JPH0618302A - Flowmeter - Google Patents

Flowmeter

Info

Publication number
JPH0618302A
JPH0618302A JP4270341A JP27034192A JPH0618302A JP H0618302 A JPH0618302 A JP H0618302A JP 4270341 A JP4270341 A JP 4270341A JP 27034192 A JP27034192 A JP 27034192A JP H0618302 A JPH0618302 A JP H0618302A
Authority
JP
Japan
Prior art keywords
passage
air
branch
downstream
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4270341A
Other languages
Japanese (ja)
Other versions
JP3070642B2 (en
Inventor
Yukio Sawada
沢田  行雄
Yukio Mori
森  幸雄
Rei Nagasaka
玲 永坂
Tsunemitsu Kato
常光 加藤
Takahisa Ban
隆央 伴
Kunihiro Umetsu
邦広 梅津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP4270341A priority Critical patent/JP3070642B2/en
Priority to EP92121479A priority patent/EP0547595B1/en
Priority to DE69231960T priority patent/DE69231960T2/en
Priority to KR1019930020826A priority patent/KR100255475B1/en
Publication of JPH0618302A publication Critical patent/JPH0618302A/en
Priority to US08/319,030 priority patent/US5581026A/en
Priority to US08/429,471 priority patent/US5571964A/en
Application granted granted Critical
Publication of JP3070642B2 publication Critical patent/JP3070642B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

PURPOSE:To prevent influences of a turbulent flow at the downstream of a supporting member supporting a branch passage in a main passage. CONSTITUTION:An air flowmeter 1 for measuring the amount of suction air to an automobile engine has an opening 3 on the upstream side and an opening 5 on the downstream side, constituting part of a passage for the suction air. A cocoon-shaped central member is supported by four ribs 140, 150 (only two of four are indicated in the drawing) approximately at the center of the air passage in the air flowmeter 1. A part of the suction air is introduced from an incoming opening 410 into a branch pipe 420. After the air flows in a measuring pipe 430, it runs outside the branch pipe 420 and exits through outgoing openings 440, 450. At this time, the flow rate is measured by sensors 570, 580. Since the outgoing openings 440, 450 are located on the upper stream side than the ribs 140, 150, the turbulent flow at the surface and downstream of the ribs 140, 150 do not act to the outgoing openings 440, 450. Accordingly, the disturbance of the flow inside the branch passage, and the change of the ratio of the flow rate between the branch passage and the whole air passage can be prevented.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は流体の流量を検出する流
体流量計に関し、特に流体が流れる主通路内に分岐通路
を形成し、この分岐通路内を流れる流体の流量を計測す
る流体流量計に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fluid flow meter for detecting the flow rate of a fluid, and more particularly to a fluid flow meter for forming a branch passage in a main passage through which the fluid flows and measuring the flow rate of the fluid flowing in the branch passage. Regarding

【0002】[0002]

【従来の技術】従来、この種の流体流量計として、自動
車のエンジンに吸入される吸入空気量を検出するエアフ
ロメータが知られている。
2. Description of the Related Art Conventionally, as this type of fluid flow meter, an air flow meter for detecting the amount of intake air drawn into an automobile engine has been known.

【0003】例えば特開昭60−185118号公報に
開示される「空気流量計」が知られている。この空気流
量計は、エンジンへの吸入空気が流れる吸気通路内のほ
ぼ中央部に円筒状の部材を支持し、この部材内に分岐通
路を形成して分岐通路内を流れる空気量を熱式の流量計
により計測している。
For example, an "air flow meter" disclosed in Japanese Patent Laid-Open No. 60-185118 is known. This air flow meter supports a cylindrical member in a substantially central portion of an intake passage through which intake air to the engine flows, and forms a branch passage in the member to measure the amount of air flowing in the branch passage by a thermal method. It is measured by a flow meter.

【0004】[0004]

【発明が解決しようとする課題】上記の空気流量計のよ
うに主通路のほぼ中央に分岐通路を形成するものでは、
主通路のほぼ中央から分岐通路内へ空気を導入するた
め、分岐通路内へ主通路の流量によく対応した流量を導
入することができ、分岐通路内の流量を計測することで
主通路の流量を正確に知ることができる。また、分岐通
路の温度が主通路を流れる空気の温度に応答性よく追従
して変化するので、熱式の流量計を分岐通路内に設置す
る場合には、主通路の外側、例えばエンジンルームから
の温度の外乱を受けにくく正確な流量計測が可能であ
る。
In the case where the branch passage is formed substantially in the center of the main passage like the above air flow meter,
Since air is introduced into the branch passage from approximately the center of the main passage, it is possible to introduce a flow rate that corresponds well to the flow rate of the main passage into the branch passage. You can know exactly. Also, since the temperature of the branch passage changes in response to the temperature of the air flowing through the main passage with good responsiveness, when installing a thermal type flow meter in the branch passage, outside the main passage, for example, from the engine room, It is possible to measure the flow rate accurately without being easily affected by the temperature disturbance.

【0005】ところが、上記の公報に開示されるような
空気流量計では、分岐通路の出口が分岐通路を主通路内
に支持するためのステーより下流側に開口するため、こ
のステーにより生じた乱流が分岐通路の出口に作用する
おそれがある。そして、出口開口に乱流が作用すると、
分岐通路内の流れに乱れを及ぼしたり、分岐通路内に導
入される流量に変動を与えたりするばかりか、主通路の
流量と分岐通路内の流量との比率に変動を生じるおそれ
があった。
However, in the air flow meter as disclosed in the above publication, the outlet of the branch passage opens downstream from the stay for supporting the branch passage in the main passage, so that the turbulence caused by this stay is generated. The flow may act on the outlet of the branch passage. And when turbulence acts on the outlet opening,
Not only may the flow in the branch passage be disturbed or the flow rate introduced into the branch passage may be changed, but also the ratio between the flow rate in the main passage and the flow rate in the branch passage may change.

【0006】本発明は上記のごとき従来技術の問題点に
鑑み、主通路内に分岐通路を形成し支持する流量計にお
いて、特に分岐通路出口の位置を改良することにより、
この分岐通路出口への乱流の作用を低減し正確な流量計
測を可能にすることを目的とする。
In view of the above-mentioned problems of the prior art, the present invention provides a flowmeter for forming and supporting a branch passage in the main passage, particularly by improving the position of the branch passage outlet,
It is an object of the present invention to reduce the effect of turbulence on the outlet of the branch passage and enable accurate flow rate measurement.

