JPH06182821A - Gear made of thermoplastic resin - Google Patents

Gear made of thermoplastic resin

Info

Publication number
JPH06182821A
JPH06182821A JP34010292A JP34010292A JPH06182821A JP H06182821 A JPH06182821 A JP H06182821A JP 34010292 A JP34010292 A JP 34010292A JP 34010292 A JP34010292 A JP 34010292A JP H06182821 A JPH06182821 A JP H06182821A
Authority
JP
Japan
Prior art keywords
gas
tooth
gear
resin
thermoplastic resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP34010292A
Other languages
Japanese (ja)
Other versions
JP2714338B2 (en
Inventor
Kimihiro Kubo
公弘 久保
Masahiko Sato
政彦 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP4340102A priority Critical patent/JP2714338B2/en
Publication of JPH06182821A publication Critical patent/JPH06182821A/en
Application granted granted Critical
Publication of JP2714338B2 publication Critical patent/JP2714338B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/1703Introducing an auxiliary fluid into the mould
    • B29C45/1704Introducing an auxiliary fluid into the mould the fluid being introduced into the interior of the injected material which is still in a molten state, e.g. for producing hollow articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/1703Introducing an auxiliary fluid into the mould
    • B29C45/1704Introducing an auxiliary fluid into the mould the fluid being introduced into the interior of the injected material which is still in a molten state, e.g. for producing hollow articles
    • B29C2045/1723Introducing an auxiliary fluid into the mould the fluid being introduced into the interior of the injected material which is still in a molten state, e.g. for producing hollow articles using fibre reinforcements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2015/00Gear wheels or similar articles with grooves or projections, e.g. control knobs
    • B29L2015/003Gears

Abstract

PURPOSE:To obtain a gear excellent in dimensional accuracy within a short period by providing a hollow structure to the entire peripheries or a part of the root parts of the teeth of a gear made of a thermoplastic resin. CONSTITUTION:Hollow parts 6 are provided to the entire peripheries or a part of the root parts of teeth by introducing gas into the root parts 3 of teeth by a gas assist molding method. The gas assist molding method is a molding method injecting a thermoplastic resin into a mold cavity in injection molding and subsequently injecting gas in the resin to obtain a hollow molded product. The gas assist molding method is performed by the combination of an injection molding machine and a gas injection device. The root parts 3 of the teeth are parts having the same thickness as the tooth width present between the web part 4 usually applied in a gear made of a thermoplastic resin and a tooth bottom circle 2. By this constitution, the shape error due to the shrinkage of tooth parts is suppressed and the gear having excellent accuracy is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はガスアシスト成形法によ
る歯車に関するものであり、さらに詳しくは寸法精度に
優れる熱可塑性樹脂製の歯車に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gear by a gas assist molding method, and more particularly to a gear made of a thermoplastic resin having excellent dimensional accuracy.

【0002】[0002]

【従来の技術】歯車は自動車、一般機械、精密機械、電
気・電子等の各分野に機構部品として幅広く用いられて
いる。そして、成形性が良く、軽量で、しかも錆びない
という理由から熱可塑性樹脂による歯車も近年ますます
その利用が拡大している。さらには、最近の各分野のハ
イテク化にともない同部品に対する寸法精度の要求も高
度化してきており、これに応えることが技術的な課題と
なっている。
Gears are widely used as mechanical parts in various fields such as automobiles, general machines, precision machines, and electric / electronic fields. Further, in recent years, the use of gears made of thermoplastic resin has been expanding more and more because of its good moldability, light weight, and rust-free property. Further, with the recent increase in technology in each field, the demand for dimensional accuracy of the parts has become more sophisticated, and it is a technical subject to meet this demand.

