、半導体材料
等の多方面へダイヤモンド応用の可能性を広げることが
期待されている。対象となるのは工具だけでなく、半導
体素子などの開発の試みも盛んに行われている。
The vapor phase epitaxy method is a method for forming a diamond thin film on various kinds of substrates. It can overcome the size and shape limitations of the above high pressure synthetic diamond and can be applied to various fields such as semiconductor materials. It is expected to expand the sex. Not only tools, but also attempts to develop semiconductor elements are being actively targeted.

【0006】[0006]

【発明が解決しようとする課題】上記の様に気相成長法
によって人工ダイヤモンドの応用範囲は大きく広がった
訳であるが、該手法を用いた各種ダイヤモンド製品にお
いて問題となっていることにダイヤモンド薄膜と基体と
の密着性がある。工具材料の様な機械的に過酷な環境に
晒されるもののみならず、ヒートシンク・半導体材料分
野においても基板上で薄膜の構造を安定に確保するとい
う意味で重要である。しかし基体材料の種類を問わず該
密着性は非常に貧弱である。
As described above, the range of application of artificial diamond has expanded greatly by the vapor phase epitaxy method. However, diamond thin films are problematic in various diamond products using the method. There is adhesion to the substrate. It is important not only for those exposed to mechanically harsh environments such as tool materials, but also for the purpose of ensuring a stable thin film structure on the substrate in the field of heat sinks and semiconductor materials. However, the adhesion is very poor regardless of the type of substrate material.

【0007】ダイヤモンド薄膜の密着性が脆弱な理由は
次のような事によると考えられている。 1.ダイヤモンド薄膜と基体との熱膨張率の差 ダイヤモンドの成膜基体は500〜800℃、方法によ
っては1000℃付近まで加熱する必要がある。例えば
代表的な半導体基板材料であるSi基板の熱膨張率は
2.4であるのに対してダイヤモンドのそれは1.0〜
1.5と小さくなっている。密着性は温度以外の成膜条
件によっても大きく変化する事が明らかになっている
が、この熱膨張率の差も非常に大きな影響を与えること
が知られている。
The reason why the adhesion of the diamond thin film is weak is considered to be as follows. 1. Difference in coefficient of thermal expansion between diamond thin film and substrate The diamond film-forming substrate needs to be heated to 500 to 800 ° C, and depending on the method, to around 1000 ° C. For example, the coefficient of thermal expansion of a Si substrate, which is a typical semiconductor substrate material, is 2.4, while that of diamond is 1.0 to
It is as small as 1.5. It has been clarified that the adhesiveness greatly changes depending on the film forming conditions other than the temperature, but it is known that the difference in the coefficient of thermal expansion also has a very large effect.

【0008】2.ダイヤモンド薄膜に蓄積された内部応
力 完成したダイヤモンド薄膜の断面観察から、ダイヤモン
ド薄膜の成長は基板表面の核から結晶が等方的に成長し
ていき、成長途中で結晶粒子が衝突して成長方向が制限
されることによりテーパー状および/もしくは柱状の結
晶粒子へと構造を変化させられて、基板に対し概ね垂直
に異方成長した薄膜を形成していくと考えられている。
この為に膜の内部には非常に強い圧縮応力が蓄積される
ことになる。
2. Internal stress accumulated in the diamond thin film From the observation of the cross section of the completed diamond thin film, the growth of the diamond thin film shows that crystals grow isotropically from the nuclei of the substrate surface, and during the growth, the crystal grains collide and the growth direction changes. It is considered that the structure is changed into tapered and / or columnar crystal grains due to the limitation, and an anisotropically grown thin film is formed substantially perpendicular to the substrate.
Therefore, a very strong compressive stress is accumulated inside the film.

【0009】又、密着性を向上させるために、以下に示
す様な試みがなされてきた。 1.中間層形成 基体材料とダイヤモンドの中間の格子定数・熱膨張率を
有する材質の薄膜により両者の界面に緩衝帯として中間
層を設ける。例えば結晶性薄膜として窒化珪素・炭化珪
素(好ましくはβ型炭化珪素)・窒化硼素(好ましくは
立方晶窒化硼素)・炭化チタン・窒化チタン等を用い、
また成膜工程をより簡便化したければDLCや窒化珪素
・炭化珪素・窒化硼素・炭窒化硼素・炭化チタン・窒化
チタン等のアモルファス薄膜を用いても良い。これによ
り基板と薄膜間の熱膨張率差や格子定数差の解消を図
り、内部応力蓄積を緩和する。ただし中間層成膜機構が
介入するためどうしてもプロセスは煩雑化する。また半
導体デバイスとしての応用のためには中間層作成に伴う
電気的特性の変化等の影響を考慮する必要がある。
Further, in order to improve the adhesion, the following attempts have been made. 1. Forming an intermediate layer An intermediate layer is provided as a buffer zone at the interface between the substrate material and a diamond by a thin film of a material having a lattice constant and a coefficient of thermal expansion that are intermediate. For example, silicon nitride, silicon carbide (preferably β-type silicon carbide), boron nitride (preferably cubic boron nitride), titanium carbide, titanium nitride, etc. are used as the crystalline thin film,
If the film forming process is to be simplified, an amorphous thin film such as DLC or silicon nitride / silicon carbide / boron nitride / boron carbonitride / titanium carbide / titanium nitride may be used. As a result, the difference in the coefficient of thermal expansion and the difference in the lattice constant between the substrate and the thin film are eliminated, and the internal stress accumulation is relaxed. However just process for the intermediate layer deposition mechanism intervenes is complicated. In addition, for application as a semiconductor device, it is necessary to consider the influence of changes in electrical characteristics due to the formation of the intermediate layer.