【0007】[0007]

【課題を解決するための手段】本発明は上記問題点を解
決するために、流体が流通する主通路と、前記主通路の
ほぼ中央部に設けられる中央部材と、前記主通路の壁面
と前記中央部材とを連結し、前記中央部材を前記主通路
のほぼ中央に支持する支持部材と、前記中央部材に開口
し前記主通路を流れる流体の一部を導入する導入口と、
前記中央部材に形成され前記導入口から導入された流体
を流す分岐通路と、前記分岐通路内に設けられ、前記分
岐通路内の流量を計測するセンサと、前記支持部材の下
流側端部より上流側に位置する前記中央部材の所定部位
に開口し、前記分岐通路を流れた流体を再び前記主通路
に戻す出口とを備えることを特徴とする流量計という技
術的手段を採用する。
In order to solve the above problems, the present invention provides a main passage through which a fluid flows, a central member provided at a substantially central portion of the main passage, a wall surface of the main passage, and A support member that connects the central member and supports the central member at substantially the center of the main passage, and an inlet opening into the central member to introduce a part of the fluid flowing through the main passage,
A branch passage formed in the central member and through which a fluid introduced from the introduction port flows, a sensor provided in the branch passage for measuring a flow rate in the branch passage, and upstream of a downstream end of the support member. The technical means called a flow meter is provided, which has an outlet opening at a predetermined portion of the central member located on the side and returning the fluid flowing through the branch passage to the main passage again.

【0008】[0008]

【作用】以上に述べた本発明の構成によると、主通路の
ほぼ中央部に支持部材によって中央部材が支持される。
そして、中央部材には導入口と分岐通路と出口とが形成
され、分岐通路内にセンサが設けられて流体の流量が計
測される。しかも、中央部材に形成された分岐通路の出
口は、この中央部材を主通路のほぼ中央に支持する支持
部材の下流側端部より上流側に設けられるため、支持部
材の下流側に発生する流体の乱流が分岐通路の出口に作
用することが防止される。このため、分岐通路内の流れ
の乱れが低減され、主通路の流量に正確に対応した流量
が分岐通路内に導入され流される。このため、分岐通路
内に設けられたセンサにより正確な流量計測が可能にな
る。
According to the structure of the present invention described above, the central member is supported by the supporting member at the substantially central portion of the main passage.
An inlet, a branch passage, and an outlet are formed in the central member, and a sensor is provided in the branch passage to measure the flow rate of the fluid. Moreover, since the outlet of the branch passage formed in the central member is provided on the upstream side of the downstream end portion of the support member that supports the central member at substantially the center of the main passage, the fluid generated downstream of the support member is formed. Turbulent flow is prevented from acting on the outlet of the branch passage. Therefore, the turbulence of the flow in the branch passage is reduced, and the flow rate that exactly corresponds to the flow rate in the main passage is introduced and flown into the branch passage. Therefore, the flow rate can be accurately measured by the sensor provided in the branch passage.

【0009】[0009]

【実施例】以下、自動車のエンジンに吸入される吸入空
気量を計測する熱式の空気流量計に本発明を適用した一
実施例を図1、図2、図3に基づいて説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment in which the present invention is applied to a thermal air flow meter for measuring the amount of intake air drawn into an automobile engine will be described below with reference to FIGS. 1, 2 and 3.

【0010】図1は、熱式の空気流量計の断面図、図2
は図1のA矢視図である。なお、図1は図2のI−I断
面を示している。空気流量計1には図中左側から吸入空
気が導入され、図中右側へ流出する。空気流量計1の上
流側開口3は図示せぬエアクリーナに挿入され、取り付
けられる。一方、下流側開口5は、空気流量計1より大
径の図示せぬ吸気ダクトに挿入され、図示せぬベルトに
より外周から締めつけられる。
FIG. 1 is a sectional view of a thermal type air flow meter, and FIG.
2 is a view as seen from the direction of arrow A in FIG. Note that FIG. 1 shows the I-I cross section of FIG. Intake air is introduced into the air flow meter 1 from the left side in the figure and flows out to the right side in the figure. The upstream opening 3 of the air flow meter 1 is inserted and attached to an air cleaner (not shown). On the other hand, the downstream opening 5 is inserted into an intake duct (not shown) having a diameter larger than that of the air flow meter 1, and is tightened from the outer periphery by a belt (not shown).

【0011】空気流量計1は吸気通路を形成する中央円
筒部100と上流側円筒部200と下流側円筒部300
とを備えている。樹脂製の中央円筒部100の外側に
は、制御回路を収容する回路容器110が一体に形成さ
れ、蓋が被せられる。この回路容器110内には後述す
る熱式センサの制御回路が収容されている。また、中央
円筒部100の外側には、固定用のナット111、11
3がインサート成形された支持部115、117が成形
されている。中央円筒部100の内側は円筒状に成形さ
れ、内側へ向けて4本のリブ120、130、140、
150が一体に成形されている。さらに、リブ120、
130、140、150の先端には円筒状の中央ハウジ
ング160が一体に成形されている。中央ハウジング1
60はその中央に仕切り壁163を有し、仕切り壁16
3の中央には穴165が開設されている。
The air flow meter 1 includes a central cylindrical portion 100, an upstream cylindrical portion 200 and a downstream cylindrical portion 300 which form an intake passage.
It has and. A circuit container 110 accommodating a control circuit is integrally formed on the outside of the central cylindrical portion 100 made of resin, and a lid is put on the circuit container 110. A control circuit for a thermal sensor, which will be described later, is housed in the circuit container 110. Further, on the outside of the central cylindrical portion 100, fixing nuts 111 and 11 are provided.
Support portions 115 and 117, in which 3 is insert-molded, are molded. The inner side of the central cylindrical portion 100 is formed into a cylindrical shape, and four ribs 120, 130, 140, and
150 is integrally molded. Furthermore, the rib 120,
A cylindrical central housing 160 is integrally formed at the tips of 130, 140 and 150. Central housing 1
60 has a partition wall 163 in the center thereof.
A hole 165 is opened in the center of 3.