【0003】しかし、熱可塑性樹脂は射出成形を行うと
き、金型内で溶融状態から固化する際に大きく収縮して
しまうため、金型の寸法通りに成形品が得られず、精度
良く製品を得ることは非常に難しい。このため、従来、
成形条件、樹脂特性、金型デザイン等から様々な改良が
行われて来ている。例えば、金型デザインにおいては成
形収縮を見込んだ設計が行われており、主に以下の3つ
の方法を用いて金型の設計が行われている。
[0003] However, when injection molding is performed, the thermoplastic resin largely contracts when it is solidified from the molten state in the mold, so that a molded product cannot be obtained according to the size of the mold, and the product is manufactured accurately. Very hard to get. Therefore, conventionally,
Various improvements have been made in terms of molding conditions, resin characteristics, mold design, etc. For example, a mold design is designed in consideration of mold shrinkage, and the mold is designed mainly using the following three methods.

【0004】(1)キャビティーモジュールは製品と同
一にし、圧力角及び転位係数で成形収縮を見込む。 (2)キャビティー圧力角は製品と同一にし、モジュー
ルで成形収縮を見込む。 (3)モジュールと圧力角の両方で成形収縮を見込む。
(1) The cavity module is made the same as the product, and molding shrinkage is expected by the pressure angle and the dislocation coefficient. (2) The cavity pressure angle is the same as the product, and the module is expected to shrink. (3) Expect molding shrinkage in both module and pressure angle.

【0005】このような金型設計により、ある程度の精
度が得られるようになった。
With such a mold design, it has become possible to obtain a certain degree of accuracy.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上記
(1)、(2)及び(3)の方法はいずれも収縮による
インボリュート歯形そのもののずれ、歯スジ方向の収縮
は考慮しておらず、より高度な寸法精度が必要な場合
は、金型を試行錯誤によって修正していくことが必要で
あった。このため、開発、製造までに多くの労力と時間
を必要とするので、短期間に精度良い歯車を得ることは
非常に困難であった。
However, none of the above methods (1), (2) and (3) takes into consideration the deviation of the involute tooth profile itself due to contraction and the contraction in the tooth streak direction, and it is more advanced. It was necessary to correct the mold by trial and error when high dimensional accuracy was required. For this reason, a lot of labor and time are required for development and manufacturing, so that it is very difficult to obtain an accurate gear in a short period of time.

【0007】以上のように、通常の射出成形法では熱可
塑性樹脂が固化するときの収縮が大きいために歯車の誤
差が大きくなるという問題点があった。
As described above, the conventional injection molding method has a problem that the error of the gear becomes large because the shrinkage of the thermoplastic resin when it solidifies is large.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するため
に本発明者等が鋭意研究を重ねた結果、歯の付け根部分
に中空構造を持つ熱可塑性樹脂製歯車が上記の問題点を
解決することを見出し本発明に到達した。つまり、ガス
アシスト成形法を用いて歯のつけ根部分にガスを導入す
ることにより、歯部の収縮による形状誤差を抑え、精度
の優れた歯車が得られることを見いだした。
As a result of intensive studies conducted by the present inventors to solve the above problems, a thermoplastic resin gear having a hollow structure at the root of the tooth solves the above problems. The inventors have found that and reached the present invention. In other words, it was found that by introducing gas into the root of the tooth by using the gas assisted molding method, it is possible to suppress the shape error due to the contraction of the tooth and to obtain a highly accurate gear.

【0009】すなわち、本発明は、歯の付け根部分3の
全周もしくは一部に中空部6を持つ熱可塑性樹脂製歯車
である。以下、本発明を説明する。本発明でいうガスア
シスト成形法とは、射出成形において熱可塑性樹脂を金
型キャビティー中に射出後、ガス体を樹脂中に注入する
ことにより中空成形品を得る成形法である。
That is, the present invention is a thermoplastic resin gear having a hollow portion 6 at the entire circumference or a part of the tooth root portion 3. The present invention will be described below. The gas-assisted molding method in the present invention is a molding method for obtaining a hollow molded article by injecting a thermoplastic resin into a mold cavity and then injecting a gas body into the resin in injection molding.