【0010】2.ダイヤモンド薄膜の内部応力低減 成膜時の加熱温度を低減させることによって、冷却時に
発生する歪を減少させ膜の剥離を防止する。ただし一般
にその成膜方法や成膜条件に適当な温度範囲以下の成膜
では、無定形炭素成分の生成により膜質が低下したり、
あるいは極端に成膜速度が低下したりする。膜中に窒素
等の不純物を導入する事によって結晶粒径を小さくし、
先に述べた結晶粒子のテーパー化による内部応力の蓄積
を緩和するという試みも成されているが、言うまでもな
く膜質は低下する。
2. Reduction of internal stress of diamond thin film By reducing the heating temperature during film formation, the strain generated during cooling is reduced and peeling of the film is prevented. However, in general, in the film formation below a temperature range suitable for the film formation method and film formation conditions, the quality of the film is deteriorated due to the formation of an amorphous carbon component,
Alternatively, the film formation rate may be extremely reduced. By introducing impurities such as nitrogen into the film, the crystal grain size is reduced,
Attempts have been made to alleviate the accumulation of internal stress due to the taper of the crystal grains described above, but it goes without saying that the film quality will deteriorate.

【0011】3.アンカー効果の利用 基体表面に機械的または化学的エッチングまたはレーザ
等にて微細な凹凸加工を施し、その後通常の前処理工程
を経てダイヤモンド成膜をおこなう。これにより基体表
面に微細なダイヤモンドアンカーが食い込んだ構造を形
成し、密着性良好なダイヤモンド薄膜を形成しようとい
うものである。特に工具材料の分野で提案された方法で
あるが、基体として用いられるWC焼結体において十分
な密着性が得られていない事からも明らかなように、基
体の表面とアンカー機能に準じたサイズの凹凸を明確に
差別化することが困難であり、実用的な方法には成って
いない。
3. Utilization of anchor effect The surface of the substrate is subjected to mechanical or chemical etching or fine unevenness by laser or the like, and then a diamond film is formed through an ordinary pretreatment process. As a result, a structure in which a fine diamond anchor bites into the surface of the substrate is formed to form a diamond thin film having good adhesion. This is a method especially proposed in the field of tool materials, but as is clear from the fact that sufficient adhesion is not obtained in the WC sintered body used as the base, the size of the base and the anchor function It is difficult to clearly differentiate the unevenness of the, and it is not a practical method.

【0012】[0012]

【課題を解決するための手段】本発明者らは上記課題を
解決するための手段として、一般に行われている各種方
法によってダイヤモンド薄膜を表面に形成した基板材料
へ、真空状態や減圧窒素または減圧酸素状態において
熱、電磁誘導、光によって加熱しアニールを行い、課題
とする密着性の脆弱さを解決することが可能である事を
見出した。以下本発明を説明する。
Means for Solving the Problems As means for solving the above-mentioned problems, the inventors of the present invention have conducted a vacuum condition or reduced pressure nitrogen or reduced pressure on a substrate material having a diamond thin film formed on its surface by various commonly used methods. It was found that it is possible to solve the problem of weakness of adhesion by heating by heat, electromagnetic induction, or light and annealing in an oxygen state. The present invention will be described below.

【0013】本発明でダイヤモンド成膜はどの様な方法
を用いても構わない。また基板あるいは基体材料の種類
は後述するアニール処理時を含めて1000±100℃
程度に保持可能な材料であれば何でも良い。この温度範
囲は下限に関しては基体材料の種類によってある程度変
更は可能であるが、上限に関してはこれ以上の温度では
ダイヤモンド薄膜の膜質劣化が著しい。また減圧酸素雰
囲気でアニールを行うならば、基体に耐酸化性が大きく
要求される。上記の一般に用いられている成膜方法にお
いて記載した材料はそのほとんどが該温度範囲において
十分な耐久性を有していることが明らかである。
In the present invention, any method may be used for forming the diamond film. The type of substrate or base material is 1000 ± 100 ° C, including the time of annealing treatment described later.
Any material can be used as long as it can be held to some extent. The lower limit of this temperature range can be changed to some extent depending on the type of the substrate material, but the upper limit of the temperature range is significantly deteriorated at higher temperatures. Further, if the annealing is performed in a reduced pressure oxygen atmosphere, the substrate is required to have high oxidation resistance. It is apparent that most of the materials described in the above-mentioned commonly used film forming methods have sufficient durability in this temperature range.

【0014】半導体材料基板、例えばSi、アルミナや
窒化珪素、炭化珪素、窒化硼素等を基にした焼結/単結
晶基板、石英ガラス基板等に必要に応じて適当な前処理
を施した後、熱フィラメント/プラズマCVD法やプラ
ズマジェット/アーク放電を用いて成膜を行えば良く、
その際大面積化が必要であれば大型の熱フィラメントや
有磁場プラズマを用いたCVD法が適当であろう。上記
方法の他にもDCアークや燃焼炎法によって成膜を行う
ことができる。
After subjecting a semiconductor material substrate such as a sintered / single crystal substrate based on Si, alumina, silicon nitride, silicon carbide, boron nitride or the like, a quartz glass substrate or the like to an appropriate pretreatment, if necessary, Film formation may be performed using a hot filament / plasma CVD method or plasma jet / arc discharge,
At this time, if a large area is required, a CVD method using a large-sized hot filament or magnetic field plasma may be suitable. In addition to the above method, the film can be formed by DC arc or combustion flame method.

【0015】成膜した試料に対してアニールを行う方法
は、用いる処理容器が0.005〜10Torr好まし
くは0.1〜0.01Torr程度の真空度もしくは減
圧窒素雰囲気あるいは減圧酸素雰囲気に試料を保持し、
機械的に劣化を生じることなく該容器内の試料を700
〜1100℃に加熱可能な方法であれば何でも良い。例
えば真空状態の炉心管内部に試料を保持し、外部から管
状電気炉を用いて外部加熱を行う方法や、成膜装置が真
空成膜室と基板加熱機能を有しているならば該成膜装置
の基板/基体保持ステージ/ホルダに成膜処理を終えた
基板をそのまま保持し、ステージ/ホルダからの加熱に
よってアニールを行っても良い。またプラズマCVD同
様のプラズマ放電もしくは誘導加熱を電磁波により加え
ても良い。
The method of annealing the formed sample is such that the processing container used is a vacuum degree of about 0.005 to 10 Torr, preferably about 0.1 to 0.01 Torr, or a reduced pressure nitrogen atmosphere or a reduced pressure oxygen atmosphere. Then
700 samples in the vessel without mechanical degradation
Any method capable of heating to ˜1100 ° C. may be used. For example, a method in which a sample is held inside a furnace core tube in a vacuum state and externally heated using a tubular electric furnace, or if the film forming apparatus has a vacuum film forming chamber and a substrate heating function, the film forming is performed. It is also possible to hold the substrate for which film formation processing has been completed on the substrate / substrate holding stage / holder of the apparatus as it is, and perform annealing by heating from the stage / holder. Plasma discharge or induction heating similar to plasma CVD may be applied by electromagnetic waves.