【0012】樹脂製の上流側円筒部200は下流側へ向
けて徐々に内側断面積が広がる形状に形成され、上流側
端部にはベルマウス部210が形成され、外周にはエア
クリーナへの取付用の段差が形成されている。そして、
上流側円筒部200は中央円筒部100の内側に挿入さ
れて、中央円筒部100に固定される。
The upstream cylindrical portion 200 made of resin is formed in such a shape that the inner cross-sectional area thereof gradually widens toward the downstream side, the bell mouth portion 210 is formed at the upstream end portion, and the bell mouth portion 210 is attached to the outer periphery. There is a step for use. And
The upstream side cylindrical portion 200 is inserted inside the central cylindrical portion 100 and fixed to the central cylindrical portion 100.

【0013】樹脂製の下流側円筒部300は、図示せぬ
吸気ダクトに挿入される直管部310が形成され、中央
円筒部100の下流側端部に固定される。下流側円筒部
300の内側は円筒状に成形され、内側へ向けて4本の
リブ320、330、340、350が一体に成形され
ている。さらに、リブ320、330、340、350
の先端には椀状の下流ハウジング360が一体に成形さ
れている。
The resin-made downstream cylindrical portion 300 is formed with a straight pipe portion 310 which is inserted into an intake duct (not shown), and is fixed to the downstream end portion of the central cylindrical portion 100. The inner side of the downstream side cylindrical portion 300 is formed into a cylindrical shape, and four ribs 320, 330, 340 and 350 are integrally formed toward the inside. Further, ribs 320, 330, 340, 350
A bowl-shaped downstream housing 360 is integrally formed at the tip of the.

【0014】そして、4本のリブ320、330、34
0、350は、中央円筒部100から延びるリブ12
0、130、140、150の下流側に位置して図3に
図示されるような断面形状に組立られる。また、椀状の
下流ハウジング360は、中央円筒部100に支持され
る中央ハウジング160の下流側を閉塞し、滑らかな砲
弾型の形状に組立られる。
The four ribs 320, 330, 34
0 and 350 are ribs 12 extending from the central cylindrical portion 100.
It is located on the downstream side of 0, 130, 140, 150 and assembled in a sectional shape as shown in FIG. Further, the bowl-shaped downstream housing 360 closes the downstream side of the central housing 160 supported by the central cylindrical portion 100, and is assembled into a smooth shell shape.

【0015】中央円筒部100に支持される中央ハウジ
ング160の上流側には、砲弾型の樹脂製の上流ハウジ
ング400が挿入され固定される。上流ハウジング40
0の上流側中央には入口開口部410が開設され、上流
ハウジング400の内側には、入口開口部410から下
流へ向けて直線的に延びる分岐管420が一体に成形さ
れている。分岐管420の下流端には、計測管430が
挿入されている。計測管430はステンレス製の内側管
433と樹脂製の外側管435とからなり、内側管43
3の上流側にはベルマウスが形成され、その内径は分岐
管420より小径に形成されている。さらに、砲弾型の
上流ハウジング400の外側には、周方向に沿って出口
開口部440、450が開設されている。この出口開口
部440、450は、周方向に延びるスリット状の開口
としてほぼ全周にわたり複数形成されている。また、出
口開口部440、450は上流ハウジング400の内側
から外側へ向けて下流側へ傾斜して開設されている。し
かも、上流側より下流側の壁面が下流側へ向けてより大
きく傾斜しており、空気をスムーズに流出させる。
A shell-shaped resin-made upstream housing 400 is inserted and fixed on the upstream side of the central housing 160 supported by the central cylindrical portion 100. Upstream housing 40
An inlet opening 410 is opened at the center of the upstream side of 0, and a branch pipe 420 linearly extending from the inlet opening 410 toward the downstream is integrally formed inside the upstream housing 400. A measuring pipe 430 is inserted at the downstream end of the branch pipe 420. The measuring pipe 430 includes an inner pipe 433 made of stainless steel and an outer pipe 435 made of resin.
A bell mouth is formed on the upstream side of 3, and its inner diameter is smaller than that of the branch pipe 420. Further, outlet openings 440 and 450 are provided outside the shell-shaped upstream housing 400 along the circumferential direction. A plurality of outlet openings 440 and 450 are formed as slit-shaped openings extending in the circumferential direction over substantially the entire circumference. Further, the outlet openings 440 and 450 are opened so as to be inclined toward the downstream side from the inside to the outside of the upstream housing 400. Moreover, the wall surface on the downstream side from the upstream side is more inclined toward the downstream side, so that air can be smoothly discharged.

【0016】上流ハウジング400は中央ハウジング1
60の上流側に挿入され固定される。このとき、分岐管
420の下流端が中央ハウジング160の内側に放射状
に形成された板状のリブ167、169の上流側端面に
当接する。なお、図1には、放射状に設けられた板状の
4枚のリブのうちの2枚167、169が図示されてい
る。これにより、計測管430の下流端と中央ハウジン
グ160の仕切り壁163との間に所定の隙間が形成さ
れ、しかも計測管430の下流端から計測管430およ
び分岐管420の外周側への空気通路が確保される。そ
して、上流ハウジング400と中央ハウジング160と
下流ハウジング360とで形成される中央部材は、外形
が滑らかな繭型に組立てられる。
The upstream housing 400 is the central housing 1.
It is inserted and fixed on the upstream side of 60. At this time, the downstream end of the branch pipe 420 contacts the upstream end faces of the plate-shaped ribs 167 and 169 radially formed inside the central housing 160. It should be noted that FIG. 1 illustrates two of the four plate-shaped ribs radially provided, 167 and 169. As a result, a predetermined gap is formed between the downstream end of the measuring pipe 430 and the partition wall 163 of the central housing 160, and an air passage from the downstream end of the measuring pipe 430 to the outer peripheral side of the measuring pipe 430 and the branch pipe 420. Is secured. The central member formed by the upstream housing 400, the central housing 160, and the downstream housing 360 is assembled in a cocoon shape with a smooth outer shape.

【0017】ここで、上流ハウジング400の出口開口
440、450より上流の部位と上流側円筒部200と
の間には、吸気通路の断面積が最も絞られた絞り部が形
成されており、図中一点鎖線Bで示す位置の流路断面積
が最も狭い。これにより、上流側開口3から流入した空
気流は、絞り部で絞られ、上流ハウジング400の外周
に沿って均等な流れとなるように整流される。
Here, between the upstream side of the outlet openings 440 and 450 of the upstream housing 400 and the upstream cylindrical portion 200, a throttle portion having the narrowest cross-sectional area of the intake passage is formed. The flow path cross-sectional area at the position indicated by the medium-dot chain line B is the smallest. As a result, the airflow that has flowed in from the upstream side opening 3 is throttled by the throttle portion and is rectified so as to have a uniform flow along the outer circumference of the upstream housing 400.