【0010】本発明のガスアシスト成形法は、通常の射
出成形機とガス注入装置の組み合わせによって行われ
る。ガス注入装置は、樹脂の射出後に配管を通して樹脂
中にガス体を注入し、設定時間このガス圧を保持する装
置である。これには注入するガス体を予め高圧に圧縮
し、アキュームレーターに蓄え、ガス注入時に配管を通
して高圧ガスを導入する方式や一定量のガス体をポンプ
により連続で送り込み、加圧していく方式等が考えられ
るが、射出後の樹脂中にガス体を送り込めれば如何なる
方式も可能である。このとき、ガスの注入口はシリンダ
ーのノズル、金型のスプルー、ランナー、製品部に直接
等の方法が考えられるが、高圧のガス体を樹脂中に注入
できればいずれの方法でも実施可能である。
The gas-assisted molding method of the present invention is carried out by a combination of an ordinary injection molding machine and a gas injection device. The gas injection device is a device that injects a gas body into the resin through a pipe after injecting the resin and maintains this gas pressure for a set time. For this, the gas body to be injected is compressed to a high pressure in advance and stored in an accumulator, a method of introducing high pressure gas through a pipe at the time of gas injection, a method of continuously feeding a certain amount of gas body with a pump, and pressurizing it. Though conceivable, any method is possible as long as a gas body is sent into the resin after injection. At this time, the method of introducing the gas into the nozzle of the cylinder, the sprue of the mold, the runner, and the product portion can be considered directly, but any method can be used as long as a high-pressure gas can be injected into the resin.

【0011】本発明に用いられる熱可塑性樹脂としては
ポリエチレン、ポリプロピレン、ポリスチレン、ABS
樹脂、ポリ塩化ビニル、ポリアミド、ポリアセタール、
ポリカーボネート、変性ポリフェニレンエーテル、ポリ
エチレンテレフテレート、ポリブチレンテレフタレー
ト、ポリフェニレンスルフィド、ポリイミド、ポリアミ
ドイミド、ポリエーテルイミド、ポリアリレート、ポリ
サルフォン、ポリエーテルサルホン、ポリエーテルエー
テルケトン、液晶ポリマー、ポリテトラフルオロエチレ
ン、熱可塑性エラストマー等が挙げられるが、通常の射
出成形が可能であれば、いかなる熱可塑性樹脂も用いる
ことができる。特に、ポリアセタール樹脂(以下POM
と略す)、及びポリアミド樹脂(以下PAと略す)は耐
熱性が高く、機械的物性にも優れ、さらには摺動特性に
も優れるため歯車用の樹脂として多く用いられており、
本発明においても好適に用いられる。
The thermoplastic resin used in the present invention includes polyethylene, polypropylene, polystyrene and ABS.
Resin, polyvinyl chloride, polyamide, polyacetal,
Polycarbonate, modified polyphenylene ether, polyethylene terephthalate, polybutylene terephthalate, polyphenylene sulfide, polyimide, polyamideimide, polyetherimide, polyarylate, polysulfone, polyethersulfone, polyetheretherketone, liquid crystal polymer, polytetrafluoroethylene, Examples include thermoplastic elastomers, but any thermoplastic resin can be used as long as ordinary injection molding is possible. In particular, polyacetal resin (hereinafter referred to as POM
And a polyamide resin (hereinafter abbreviated as PA) have high heat resistance, excellent mechanical properties, and excellent sliding characteristics, and thus are often used as resins for gears.
It is also preferably used in the present invention.