【0016】良好な赤外線透過性を示す窓材を有する減
圧チャンバー内に保持されたダイヤモンド薄膜試料の表
面に、ダイヤモンドが透明である波長において発振され
るレーザ光を走査させることによって、薄膜と基板の界
面に選択的な光加熱を加えることも非常に有効である。
ここで用いられるレーザ光源としては、例えばCO2
スレーザに代表される赤外線レーザを中心として、幅広
く選択することが出来る。一部の半導体レーザを用いて
も良いであろう。
The surface of a diamond thin film sample held in a decompression chamber having a window material showing good infrared transmittance is scanned with laser light oscillated at a wavelength at which diamond is transparent, so that the thin film and the substrate are exposed. It is also very effective to apply selective light heating to the interface.
As the laser light source used here, for example, an infrared laser typified by a CO 2 gas laser can be widely selected, and a wide selection can be made. Some semiconductor lasers could be used.

【0017】アニール方法の如何を問わず、試料は真空
状態もしくは減圧窒素状態もしくは減圧酸素状態とする
ことが必要である。この理由に関しては十分に解明され
ていないが、本発明者らは次のように考えている。減圧
状態で加熱する際、熱エネルギーは炉心管内壁やホルダ
およびレーザ光によって試料に伝達されることになる
が、ダイヤモンド膜表面から上は減圧状態すなわち断熱
状態なので試料内部に熱の集中が起こり、それより薄膜
中の炭素と基体材料原子が相互拡散を起こし、両者のみ
により構成される中間層が形成される。
Regardless of the annealing method, the sample must be in a vacuum state, a reduced pressure nitrogen state, or a reduced pressure oxygen state. Although the reason for this is not fully understood, the present inventors consider the following. When heating in a depressurized state, thermal energy is transferred to the sample by the inner wall of the furnace tube, the holder and the laser beam, but since the depressurized state above the diamond film surface, that is, the adiabatic state, heat concentration occurs inside the sample, As a result, the carbon in the thin film and the atoms of the base material cause mutual diffusion, and an intermediate layer composed of both of them is formed.

【0018】従ってこの方法を用いる事により、工程を
複雑化する事無くまた膜の電気的特性への悪影響を気に
する事無く、強靱な結合力を有する中間層を形成するこ
とが可能となる。本発明者らはSiの場合はSi〜β−
SiC〜β−SiCとダイヤモンドの混相〜ダイヤモン
ド薄膜というグラデーション中間層が、他の材料の場合
にもそれに類似の中間層が形成されているのではないか
と考えている。特に減圧雰囲気を酸素によって形成する
ことは、密着性のみならず実施例で述べる様に膜質を向
上させる上で大変有効である。
Therefore, by using this method, it becomes possible to form an intermediate layer having a strong bonding force without complicating the process and without worrying about the adverse effect on the electrical characteristics of the film. . The present inventors have found that in the case of Si,
It is considered that the gradation intermediate layer of SiC to β-SiC and diamond mixed phase to diamond thin film may be similar to that of other materials. In particular, forming a reduced pressure atmosphere with oxygen is very effective not only for improving the adhesiveness but also for improving the film quality as described in the examples.

【0019】[0019]

【実施例】【Example】

〔実施例1〕本実施例は真空炉心管を外部から加熱する
構造の管状電気炉による真空アニール方法に関する。試
料は有磁場マイクロ波プラズマCVD装置を用いてSi
(100)基板上に成膜した多結晶ダイヤモンド薄膜を
用いた。その他単結晶ダイヤモンドや単結晶の立方晶窒
化硼素等の基板上にホモエピタキシャルないしヘテロエ
ピタキシャル成長させたダイヤモンド試料を用いても良
い。
[Embodiment 1] This embodiment relates to a vacuum annealing method using a tubular electric furnace having a structure in which a vacuum furnace core tube is externally heated. The sample is Si using a magnetic field microwave plasma CVD apparatus.
A polycrystalline diamond thin film formed on a (100) substrate was used. Alternatively, a diamond sample that is homoepitaxially or heteroepitaxially grown on a substrate such as single crystal diamond or single crystal cubic boron nitride may be used.

【0020】図1に装置図を示す。本装置は有磁場マイ
クロ波プラズマCVD装置として一般的なものであり、
試料は図の試料および試料ホルダー(1)において、マ
イクロ波導波管(5)に対向するように配置されてい
る。ここで試料および試料ホルダー(1)は予備室
(2)において試料交換の後、プラズマ反応室(3)に
搬送され、該試料ホルダー内部に組み込まれたヒーター
によって加熱される。この時予備室(2)およびプラズ
マ反応室(3)内は広域型ターボモレキュラーポンプ
(以下TMP)と粗引き用兼TMP背圧用ロータリーポ
ンプ(以下RP)および圧力調整バルブからなる排気系
(7)によって10-5Torr付近まで真空引きされて
いる。
FIG. 1 shows a device diagram. This device is a general one as a magnetic field microwave plasma CVD device,
The sample is arranged to face the microwave waveguide (5) in the sample and sample holder (1) shown. Here, the sample and the sample holder (1) are transferred to the plasma reaction chamber (3) after the sample exchange in the preliminary chamber (2), and heated by the heater incorporated in the sample holder. At this time, in the spare chamber (2) and the plasma reaction chamber (3), a wide area type turbo molecular pump (hereinafter TMP), a roughing and TMP back pressure rotary pump (hereinafter RP), and an exhaust system (7) consisting of a pressure adjusting valve. Vacuum is pulled to around 10 -5 Torr.