【0018】さらに、仕切り壁163の穴165には、
下流側からセンサ部500が挿入され、センサ部500
は仕切り壁163に固定される。センサ部500は、円
筒状の樹脂部510に4本の支持ピン520、530、
540、550をインサート成形し、一端側に固定用フ
ランジ560を固定して形成される。上流側に突出した
支持ピンは長短2種類からなり、長い2本520、53
0の間にひとつのセンサ570が支持され、短い2本5
40、550の間にひとつのセンサ580が支持され
る。センサ570、580は、セラミック製ボビンの外
周に白金線を巻き、ボビン両端のリード線と接続したも
ので、同一特性のものが用いられる。
Further, in the hole 165 of the partition wall 163,
The sensor unit 500 is inserted from the downstream side,
Is fixed to the partition wall 163. The sensor unit 500 includes a cylindrical resin unit 510, four support pins 520, 530,
It is formed by insert-molding 540 and 550 and fixing a fixing flange 560 to one end side. The support pins projecting upstream consist of two types, long and short, and two long 520, 53
One sensor 570 is supported between 0 and two short 5
One sensor 580 is supported between 40 and 550. The sensors 570 and 580 are made by winding a platinum wire around the outer circumference of a ceramic bobbin and connecting the lead wires at both ends of the bobbin, and those having the same characteristics are used.

【0019】さらに、中央ハウジング160と下流ハウ
ジング360との間に形成される空間と、回路容器11
0との間には、リブ140内を通して導電部材が配設さ
れており、この導電部材は、センサ部500の下流側に
突出した支持ピンに図示せぬフレキシブル配線板を介し
て接続される。従って、回路容器110内に収容された
制御回路は、導電部材とフレキシブル配線板と支持ピン
とを介してセンサに接続される。
Further, the space formed between the central housing 160 and the downstream housing 360, and the circuit container 11
0, a conductive member is disposed through the inside of the rib 140, and this conductive member is connected to a support pin projecting to the downstream side of the sensor unit 500 via a flexible wiring board (not shown). Therefore, the control circuit housed in the circuit container 110 is connected to the sensor via the conductive member, the flexible wiring board, and the support pin.

【0020】以上に説明した実施例では、上流側円筒部
200と中央円筒部100と下流側円筒部300との内
側に吸気通路が形成される。そして、上流ハウジング4
00と中央ハウジング160と下流ハウジング360と
により繭型の中央部材が形成され、この中央部材は4本
のリブにより吸気通路の中央に支持される。そして、吸
入空気は主として中央部材の外側を流れる。
In the embodiment described above, the intake passage is formed inside the upstream cylinder portion 200, the central cylinder portion 100 and the downstream cylinder portion 300. And the upstream housing 4
00, the central housing 160, and the downstream housing 360 form a cocoon-shaped central member, which is supported at the center of the intake passage by four ribs. Then, the intake air mainly flows outside the central member.

【0021】さらに、上流ハウジング400と中央ハウ
ジング160との間には、入口開口410から、分岐管
420、計測管430、計測管430と仕切り壁163
との間の隙間を順次通り、出口開口440、450へ至
る分岐通路が形成される。従って、吸気通路を流れる空
気の一部は、入口開口410から分岐管420内を通
り、計測管430へ導入される。そして、仕切り壁16
3に衝突して径方向に流れの方向を変え、さらに、出口
開口440、450へ向けて分岐管420の外側を通っ
て流れる。そして出口開口440、450から再び吸気
通路内へ流出する。このとき、出口開口440、450
近傍の吸気通路断面積が絞られているため、吸気通路の
流速が増加し出口開口440、450近傍が負圧となっ
て、上流ハウジング400内の空気は吸い出されて流出
する。
Further, a branch pipe 420, a measuring pipe 430, a measuring pipe 430 and a partition wall 163 are provided between the upstream housing 400 and the central housing 160 from the inlet opening 410.
A branch passage is formed through the gap between and to reach the outlet openings 440 and 450. Therefore, a part of the air flowing in the intake passage passes through the branch pipe 420 from the inlet opening 410 and is introduced into the measurement pipe 430. And the partition wall 16
3 to change the direction of the flow in the radial direction, and further flow through the outside of the branch pipe 420 toward the outlet openings 440, 450. Then, it again flows into the intake passage from the outlet openings 440 and 450. At this time, the outlet openings 440 and 450
Since the cross-sectional area of the intake passage in the vicinity is narrowed, the flow velocity of the intake passage increases, and the pressure in the vicinity of the outlet openings 440 and 450 becomes negative pressure, so that the air in the upstream housing 400 is sucked out.

【0022】そして、計測管430の内部に位置された
センサ570、580により分岐通路内を流れる空気の
流量が計測される。ここで、一方のセンサは温度測定用
として使用され、他方のセンサは所定温度に加熱されて
その放熱量が空気流量に応じて変化する。そして、回路
容器110に収容された制御回路は、センサを所定温度
に加熱するために要する電力を検出し、この電力を測定
流量を示す出力信号として出力する。制御回路から出力
された出力信号は、燃料噴射量制御装置などへ供給さ
れ、燃料噴射量の演算に使用される。
Then, the flow rate of the air flowing through the branch passage is measured by the sensors 570 and 580 located inside the measuring pipe 430. Here, one sensor is used for temperature measurement, the other sensor is heated to a predetermined temperature, and its heat radiation amount changes according to the air flow rate. Then, the control circuit housed in the circuit container 110 detects the electric power required to heat the sensor to a predetermined temperature, and outputs this electric power as an output signal indicating the measured flow rate. The output signal output from the control circuit is supplied to the fuel injection amount control device or the like and used for calculating the fuel injection amount.

【0023】上記の実施例では、出口開口440、45
0より上流側に絞り部Bが形成されているため、出口開
口440、450において作用する負圧が、周方向の全
周に渡って均等に作用する。このため、上流側開口3か
ら流入する空気流に偏りがあっても、その偏りを整流し
て出口開口440、450に作用させることができる。
In the above embodiment, the outlet openings 440, 45.
Since the throttle portion B is formed on the upstream side of 0, the negative pressure that acts on the outlet openings 440 and 450 acts evenly over the entire circumference in the circumferential direction. Therefore, even if there is a deviation in the air flow that flows in from the upstream opening 3, the deviation can be rectified and acted on the outlet openings 440 and 450.