【0012】本発明では歯の付け根部分に中空部がある
ので、耐熱性、機械的強度等をアップする目的で、必要
に応じて無機及び、または有機の充填材を熱可塑性樹脂
に配合することが出来る。好適な充填材としては、ガラ
ス繊維、炭素繊維、金属繊維、アラミド繊維、チタン酸
カリウム、アスベスト、炭化ケイ素、セラミック、窒化
ケイ素、硫酸バリウム、硫酸カルシウム、カオリン、ク
レー、パイロフィライト、ベントナイト、セリサイト、
ゼオライト、マイカ、雲母、ネフェリンシナイト、タル
ク、アタルパルジャイト、ウオラストナイト、PMF、
フェライト、ケイ酸カルシウム、炭酸カルシウム、炭酸
マグネシウム、ドロマイト、酸化亜鉛、酸化チタン、酸
化マグネシウム、酸化鉄、二硫化モリブデン、黒鉛、石
こう、ガラスビーズ、ガラスパウダー、ガラスバルー
ン、石英、石英ガラスなどの強化充填材を挙げることが
出来き、これらは中空であってもよい。また、これらの
強化充填材は2種以上を併用することが可能であり、必
要によりシラン系、チタン系などのカップリング剤で予
備処理して使用する事ができる。
In the present invention, since the root of the tooth has a hollow portion, an inorganic and / or organic filler may be added to the thermoplastic resin, if necessary, for the purpose of improving heat resistance, mechanical strength and the like. Can be done. Suitable fillers include glass fibers, carbon fibers, metal fibers, aramid fibers, potassium titanate, asbestos, silicon carbide, ceramics, silicon nitride, barium sulfate, calcium sulfate, kaolin, clay, pyrophyllite, bentonite, and seri. site,
Zeolite, mica, mica, nepheline sinite, talc, attarpulgite, wollastonite, PMF,
Reinforcement of ferrite, calcium silicate, calcium carbonate, magnesium carbonate, dolomite, zinc oxide, titanium oxide, magnesium oxide, iron oxide, molybdenum disulfide, graphite, gypsum, glass beads, glass powder, glass balloon, quartz, quartz glass, etc. Fillers may be mentioned, which may be hollow. Further, two or more kinds of these reinforcing fillers can be used in combination, and if necessary, they can be pretreated with a coupling agent such as a silane type or titanium type and used.

【0013】本発明で用いるガス体としては窒素やヘリ
ウム、ネオン、アルゴンなどの不活性ガスが挙げられる
が、樹脂に対して不活性であればいかなるガス体も用い
ることができる。また、これらのガス体を用いるときは
通常不純物が含まれるが、あまり不純物成分が多いと成
形時に樹脂の分解やヤケを生じる場合があるので好まし
くない。経済性を考慮すると工業的には窒素ガスがより
好適に使用される。
Examples of the gas body used in the present invention include inert gases such as nitrogen, helium, neon and argon, but any gas body can be used as long as it is inert to the resin. Further, when these gas bodies are used, impurities are usually contained, but if the amount of impurities is too large, the resin may be decomposed or burned during molding, which is not preferable. Nitrogen gas is more preferably used industrially in consideration of economy.

【0014】本発明における歯の付け根部分3とは、通
常の熱可塑性樹脂製の歯車において施されるウエッブ部
4(肉抜き部)と歯底円2との間にある歯幅と同じ厚み
の部分を言う(図1〜2を参照)。そして、本発明では
この歯の付け根部分3の全周もしくは一部にガスを導き
中空部6を設け、樹脂の収縮を抑える。ガスアシスト成
形法では樹脂中にガス体が供給され樹脂の収縮を補い、
さらに樹脂を効果的に金型に密着させることが可能であ
るため寸法精度が良好になると予想される。通常の射出
成形法でも樹脂の収縮を保圧をかけることにより補うこ
とができるが、ゲートシール後はゲート部で樹脂が固化
しているので圧力が伝わらなくなる。しかし、ガスアシ
スト成形法ではゲートシール後もガス体によってキャビ
ティー内部に圧力がかかるため、良好な結果が得られる
と考えられる。また、単に任意の部分にガスを導入する
だけでは歯の誤差を少なくすることは困難である。
The root portion 3 of the tooth in the present invention has the same thickness as the tooth width between the web portion 4 (thinned portion) and the root circle 2 formed in a normal thermoplastic resin gear. Part (see FIGS. 1-2). Further, in the present invention, the gas is introduced to the entire circumference or a part of the root portion 3 of the tooth and the hollow portion 6 is provided to suppress the shrinkage of the resin. In the gas assist molding method, a gas body is supplied into the resin to compensate for the shrinkage of the resin,
Furthermore, since the resin can be effectively adhered to the mold, it is expected that the dimensional accuracy will be improved. Even with a normal injection molding method, the shrinkage of the resin can be compensated by applying a holding pressure, but since the resin is solidified at the gate portion after the gate sealing, the pressure cannot be transmitted. However, in the gas-assisted molding method, it is considered that good results can be obtained because pressure is applied to the inside of the cavity by the gas body even after the gate sealing. Further, it is difficult to reduce the tooth error by simply introducing the gas into an arbitrary part.