【0021】試料が設定温度に到達したのち、反応ガス
供給管(6)から反応ガスをプラズマ反応室(3)に導
入し、マイクロ波導波管(5)から投入されるマイクロ
波とマグネットコイル(4)より印加される磁場の効果
によって高密度なプラズマを発生させ、これにより成膜
を行う方法である。ここで試料および試料ホルダー
(1)は直流電源装置(8)からバイアス電圧を印加さ
れる。
After the sample reaches the set temperature, the reaction gas is introduced from the reaction gas supply pipe (6) into the plasma reaction chamber (3), and the microwave and magnet coil () fed from the microwave waveguide (5) are supplied. 4) A method in which high density plasma is generated by the effect of the magnetic field applied and the film is formed by this. Here, a bias voltage is applied to the sample and the sample holder (1) from the DC power supply device (8).

【0022】成膜条件は本方法で行われている一般的な
条件である。すなわち反応圧力0.5Torr、投入マ
イクロ波電力4kW(反射0kW)、磁場は導波管窓付
近で2.2kG、該導波管窓から約200mmの位置で8
75GのECR条件を形成するよう印加し、φ4inの
Si(100)基板を装着した試料ホルダー(1)をこ
の付近に配置した。試料ホルダー(1)からの基板加熱
設定温度は800℃、基板ホルダーに直流電源装置
(8)から印加されるバイアス電圧はDC50Vとし
た。反応ガス供給管(6)からプラズマ反応室に気化C
3 OH50ccm、H2 100ccmを導入した。8
時間の成膜工程後、回収された試料はラマン分光分析か
ら1332cm-1のみに鋭いピークを示す結晶性が非常に
良好なダイヤモンドである事が確認された。このように
して得られた試料の中央部分を幅15mm長さ30mm切出
し、アニール試料とした。
The film forming conditions are the general conditions used in this method. That is, the reaction pressure is 0.5 Torr, the input microwave power is 4 kW (reflection 0 kW), the magnetic field is 2.2 kW near the waveguide window, and 8 at a position about 200 mm from the waveguide window.
A voltage was applied so as to form an ECR condition of 75 G, and a sample holder (1) equipped with a φ4 in Si (100) substrate was placed in the vicinity thereof. The substrate heating preset temperature from the sample holder (1) was 800 ° C., and the bias voltage applied from the DC power supply (8) to the substrate holder was DC 50V. Vaporization C from the reaction gas supply pipe (6) to the plasma reaction chamber
H 3 OH 50 ccm and H 2 100 ccm were introduced. 8
After the time-depositing step, the collected sample was confirmed by Raman spectroscopic analysis to be a diamond having a very good crystallinity with a sharp peak only at 1332 cm -1 . The center portion of the sample thus obtained was cut out with a width of 15 mm and a length of 30 mm to obtain an annealed sample.

【0023】真空アニールには図2に示すような均一加
熱範囲200mm、炉心管相入部内径約40mmの管状電気
炉(11)を使用した。炉心管(10)は減圧状態でなおか
つ1000℃近辺の加熱に耐えられる材質としてSUS
310を選択し、外径φ32mm、内径φ21mmのパイプ
とした。炉心管材料を例えば石英ガラス等に変更すれば
高周波誘導加熱等の電磁誘導加熱によるアニールも可能
である。炉心管内部の温度は、内部に挿入した細管内の
熱電対により観測した。実際のアニール前に予備実験を
行い、この温度測定方法と試料(1)表面の実温度との
差が約7〜9℃であることを確認している。本発明およ
び実施例でアニール条件として記載される温度はすべて
これに基づいて補正した試料表面の温度である。
For the vacuum annealing, a tubular electric furnace (11) having a uniform heating range of 200 mm and an inner diameter of the core tube phase entry portion of about 40 mm as shown in FIG. 2 was used. The core tube (10) is made of SUS as a material that can withstand heating under a reduced pressure and around 1000 ° C.
310 was selected to be a pipe having an outer diameter of 32 mm and an inner diameter of 21 mm. Annealing by electromagnetic induction heating such as high frequency induction heating is also possible if the material of the furnace tube is changed to, for example, quartz glass. The temperature inside the core tube was observed by a thermocouple inside the thin tube inserted inside. Preliminary experiments were conducted before actual annealing, and it was confirmed that the difference between this temperature measuring method and the actual temperature of the surface of the sample (1) was about 7 to 9 ° C. The temperatures described as annealing conditions in the present invention and the examples are all the temperatures of the sample surface corrected based on this.

【0024】ダイヤモンド薄膜試料を、アルミナボート
を介して該炉心管(10)内の均一温度部分に設置し、
排気系装備のRPによって内部を0.01Torrに減
圧した。その後約1時間かけて設定温度である900℃
まで昇温し、5時間保持した。
A diamond thin film sample was placed on a uniform temperature portion in the core tube (10) through an alumina boat,
The inside pressure was reduced to 0.01 Torr by an RP equipped with an exhaust system. After that, it takes about 1 hour to set the temperature to 900 ° C.
The temperature was raised to and held for 5 hours.

【0025】保持時間終了後、アニール前後のダイヤモ
ンド薄膜それぞれの表面に粘着テープ(事務用品として
出回っているもの、例えばビニルテープやセロファンテ
ープ等を充分使用できる)を張りつけ、引き剥がして密
着性を比較した。10点の−剥がし実験の結果、アニー
ルを行わない試料に関しては全て粘着テープによって完
全に剥離してしまったが、アニール試料に関しては10
点中3点に試料基板端で部分的な剥離が認められた程度
であり、明らかにアニールによって膜の密着性は大きく
向上していることが確認された。
After the end of the holding time, an adhesive tape (those available as office supplies, for example, vinyl tape or cellophane tape can be used enough) was attached to the surface of each diamond thin film before and after annealing, and peeled off to compare the adhesion. did. As a result of the 10-point peeling experiment, all the samples which were not annealed were completely peeled off by the adhesive tape, but the samples which were annealed were 10
It was confirmed that partial peeling was observed at the edge of the sample substrate at 3 of the points, and it was confirmed that the film adhesion was significantly improved by annealing.