【0024】また、出口開口440、450には、中央
部材の表面に生じる気流の剥離も影響を与えるが、出口
開口440、450が比較的剥離の少ない中央部材の上
流寄りの位置に開口するため、低流量から高流量にわた
る広い範囲で安定した作動を得ることができる。
Further, although the separation of the air flow generated on the surface of the central member also influences the outlet openings 440 and 450, since the outlet openings 440 and 450 are opened at a position near the upstream of the central member where the separation is relatively small. It is possible to obtain stable operation in a wide range from low flow rate to high flow rate.

【0025】また、出口開口440、450はリブ12
0、130、140、150より上流に開口しているた
め、リブの表面で発生する気流の剥離により生じる乱
流、およびリブの下流端で生じる乱流の影響を受けるこ
となく分岐通路から空気を流出させることができる。
Further, the outlet openings 440 and 450 are provided with ribs 12.
0, 130, 140, 150 open upstream from the branch passages without being affected by the turbulence generated by the separation of the airflow generated on the rib surface and the turbulence generated at the downstream end of the rib. Can be drained.

【0026】また、出口開口440、450は上流ハウ
ジング400の外周にほぼ全周にわたって開口している
ため、吸気通路全体の流れによる作用を受ける。このた
め、一部の乱流により分岐路内の流量が変動することが
防止される。
Further, since the outlet openings 440 and 450 are opened to the outer circumference of the upstream housing 400 over substantially the entire circumference, they are affected by the flow of the entire intake passage. Therefore, it is possible to prevent the flow rate in the branch passage from fluctuating due to a part of the turbulent flow.

【0027】以上述べたようにこの実施例では、出口開
口440、450における空気の流れを乱れの少ない状
態に維持でき、吸気通路を流れる全流量と分岐通路を流
れる流量との比率を正確に所定の比率に維持することが
でき、分岐通路内の流量を計測することで正確に吸気通
路全体の流れを検出することができる。
As described above, in this embodiment, the flow of air at the outlet openings 440 and 450 can be maintained in a state where there is little turbulence, and the ratio between the total flow rate of the intake passage and the flow rate of the branch passage can be accurately determined. It is possible to maintain the above ratio, and it is possible to accurately detect the flow in the entire intake passage by measuring the flow rate in the branch passage.

【0028】さらに、出口開口440、450が砲弾状
の上流ハウジング400の内側から外側へ向けて下流側
へ傾斜して開設され、しかも、上流側より下流側の壁面
が下流側へ向けてより大きく傾斜されている。そして、
この開口440、450は上流ハウジング400の上流
側、すなわち中央部材の外周径が下流に向かうにつれて
漸増していく拡大部に開設されている。また、この拡大
部の外周近傍に位置する上流側円筒部200には、その
内周径が下流に向かうにつれて漸増していく漸増部が形
成されている。ここで、中央部材の拡大部は、その外周
径の漸増割合が、漸増部の内周径の漸増割合よりも小さ
くなるように形成されている。
Further, the outlet openings 440 and 450 are opened so as to be inclined from the inside to the outside of the shell-shaped upstream housing 400 toward the downstream side, and the wall surface from the upstream side to the downstream side is larger toward the downstream side. It is inclined. And
The openings 440 and 450 are formed on the upstream side of the upstream housing 400, that is, in the enlarged portion where the outer diameter of the central member gradually increases toward the downstream side. The upstream cylindrical portion 200 located near the outer circumference of the enlarged portion is formed with a gradually increasing portion whose inner diameter gradually increases toward the downstream side. Here, the enlarged portion of the central member is formed such that the gradual increase rate of the outer peripheral diameter thereof is smaller than the gradual increase rate of the inner peripheral diameter of the gradual increase portion.

【0029】このような構成のもと、吸気通路の流れ
は、まず中央部材の拡大部に沿って流れるため、軸方向
に対して外径方向へ向かって傾斜される。さらに、上流
側円筒部200の漸増部によって、中央部材に沿って傾
斜された主通路の流れは、より外径方向へ傾斜される。
With this structure, the flow in the intake passage first flows along the enlarged portion of the central member, so that it is inclined toward the outer radial direction with respect to the axial direction. Further, due to the gradually increasing portion of the upstream side cylindrical portion 200, the flow of the main passage inclined along the central member is inclined further outward.

【0030】一方、出口開口440、450から流出す
る流れは、開口が下流側に向かって傾斜しているため、
外径方向へ向かって傾斜された吸気通路の流れと小さな
角度で合流することができる。したがって、この2つの
流れはスムーズに合流することが可能となり、2つの流
れの衝突が大幅に緩和される。このため、流れの衝突に
よって吸気通路の流れが絞られて圧力損失が増大するこ
とを抑制でき、空気流量計1での吸気抵抗を減少させる
ことができる。したがって、内燃機関内へ吸入空気をス
ムーズに吸入させることが可能となり、機関出力を向上
させることができる。
On the other hand, the flow flowing out of the outlet openings 440 and 450 is inclined toward the downstream side because the openings are inclined toward the downstream side.
It is possible to join the flow of the intake passage inclined toward the outer diameter direction at a small angle. Therefore, the two flows can be smoothly merged, and the collision between the two flows is significantly reduced. Therefore, it is possible to prevent the flow in the intake passage from being throttled due to the collision of the flows and to increase the pressure loss, and it is possible to reduce the intake resistance in the air flow meter 1. Therefore, the intake air can be smoothly drawn into the internal combustion engine, and the engine output can be improved.

【0031】また、上流側円筒部200の漸増部は、そ
の漸増割合が、中央部材の拡大部のそれよりも大きくな
るように形成されるため、出口開口440、450下流
側の吸気通路の面積の増加割合は、開口440、450
上流側のそれよりも大きい。したがって、出口開口44
0、450から流出する空気が吸気通路を流れる空気に
合流したときにも、この空気流量増加分によって、吸気
通路内の流れが絞られることが防止される。このため、
この流量増大によって流れが絞られ、圧力損失が増大す
ることを防止できる。したがって、内燃機関へ空気をス
ムーズに吸入させることが可能となり、機関出力を向上
させることができる。
Further, the gradually increasing portion of the upstream side cylindrical portion 200 is formed so that the gradually increasing rate thereof is larger than that of the enlarged portion of the central member, so that the area of the intake passage on the downstream side of the outlet openings 440, 450 is increased. The rate of increase of
It is larger than that on the upstream side. Therefore, the outlet opening 44
Even when the air flowing out from 0, 450 merges with the air flowing in the intake passage, the increase in the air flow rate prevents the flow in the intake passage from being throttled. For this reason,
It is possible to prevent the flow from being narrowed due to the increase in the flow rate and the pressure loss from increasing. Therefore, air can be smoothly drawn into the internal combustion engine, and the engine output can be improved.

【0032】さらに、リブ120、130、140、1
50の下流側にリブ320、330、340、350
が、下流ハウジング360と下流円筒部300との間に
形成されている。このリブは、直管部310の変形を防
止するように作用する。すなわち、このリブは、下流側
円筒部300の直管部310に吸気ダクトを介してベル
トが締めつけられる際に、直管部310の変形を防止す
る。また、高温時に直管部310が、ベルトの締めつけ
力によって変形し、吸気ダクトと下流側円筒部300と
の間に隙間ができ、この隙間から空気が流入し、これに
より、エンジン内へ余分な空気が吸入され、空燃比が薄
くなりエンジンの出力を低下させることを防止できる。
Further, the ribs 120, 130, 140, 1
Ribs 320, 330, 340, 350 downstream of 50
Are formed between the downstream housing 360 and the downstream cylindrical portion 300. The rib acts to prevent the straight pipe portion 310 from being deformed. That is, the rib prevents the straight pipe portion 310 from being deformed when the belt is fastened to the straight pipe portion 310 of the downstream side cylindrical portion 300 via the intake duct. Further, when the temperature is high, the straight pipe portion 310 is deformed by the tightening force of the belt, and a gap is formed between the intake duct and the downstream side cylinder portion 300, and air flows in through this gap, which causes excess air into the engine. It is possible to prevent the reduction of the output of the engine due to the intake of air and the reduction of the air-fuel ratio.

【0033】次に本発明を適用した他の実施例を図4に
基づいて説明する。ここでは、図1に示した実施例との
相違点を説明する。この実施例でも上述の実施例と同様
に4本のリブが吸気通路の内側へ向けて形成されてお
り、吸気通路の中央部に中央部材を支持している。そし
て、分岐通路の出口開口はリブ121、131、14
1、151(121、131は図示なし)の間に開設さ
れている。さらに、このリブ121、131、141、
151の下流側端部には、リブ321、331、34
1、351(321、331は図示なし)が形成されて
いる。この実施例では、中央ハウジング161は円筒部
162とこの円筒部162より小径の壁部164とから
なり、壁部164はリブ121、131、141、15
1により支持されている。このため、円筒部162と壁
部164との間には4個の細い円弧状の通路が形成され
る。図4には、4個の通路のうちのふたつ166と16
8とが図示されている。そしてこれらの通路がそのまま
出口開口441、451に連なっている。
Next, another embodiment to which the present invention is applied will be described with reference to FIG. Here, differences from the embodiment shown in FIG. 1 will be described. Also in this embodiment, four ribs are formed toward the inside of the intake passage, as in the above-described embodiments, and the central member is supported at the center of the intake passage. Then, the outlet openings of the branch passages are ribs 121, 131, 14
1, 151 (121 and 131 are not shown). Furthermore, the ribs 121, 131, 141,
Ribs 321, 331, 34 are provided at the downstream end of 151.
1, 351 (321 and 331 are not shown) are formed. In this embodiment, the central housing 161 comprises a cylindrical portion 162 and a wall portion 164 having a diameter smaller than that of the cylindrical portion 162, and the wall portion 164 has ribs 121, 131, 141 and 15 respectively.
Supported by 1. Therefore, four thin arc-shaped passages are formed between the cylindrical portion 162 and the wall portion 164. In FIG. 4, two of the four passages 166 and 16 are shown.
8 are shown. Then, these passages are directly connected to the outlet openings 441 and 451.

【0034】さらに円筒部162の上流側には入口開口
411が形成された上流ハウジング401が固定され、
円筒部162の内側には、円板の中央に管路を形成した
金属製の計測管部材431が固定される。そして、入口
開口411と計測管部材431との間には分岐管部材4
21が設けられ、入口開口411と計測管部材431の
管路とを接続している。
Further, an upstream housing 401 having an inlet opening 411 is fixed on the upstream side of the cylindrical portion 162,
Inside the cylindrical portion 162, a metal measuring pipe member 431 having a pipe formed in the center of the disc is fixed. The branch pipe member 4 is provided between the inlet opening 411 and the measurement pipe member 431.
21 is provided to connect the inlet opening 411 and the conduit of the measuring pipe member 431.

【0035】従ってこの実施例では、吸気通路内の空気
の一部は入口開口411から分岐通路内に導入され、分
岐管部材421、計測管部材431を通り、壁部164
に衝突して径方向に流れの方向を変え、通路166、1
68を通って出口開口441、451へ流れる。しか
も、図中一点鎖線Cで示す位置には、この空気流量計2
の吸気通路の中で最も通路断面積の狭い絞り部Cが形成
されており、図中一点鎖線Dで示す位置には、絞り部C
の次に通路断面積が狭い絞り部Dが形成されている。こ
のため、上流側開口3から流入した空気流は最も狭い絞
り部Cで周方向に渡ってほぼ均等な流れに整流され、次
に狭い絞り部Dへ流れる。そして、この絞り部Dにおい
て流速の増加により負圧が生じ、出口開口441、45
1から分岐通路内の空気が吸いだされる。
Therefore, in this embodiment, a part of the air in the intake passage is introduced into the branch passage from the inlet opening 411, passes through the branch pipe member 421 and the measuring pipe member 431, and passes through the wall portion 164.
Colliding with and changing the flow direction in the radial direction, the passages 166, 1
Through 68 to outlet openings 441, 451. Moreover, at the position indicated by the one-dot chain line C in the figure, the air flow meter 2
Of the intake passage, the narrowed portion C having the smallest passage cross-sectional area is formed, and the narrowed portion C is formed at the position indicated by the alternate long and short dash line D in the figure.
Next to this, a narrowed portion D having a narrow passage cross-sectional area is formed. Therefore, the airflow flowing from the upstream opening 3 is rectified by the narrowest narrowed portion C in the circumferential direction into a substantially uniform flow, and then flows to the narrowed narrowed portion D. Then, a negative pressure is generated in the throttle portion D due to the increase of the flow velocity, and the outlet openings 441 and 45 are formed.
The air in the branch passage is sucked out from 1.