【0026】また本発明者らの実験によるとダイヤモン
ド薄膜の密着性は保持時間によって変化すること、およ
び残留ダイヤモンドの膜質も保持時間によって変化する
ことが判明している。例えば保持時間1時間のものより
5時間の試料の方が先の粘着テープ試験では明らかに良
好な付着力と密着性が得られた。しかしアニール後のダ
イヤモンド薄膜表面をラマン分光分析により評価したと
ころでは、アニール時間を長くすると膜質は低下する傾
向があり、本実施例でおこなった5時間のアニールはそ
の中庸値と言える。
Further, according to the experiments conducted by the present inventors, it has been found that the adhesion of the diamond thin film changes depending on the holding time, and the film quality of the residual diamond also changes depending on the holding time. For example, a sample having a holding time of 1 hour gave a significantly better adhesive force and adhesion in the preceding adhesive tape test than the sample having a holding time of 5 hours. However, when the surface of the diamond thin film after annealing was evaluated by Raman spectroscopic analysis, the film quality tended to deteriorate as the annealing time was lengthened, and the 5-hour annealing performed in this example can be said to be a moderate value.

【0027】〔実施例2〕本実施例はCVD装置の反応
室内部で、成膜直後の試料をそのままの状態で加熱す
る。すでに述べたように、使用する成膜方法は熱フィラ
メント/マイクロ波プラズマ/有磁場マイクロ波プラズ
マ/DCプラズマ/アークプラズマ等、どの様な方法を
用いても良い。ただし試料ホルダー単体で加熱が可能な
ことが必要であり、一部のマイクロ波プラズマCVDの
様に発生したプラズマの熱によって誘導加熱を行う方法
は使用出来ない。本実施例では実施例1と同様に図1の
有磁場マイクロ波プラズマCVD装置を使用し、同一条
件で成膜を行った。通常の工程では成膜後基板を冷却す
るが、本実施例では800℃の加熱状態のままで反応ガ
ス供給管(6)のバルブを閉鎖し、予備室(2)および
プラズマ反応室(3)を真空引きし、約0.001To
rrに保持した。加熱状態の基板に対するガスの影響は
本実施例では特に認められなかった。この状態で約5時
間保持し、その後約2時間かけて室温まで冷却した。
[Embodiment 2] In this embodiment, a sample immediately after film formation is heated in the reaction chamber of a CVD apparatus as it is. As described above, the film forming method to be used may be any method such as hot filament / microwave plasma / magnetic field microwave plasma / DC plasma / arc plasma. However, it is necessary that the sample holder alone be capable of heating, and a method of performing induction heating by heat of plasma generated like some microwave plasma CVD cannot be used. In this example, the magnetic field microwave plasma CVD apparatus of FIG. 1 was used as in Example 1, and film formation was performed under the same conditions. Although the substrate is cooled after the film formation in the usual process, in this embodiment, the valve of the reaction gas supply pipe (6) is closed while the heating state of 800 ° C. is maintained, and the preliminary chamber (2) and the plasma reaction chamber (3) are closed. Is evacuated to about 0.001To
Hold at rr. The effect of gas on the heated substrate was not particularly observed in this example. This state was maintained for about 5 hours and then cooled to room temperature over about 2 hours.

【0028】アニールを行った試料とアニールを行わな
かった試料の密着性を比較するために、実施例1と同様
の粘着テープ試験を行った。アニールした方は10個の
試料中2個の基板端に剥離が生じたのみなのに対して、
アニールを行わなかった試料は10個とも剥離してしま
い、ダイヤモンド成膜の後工程に真空アニールを加える
ことが密着性向上において非常に有効であることがわか
った。
In order to compare the adhesion between the annealed sample and the unannealed sample, the same adhesive tape test as in Example 1 was conducted. In the annealed case, although peeling occurred at the edge of 2 of the 10 samples,
All of the 10 samples that were not annealed peeled off, and it was found that adding vacuum annealing after the diamond film formation was very effective in improving the adhesion.

【0029】〔実施例3〕本実施例では真空アニールを
レーザ光を用いて単一試料内で部分的に実施した。方法
としては真空チャンバー内部でレーザ加熱アニールを行
うものである。このレーザアニールを導入する利点とし
ては既に述べたように、アニールによる密着性と膜質の
変化をコントロールする事が容易になること、その膜質
や密着性の異なった部分で点状や線状の領域が形成でき
ること等がある。また例えば図3に示すように成膜室と
アニール室を連結し、マルチチャンバー化する事によっ
て、アズ・デポの状態でクリーンにアニール処理を行う
ことが出来、処理時間の短縮が可能となる。
[Embodiment 3] In this embodiment, vacuum annealing is partially carried out in a single sample using laser light. As a method, laser heating annealing is performed inside the vacuum chamber. The advantages of introducing this laser annealing are, as already mentioned, that it is easy to control the change in adhesion and film quality due to annealing, and that the dotted or linear regions are different in the areas where the film quality and adhesion are different. Can be formed. Further, for example, by connecting the film forming chamber and the annealing chamber to form a multi-chamber as shown in FIG. 3, the annealing process can be performed cleanly in the as-deposited state, and the processing time can be shortened.

【0030】レーザ光は既に述べたようにダイヤモンド
に対して透明である必要がある。ここで切断等のダイヤ
モンド加工に一般に用いられているのはYAGレーザで
あり、条件によっては約1mm厚のダイヤモンドを切断す
ることが出来る。しかし本発明においては基体とダイヤ
モンド薄膜の界面状態の熱的変更であり、好ましくはダ
イヤモンド薄膜に影響を与える事無くこれを透過し基体
との界面にエネルギーを到達せしめる光源を使用するた
めに、レーザ光源はこの条件に基づいて選択される。
The laser light needs to be transparent to diamond as described above. Here, a YAG laser is generally used for diamond processing such as cutting, and a diamond having a thickness of about 1 mm can be cut depending on conditions. However, in the present invention, it is a thermal modification of the interface state between the substrate and the diamond thin film, and it is preferable to use a laser source that transmits the diamond thin film without affecting the diamond thin film and allows energy to reach the interface with the substrate. The light source is selected based on this condition.