【0036】このため、この実施例によると、出口開口
441、451を絞り部Cより下流に設けているため、
出口開口441、451の近傍における流れの偏りを少
なくし、分岐通路内の流量を吸気通路全体の流量に安定
して対応させることができる。また、出口開口441、
451をリブを除くほぼ全周にわたって開設しているか
ら、吸気通路全体の流量に応じた平均的な負圧を出口開
口に作用させることができ、分岐通路から流出する流量
を吸気通路全体の流量に対して所望の比率に維持するこ
とができる。また、この実施例では、出口開口441、
451をリブとリブとの間に開設しているから、リブよ
り下流に生じる乱流の影響を受けることなく分岐通路か
ら空気を流出させることができる。このため、分岐通路
内に乱流を生じたり、分岐通路内の流量が吸気通路全体
の流量に対応しなくなるといった不具合が防止され、正
確な流量計測が可能になる。
Therefore, according to this embodiment, since the outlet openings 441 and 451 are provided downstream of the throttle portion C,
The flow deviation in the vicinity of the outlet openings 441 and 451 can be reduced, and the flow rate in the branch passage can stably correspond to the flow rate in the entire intake passage. Also, the outlet opening 441,
Since 451 is opened over almost the entire circumference except for the ribs, an average negative pressure according to the flow rate of the entire intake passage can be made to act on the outlet opening, and the flow rate flowing out of the branch passage can be the flow rate of the entire intake passage. Can be maintained at a desired ratio. Further, in this embodiment, the outlet opening 441,
Since 451 is provided between the ribs, the air can flow out from the branch passage without being affected by the turbulent flow generated downstream of the ribs. Therefore, problems such as turbulent flow occurring in the branch passage and the flow rate in the branch passage not corresponding to the flow rate in the entire intake passage are prevented, and accurate flow rate measurement is possible.

【0037】また、この実施例の場合でも、リブ12
1、131、141、151の下流側に形成されるリブ
321、331、341、351によって、下流側円筒
部300の変形が防止され、吸気ダクトに接続され、ベ
ルトで締めつけられる際の変形が防止できる。
Also in the case of this embodiment, the rib 12
The ribs 321, 331, 341, and 351 formed on the downstream side of 1, 131, 141, and 151 prevent deformation of the downstream side cylindrical portion 300, and prevent deformation when connected to the intake duct and tightened with a belt. it can.

【0038】なお、図1の実施例では分岐管の内側と外
側とを分岐通路としているため、図4の実施例に比べて
長い分岐通路をコンパクトに構成することができ、吸入
空気量変化時のセンサ応答性、あるいはエンジンの吸気
脈動、逆流に対する応答性の調節を通路形状により行う
ことができる。
In the embodiment of FIG. 1, the inside and outside of the branch pipe are used as branch passages, so that a longer branch passage can be made compact as compared with the embodiment of FIG. 4, and when the intake air amount changes. The sensor responsiveness, or the responsiveness to the engine intake pulsation and backflow can be adjusted by the passage shape.

【0039】また、図4のようにリブの間に出口開口を
開設するものでは、出口開口より上流側にあるリブの流
れ方向の長さを短くすることでリブの上流側端面とリブ
表面とで発生する乱流による影響を抑制することが期待
できる。このため、図4の実施例では、リブの流れ方向
に沿った長さを図1の実施例に比べて短くしている。ま
た、図1の実施例では出口開口440、450を図4の
実施例の出口開口441、451に比べて上流側に開設
している。このため、図1の実施例ではリブを図4の実
施例に比べて上流側まで形成することができ高い強度を
得ることができる。
Further, in the case where the outlet opening is formed between the ribs as shown in FIG. 4, the length of the rib on the upstream side of the outlet opening in the flow direction is shortened so that the upstream end face of the rib and the rib surface are separated from each other. It can be expected to suppress the influence of turbulent flow generated at. Therefore, in the embodiment of FIG. 4, the length of the rib along the flow direction is shorter than that of the embodiment of FIG. Further, in the embodiment of FIG. 1, the outlet openings 440 and 450 are opened on the upstream side of the outlet openings 441 and 451 of the embodiment of FIG. Therefore, in the embodiment of FIG. 1, the ribs can be formed up to the upstream side as compared with the embodiment of FIG. 4, and high strength can be obtained.

【0040】また、以上に述べた実施例では、吸気通路
の一部を構成する空気流量計のハウジングを吸気通路の
流れ方向に複数の部品に分割し、組み立てるように構成
した。しかも、センサ部は分岐通路に対して下流側の壁
面から軸方向に挿入するようにした。このため、空気流
量計の組立にあたっては、外形がほぼ円筒状の各部品を
軸方向に組付けてゆくだけでよく、組立作業を容易にで
きる。
Further, in the above-mentioned embodiments, the housing of the air flow meter constituting a part of the intake passage is divided into a plurality of parts in the flow direction of the intake passage and assembled. Moreover, the sensor portion is inserted axially from the wall surface on the downstream side of the branch passage. Therefore, when assembling the air flow meter, it suffices to assemble the parts each having a substantially cylindrical outer shape in the axial direction, and the assembling work can be facilitated.

【0041】[0041]

【発明の効果】以上述べた本発明の構成および作用によ
ると、分岐通路の出口が支持部材の下流側端部より上流
側に開設されるため、この支持部材により生じる乱流の
影響を受けることなく分岐通路から主通路へ流体を流出
させることができる。このため、分岐通路の流体の流れ
に乱れを生じたり、流量の変動を生じたりすることが防
止され、正確な流量計測が可能になる。
According to the above-described structure and operation of the present invention, since the outlet of the branch passage is opened on the upstream side of the downstream end of the support member, it is affected by the turbulent flow generated by this support member. Instead, the fluid can flow out from the branch passage to the main passage. Therefore, it is possible to prevent turbulence in the flow of the fluid in the branch passage and fluctuation in the flow rate, and it is possible to accurately measure the flow rate.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を適用した一実施例の断面図。FIG. 1 is a sectional view of an embodiment to which the present invention is applied.

【図2】図1のA矢視図。FIG. 2 is a view on arrow A in FIG.