【0031】本発明では赤外線レーザの一種であるCO
2 レーザを用いて行った。結晶性の良好なダイヤモンド
は赤外線領域において透明であるため、成膜時に膜質の
良好なダイヤモンド薄膜を作成しレーザ処理を行う事に
より、必要とする界面へのエネルギー供給が可能とな
る。この他にもダイヤモンドに吸収を起こさない波長の
レーザとして、一部の半導体レーザ等も用いることが出
来る。
In the present invention, CO, which is a kind of infrared laser,
Two lasers were used. Since diamond with good crystallinity is transparent in the infrared region, it is possible to supply energy to the required interface by forming a diamond thin film with good film quality and performing laser processing during film formation. In addition to this, as a laser having a wavelength that does not cause absorption in diamond, some semiconductor lasers can be used.

【0032】本実施例では実施例1、2と同様の方法で
Si基板上に成膜したダイヤモンド薄膜試料に対して独
立レーザアニールチャンバーを用いてアニールをおこな
った。用いたアニールチャンバーは、光CVD装置を基
にして半導体装置のレーザアニール用に改造された装置
を用いた。図3を基に構成を説明する。レーザ発振器
(15)は赤外線のCO2 レーザである。レーザの出力
は100Wとした。またレーザは連続波(CW)として
投入したが、パルス投入することによって先の無定形成
分のコントロールが容易になる。
In this example, the diamond thin film sample formed on the Si substrate was annealed using the independent laser annealing chamber in the same manner as in Examples 1 and 2. The annealing chamber used was an apparatus modified for laser annealing of a semiconductor device based on an optical CVD apparatus. The configuration will be described based on FIG. The laser oscillator (15) is an infrared CO 2 laser. The laser output was 100 W. Further, the laser was applied as a continuous wave (CW), but by applying a pulse, it becomes easy to control the above-mentioned amorphous formation.

【0033】φ4inの試料基板をそのまま試料ホルダ
ー(1)に装着しアニール室(12)内部に配置した。
このまま排気系(7)により10-2Torrに減圧し
た。石英ガラス製レーザ窓(13)を通してレーザ光
(14)をアニール室(12)に導入し、試料基板
(1)に照射する。この時レーザ光(14)を走査さ
せ、試料(1)中央部分に幅1μmのアニール領域を2
mm間隔で20本設けた。
The φ4 inch sample substrate was mounted on the sample holder (1) as it was and placed inside the annealing chamber (12).
In this state, the pressure was reduced to 10 -2 Torr by the exhaust system (7). Laser light (14) is introduced into the annealing chamber (12) through the quartz glass laser window (13) and is irradiated to the sample substrate (1). At this time, the laser beam (14) was scanned, and an annealing region with a width of 1 μm was formed at the center of the sample (1).
20 pieces were provided at mm intervals.

【0034】上記実施例1、2でおこなったような粘着
テープ試験に代えて、フッ酸・硝酸・酢酸(5:3:
3)の混合希釈エッチング液に試料を1.5時間浸積し
たところ、アニール領域を残してダイヤモンドが剥離し
た。該試料のSEM観察からアニール領域へのダイヤモ
ンドの残留が認められ、さらに残留ダイヤモンド領域を
顕微ラマンで評価したところ、成膜直後のラマン分光結
果よりも膜質が向上しているのが認められた。
Instead of the adhesive tape test as in Examples 1 and 2, hydrofluoric acid / nitric acid / acetic acid (5: 3:
When the sample was immersed in the mixed diluted etching solution of 3) for 1.5 hours, the diamond was peeled off leaving the annealed region. From the SEM observation of the sample, it was confirmed that diamond remained in the annealed region. Further, when the residual diamond region was evaluated by microscopic Raman, it was confirmed that the film quality was improved as compared with the Raman spectroscopic result immediately after film formation.

【0035】〔実施例4〕本実施例では実施例1に示し
たアニールを減圧窒素環境において行った。実験の装置
方法に関しては実施例1とほぼ同じである。勿論実施例
2、3のアニール環境に減圧窒素を導入しても良い。有
磁場マイクロ波CVD装置によって実施例1〜3と同一
条件でSi基板上に作成したダイヤモンド薄膜試料を炉
心管内部に挿入し、N2 50sccmを反応容器内部に
流して自動圧力調整器により0.1Torrに圧力設定
し、安定後に外部管状電気炉によって約1時間かけて9
00℃まで加熱しそのまま5時間保持した。
Example 4 In this example, the annealing shown in Example 1 was performed in a reduced pressure nitrogen environment. The experimental apparatus method is almost the same as that of the first embodiment. Of course, reduced pressure nitrogen may be introduced into the annealing environment of the second and third embodiments. A diamond thin film sample prepared on a Si substrate by a magnetic field microwave CVD apparatus under the same conditions as in Examples 1 to 3 was inserted into a furnace core tube, N 2 50 sccm was flown into the reaction vessel, and an automatic pressure adjuster was used to adjust the pressure. After setting the pressure to 1 Torr and stabilizing the temperature, the external tubular electric furnace takes about 1 hour for 9 hours.
The mixture was heated to 00 ° C and kept as it was for 5 hours.

【0036】アニール終了後試料を取り出し、実施例1
と同様の粘着テープによる密着性比較を10点について
おこない、同様にアニール前よりも密着性が向上してい
ることが確認できた。
After the annealing was completed, the sample was taken out, and Example 1 was used.
Adhesion comparison with the same adhesive tape was performed for 10 points, and it was confirmed that the adhesion was improved more than before annealing.

【0037】〔実施例5〕本実施例では実施例4に示し
た減圧窒素環境アニールを減圧酸素環境において行っ
た。アニールの装置と方法に関しては実施例1、4とほ
ぼ同じである。また加熱方法を実施例2、3の方法でお
こなっても良い。ただし炉心管に関してはSUS310
から、同じ大きさの高純度アルミナ焼結体に変更した。
有磁場マイクロ波CVD装置によって実施例1〜4と同
一条件でSi基板上に作成したダイヤモンド薄膜を炉心
管内部に挿入し、O2 100sccmを反応容器内部に
流して自動圧力調整器により0.1Torrに圧力設定
し、安定後に外部管状電気炉によって約1時間かけて9
00℃まで加熱しそのまま5時間保持した。アニール終
了後試料を取り出し、実施例1や4同様に粘着テープに
よる密着性比較を10点についておこない、同様にアニ
ール前よりも密着性が向上していることを確認した。
Example 5 In this example, the reduced pressure nitrogen environment annealing shown in Example 4 was performed in a reduced pressure oxygen environment. The annealing device and method are almost the same as those in the first and fourth embodiments. Further, the heating method may be the method of Examples 2 and 3. However, regarding the core tube, SUS310
Therefore, it was changed to a high-purity alumina sintered body of the same size.
A diamond thin film formed on a Si substrate by a magnetic field microwave CVD apparatus under the same conditions as in Examples 1 to 4 was inserted into a furnace core tube, 100 sccm of O 2 was flown into the reaction vessel, and 0.1 Torr was adjusted by an automatic pressure regulator. After setting the pressure to 9 seconds, after stabilization, it takes about 1 hour for 9 hours with an external tubular electric furnace.
The mixture was heated to 00 ° C and kept as it was for 5 hours. After the annealing was completed, the sample was taken out, and the adhesiveness comparison with the adhesive tape was performed for 10 points in the same manner as in Examples 1 and 4, and it was confirmed that the adhesiveness was improved more than before the annealing.

【0038】ここで酸素環境で行うことの利点は、ラマ
ン分光分析をアニール前後で行い、比較することによっ
て確認できる。アニール前の試料と実施例1と4の試料
すなわち減圧環境と減圧窒素環境においてアニールをお
こなった試料と、本実施例で得られた試料をそれぞれラ
マン分光分析によって比較したところ、実施例1と4で
得られた試料ではアニール前に比べて1332cm-1のピ
ークが低く、かつ1580cm-1に微弱ながらブロードの
増加が認められたのに対して、本実施例で得られた試料
ではむしろ1332cm-1のピークがより鋭くなってお
り、1580cm-1には全くブロードは認められなかっ
た。1332cm-1のピークの鋭さすなわち半値幅はダイ
ヤモンド薄膜の結晶性の目安となる事が良く知られてい
る。本発明の方法によれば酸素による無定形炭素除去効
果が得られ、膜の密着性と膜質を同時に改善する事が可
能である。
The advantage of performing in an oxygen environment can be confirmed by performing Raman spectroscopic analysis before and after annealing and comparing them. When the sample before annealing, the sample of Examples 1 and 4, that is, the sample annealed in the reduced pressure environment and the reduced pressure nitrogen environment, and the sample obtained in this example were compared by Raman spectroscopy, respectively, Examples 1 and 4 were obtained. In the sample obtained in 1) , the peak at 1332 cm −1 was lower than that before annealing, and a broad increase was observed at 1580 cm −1 although it was weak, whereas in the sample obtained in this example, it was rather 1332 cm −. The peak of 1 was sharper and no broadening was observed at 1580 cm -1 . It is well known that the sharpness of the peak at 1332 cm -1 , that is, the full width at half maximum is a measure of the crystallinity of a diamond thin film. According to the method of the present invention, the effect of removing amorphous carbon by oxygen can be obtained, and it is possible to improve the adhesion and film quality of the film at the same time.

【0039】[0039]

【発明の効果】本発明によれば、異種材料による中間層
を設ける場合よりも単純な工程によって、ダイヤモンド
成膜試料の密着性を格段に向上させることが出来、また
密着性と膜質を同時に改善することが可能であり、本発
明によりダイヤモンドデバイスの実用化に一層の弾みが
付くことが期待される。
According to the present invention, the adhesion of the diamond film-forming sample can be markedly improved and the adhesion and the film quality can be improved at the same time by a simpler process than in the case of providing the intermediate layer made of different materials. It is expected that the present invention will further accelerate the practical application of the diamond device.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1、3〜5で成膜に、実施例2では成膜
とアニールに用いた有磁場マイクロ波プラズマCVD装
置の概略図である。
FIG. 1 is a schematic diagram of a magnetic field microwave plasma CVD apparatus used for film formation in Examples 1, 3 to 5 and film formation and annealing in Example 2.

【図2】実施例1、4、5で用いたアニール装置の概略
図である。
FIG. 2 is a schematic view of an annealing apparatus used in Examples 1, 4, and 5.

【図3】実施例3で紹介したマルチチャンバー・レーザ
アニール装置の概略図である。
FIG. 3 is a schematic diagram of a multi-chamber laser annealing apparatus introduced in a third embodiment.

【符号の説明】[Explanation of symbols]

1 試料基板および試料ホルダー 3 プラズマ反応室 4 マグネット・コイル 5 マイクロ波導波管 6 反応ガス供給管 7 排気系 10 炉心管 11 管状電気炉 12 アニール室 13 レーザ窓 14 レーザ光 15 CO2 レーザ発振器 16 搬送バルブ1 Sample Substrate and Sample Holder 3 Plasma Reaction Chamber 4 Magnet / Coil 5 Microwave Waveguide 6 Reaction Gas Supply Pipe 7 Exhaust System 10 Core Tube 11 Tubular Electric Furnace 12 Annealing Chamber 13 Laser Window 14 Laser Light 15 CO 2 Laser Oscillator 16 Transfer valve