【図3】図2のIII−III断面図。3 is a sectional view taken along line III-III in FIG.

【図4】本発明を適用した他の実施例の断面図。FIG. 4 is a sectional view of another embodiment to which the present invention is applied.

【符号の説明】[Explanation of symbols]

1 空気流量計 3 上流側開口 5 下流側開口 100 中央円筒部 160 中央ハウジング 140 リブ 150 リブ 200 上流側円筒部 300 下流側円筒部 340 リブ 350 リブ 360 下流ハウジング 400 上流ハウジング 410 入口開口 420 分岐管 430 計測管 440 出口開口 450 出口開口 500 センサ部 1 Air Flowmeter 3 Upstream Side Opening 5 Downstream Side Opening 100 Central Cylindrical Section 160 Central Housing 140 Rib 150 Rib 200 Upstream Cylindrical Section 300 Downstream Cylindrical Section 340 Rib 350 Rib 360 Downstream Housing 400 Upstream Housing 410 Inlet Opening 420 Branch Pipe 430 Measuring tube 440 Outlet opening 450 Outlet opening 500 Sensor section

フロントページの続き (72)発明者 加藤 常光 愛知県刈谷市昭和町1丁目1番地 日本電 装株式会社内 (72)発明者 伴 隆央 愛知県刈谷市昭和町1丁目1番地 日本電 装株式会社内 (72)発明者 梅津 邦広 愛知県刈谷市昭和町1丁目1番地 日本電 装株式会社内Front page continuation (72) Inventor Tsunemitsu Kato 1-1, Showa-cho, Kariya, Aichi Prefecture, Nihon Denso Co., Ltd. (72) Inventor Takao Ban, 1-1, Showa-cho, Kariya, Aichi Prefecture, Nihondenso Co., Ltd. (72) Inventor Kunihiro Umezu 1-1-1, Showa-cho, Kariya city, Aichi prefecture, Nihon Denso Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 流体が流通する主通路と、 前記主通路のほぼ中央部に設けられる中央部材と、 前記主通路の壁面と前記中央部材とを連結し、前記中央
部材を前記主通路のほぼ中央に支持する支持部材と、 前記中央部材に開口し前記主通路を流れる流体の一部を
導入する導入口と、 前記中央部材に形成され前記導入口から導入された流体
を流す分岐通路と、 前記分岐通路内に設けられ、前記分岐通路内の流量を計
測するセンサと、 前記支持部材の下流側端部より上流側に位置する前記中
央部材の所定部位に開口し、前記分岐通路を流れた流体
を再び前記主通路に戻す出口とを備えることを特徴とす
る流量計。
1. A main passage through which a fluid flows, a central member provided at a substantially central portion of the main passage, a wall surface of the main passage and the central member are connected, and the central member is formed substantially in the main passage. A support member that is supported in the center, an inlet opening into the central member for introducing a part of the fluid flowing through the main passage, and a branch passage formed in the central member for flowing the fluid introduced from the inlet, A sensor provided in the branch passage for measuring the flow rate in the branch passage and an opening at a predetermined portion of the central member located upstream of the downstream end of the support member and flowing through the branch passage. An outlet for returning fluid to the main passage again.
JP4270341A 1991-12-19 1992-10-08 Flowmeter Expired - Lifetime JP3070642B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP4270341A JP3070642B2 (en) 1992-05-08 1992-10-08 Flowmeter
EP92121479A EP0547595B1 (en) 1991-12-19 1992-12-17 Flow meter
DE69231960T DE69231960T2 (en) 1991-12-19 1992-12-17 Flow meter
KR1019930020826A KR100255475B1 (en) 1992-10-08 1993-10-08 Flowmeter
US08/319,030 US5581026A (en) 1991-12-19 1994-10-06 Flow meter
US08/429,471 US5571964A (en) 1991-12-19 1995-04-27 Flow meter

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP4-116306 1992-05-08
JP11630692 1992-05-08
JP4270341A JP3070642B2 (en) 1992-05-08 1992-10-08 Flowmeter

Publications (2)

Publication Number Publication Date
JPH0618302A true JPH0618302A (en) 1994-01-25
JP3070642B2 JP3070642B2 (en) 2000-07-31

Family

ID=26454668

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4270341A Expired - Lifetime JP3070642B2 (en) 1991-12-19 1992-10-08 Flowmeter

Country Status (1)

Country Link
JP (1) JP3070642B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5672822A (en) * 1994-06-23 1997-09-30 Nippondenso Co., Ltd. Thermal flow meter with less turbulence in fluid flow

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5672822A (en) * 1994-06-23 1997-09-30 Nippondenso Co., Ltd. Thermal flow meter with less turbulence in fluid flow
US5894088A (en) * 1994-06-23 1999-04-13 Nippondenso Co., Ltd. Thermal flow meter with less turbulence in fluid flow

Also Published As

Publication number Publication date
JP3070642B2 (en) 2000-07-31

Similar Documents

Publication Publication Date Title
US5581026A (en) Flow meter
US5672822A (en) Thermal flow meter with less turbulence in fluid flow
KR100321323B1 (en) Air flow measuring device
US6578414B2 (en) Split-flow-type flowmeter
JPS6148721A (en) Air-current sensor
KR19980024244A (en) Heating resistance air flow measuring device and intake pipe component and fuel control system of internal combustion engine
US4282751A (en) Fluid flowmeter
JP3240782B2 (en) Hot wire type air flow meter
US6422070B2 (en) Device for measuring the mass of a flowing medium
KR100255475B1 (en) Flowmeter
JPH0618302A (en) Flowmeter
JP3070641B2 (en) Flowmeter
EP0859145B1 (en) Air cleaner for internal combustion engine
JP3070710B2 (en) Flowmeter
JPH0618301A (en) Flowmeter
JPH07139414A (en) Flowmeter
JP3106449B2 (en) Flowmeter
US5544527A (en) Flow meter having a main passage and a branch passage partially partitioned into plural regions
JP3014888B2 (en) Flowmeter
JPH09287991A (en) Airflow measuring device
JP2981058B2 (en) Flowmeter
JPH11229979A (en) Air cleaner
JP2002310756A (en) Air-flow-rate measuring device
JP2003042823A (en) Air flow rate-measuring instrument and air cleaner for composing the same
JPH09145439A (en) Thermal flowmeter

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000426

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090526

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100526

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110526

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120526

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120526

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130526

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130526

Year of fee payment: 13