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】被形成面を有する基体上に作成されたダイ
ヤモンド薄膜を、該基体と共に酸素または窒素雰囲気を
含む減圧状態の容器内で加熱し、該基体とダイヤモンド
薄膜の間に中間層を生ぜしめることにより、両者の密着
性を向上させることを特徴とする高密着性ダイヤモンド
薄膜装置の作製方法。
1. A diamond thin film formed on a substrate having a surface to be formed is heated together with the substrate in a container under a reduced pressure containing an oxygen or nitrogen atmosphere to form an intermediate layer between the substrate and the diamond thin film. A method for manufacturing a high-adhesion diamond thin film device, characterized by improving the adhesion between the two by squeezing.
【請求項2】請求項1における減圧状態が、密閉容器内
を排気することによる0.005〜1Torrの範囲の
圧力状態であることを特徴とする高密着性ダイヤモンド
薄膜の作製方法。
2. A method for producing a high adhesion diamond thin film, characterized in that the reduced pressure state in claim 1 is a pressure state in the range of 0.005 to 1 Torr by exhausting the inside of a closed container.
【請求項3】請求項1における酸素または窒素雰囲気の
減圧状態が、密閉容器に酸素または窒素ガスを供給させ
つつ容器内全体を排気することにより0.01〜10T
orrの範囲において形成されることを特徴とする高密
着性ダイヤモンド薄膜装置の作製方法。
3. The depressurized state of the oxygen or nitrogen atmosphere according to claim 1 is 0.01 to 10 T by exhausting the whole of the container while supplying oxygen or nitrogen gas to the closed container.
A method for manufacturing a high-adhesion diamond thin film device, which is characterized in that it is formed in a range of orr.
【請求項4】請求項1における中間層が、該基体材料と
炭素の混相によって構成されていることを特徴とする高
密着性ダイヤモンド薄膜の作製方法。
4. A method for producing a diamond film having high adhesion, wherein the intermediate layer according to claim 1 is composed of a mixed phase of the base material and carbon.
【請求項5】Si等の半導体材料やアルミナ、炭化珪
素、窒化珪素、窒化硼素等を原料とする焼結体材料から
なる基体上に作成されたダイヤモンド薄膜を、該基体と
共に酸素または窒素雰囲気を含む減圧容器内部に封入
し、ダイヤモンド薄膜に対して透明な波長によって発振
するレーザ光を照射する事によって該ダイヤモンド薄膜
と該基体の界面を選択的に加熱し、該基体と該ダイヤモ
ンド薄膜の間に中間層を選択的に発生させ、両者の密着
性を向上させる事を特徴とする高密着性ダイヤモンド薄
膜の作製方法。
5. A diamond thin film formed on a substrate made of a semiconductor material such as Si or a sintered body material made of alumina, silicon carbide, silicon nitride, boron nitride or the like as a raw material is exposed to an oxygen or nitrogen atmosphere together with the substrate. Enclosed in a decompression container containing, and selectively heating the interface between the diamond thin film and the substrate by irradiating the diamond thin film with laser light oscillating at a transparent wavelength, and between the substrate and the diamond thin film. A method for producing a high-adhesion diamond thin film, which comprises selectively generating an intermediate layer to improve the adhesion between them.
【請求項6】請求項5におけるレーザ光がCO2 レーザ
であることを特徴とする高密着性ダイヤモンド薄膜の作
製方法。
6. A method of manufacturing a diamond thin film having high adhesion, wherein the laser light in claim 5 is a CO 2 laser.
JP35708992A 1992-12-21 1992-12-21 Method of forming diamond film Expired - Fee Related JP3195093B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP35708992A JP3195093B2 (en) 1992-12-21 1992-12-21 Method of forming diamond film
JP2000280654A JP3472253B2 (en) 1992-12-21 2000-09-14 Method of forming diamond film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35708992A JP3195093B2 (en) 1992-12-21 1992-12-21 Method of forming diamond film

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2000280654A Division JP3472253B2 (en) 1992-12-21 2000-09-14 Method of forming diamond film

Publications (2)

Publication Number Publication Date
JPH06183889A true JPH06183889A (en) 1994-07-05
JP3195093B2 JP3195093B2 (en) 2001-08-06

Family

ID=18452334

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35708992A Expired - Fee Related JP3195093B2 (en) 1992-12-21 1992-12-21 Method of forming diamond film

Country Status (1)

Country Link
JP (1) JP3195093B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101777413B1 (en) * 2016-06-23 2017-09-11 (주)투제이상사 Bag assembly

Also Published As

Publication number Publication date
JP3195093B2 (en) 2001-08-06

Similar Documents

Publication Publication Date Title
JP3728465B2 (en) Method for forming single crystal diamond film
US6274403B1 (en) Process for producing heteropitaxial diamond layers on Si-substrates
KR20170020407A (en) Single-crystal diamond growth base material and method for manufacturing single-crystal diamond substrate
US4152182A (en) Process for producing electronic grade aluminum nitride films utilizing the reduction of aluminum oxide
US6287889B1 (en) Diamond thin film or the like, method for forming and modifying the thin film, and method for processing the thin film
JP2003277183A (en) Method for producing diamond single crystal, diamond single crystal substrate, and method for producing the same
JPH0948694A (en) Method for forming diamond single crystal film
JP3728467B2 (en) Method for forming single crystal diamond film
JP3728464B2 (en) Method for manufacturing substrate for vapor phase synthesis of single crystal diamond film
JP2005219962A (en) Diamond single crystal substrate and its manufacturing method
JP3472253B2 (en) Method of forming diamond film
JPH06183889A (en) Production of diamond thin film device having high bonding strength
JP3760175B2 (en) Diamond film formation method
KR19990062035A (en) Gallium Substrate Manufacturing Method Using Silicon Substrate
JP3190100B2 (en) Carbon material production equipment
JPH0789793A (en) Formation of highly-oriented diamond thin film
JP3728466B2 (en) Method for producing single crystal diamond film
JPS59177919A (en) Selective growth of thin film
JP5042134B2 (en) Diamond thin film
WO2023085055A1 (en) Base substrate, single crystal diamond multilayer substrate, method for producing base substrate, and method for producing single crystal diamond multilayer substrate
WO2024048357A1 (en) Base substrate, single crystal diamond multilayer substrate, and production method therefor
WO2023153396A1 (en) Base substrate, single crystal diamond multilayer substrate, method for producing said base substrate, and method for producing said single crystal diamond multilayer substrate
JP2780497B2 (en) Method for forming diamond film on Si substrate by CVD method
CN116356280A (en) Method for preparing hexagonal boron nitride film by microwave plasma chemical vapor deposition system
JPH05345697A (en) Production of diamond film

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090601

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20090601

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090601

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100601

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100601

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20110601

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110601

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120601

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120601

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20120601

LAPS Cancellation because of no payment of annual fees