【0015】本発明では歯の付け根部分3といった歯5
に近い部分にガスを通すことにより、効果的に歯5を含
む歯部の収縮を抑えることができたと考えられる。この
ため、中空部6を歯の付け根部分3内に、可能な限り全
周に近い範囲に設けることが好ましい。本発明は収縮の
影響の大きい、広幅の歯車、モジュール2以上といった
大モジュールの歯車に特に有効である。
In the present invention, the tooth 5 such as the tooth root portion 3 is used.
It is conceivable that the contraction of the tooth portion including the tooth 5 could be effectively suppressed by passing the gas through the portion close to. Therefore, it is preferable to provide the hollow portion 6 in the root portion 3 of the tooth in a range as close to the entire circumference as possible. INDUSTRIAL APPLICABILITY The present invention is particularly effective for large-width gears having large influence of shrinkage, and large-module gears such as module 2 or more.

【0016】本発明による歯車は寸法精度が良好であ
り、機構部品として自動車、一般機械、精密機械、電気
・電子等の各分野に有用である。
The gear according to the present invention has good dimensional accuracy, and is useful as a mechanical component in various fields such as automobiles, general machines, precision machines, and electric / electronics.

【0017】[0017]

【実施例】以下に実施例を挙げて本発明を更に詳細に説
明するが、これは本発明を限定するものではない。
The present invention will be described in more detail with reference to the following examples, which should not be construed as limiting the present invention.

【0018】[0018]

【実施例1〜2】モジュール1、歯数60枚、歯先円直
径62mm、歯幅6mm、標準圧力角20゜、ウエッブ
厚み1.5mmのインボリュート歯車(平歯)の金型を
用いた。この金型による製品態様の断面図を図2の
(A)、(B)に示した。ゲートは1点で、歯の付け根
部分に設けた。
Examples 1 and 2 A module 1 having 60 teeth, a tooth tip diameter of 62 mm, a tooth width of 6 mm, a standard pressure angle of 20 °, and a web thickness of 1.5 mm was used as an involute gear (flat tooth) mold. 2A and 2B are cross-sectional views of the product form using this mold. There was only one gate, which was provided at the base of the tooth.

【0019】また、熱可塑性樹脂としてはポリアセター
ル樹脂、ポリアミド樹脂を用いて、金型温度はいずれも
80℃、シリンダーの設定温度は、それぞれ200℃、
290℃でガスアシスト成形を行った。さらに、樹脂の
計量値はショートショットとなる値を用いた。ガスアシ
スト成形法ではフルショットの計量値を用い樹脂の収縮
分のみガスを導入する方法も可能である。しかし、樹脂
製歯車は比較的小型の成形品であるため、全体の収縮体
積が小さく、フルショットの計量値を用いると注入した
ガス体がゲートを通過しない場合がある。このため今回
はショートショットの計量値を用いた。
Polyacetal resin and polyamide resin are used as the thermoplastic resin, the mold temperature is 80 ° C., the set temperature of the cylinder is 200 ° C., respectively.
Gas-assisted molding was performed at 290 ° C. In addition, the measured value of the resin was a value that gives a short shot. In the gas-assisted molding method, it is also possible to use a measured value of a full shot and introduce the gas only in the resin contraction amount. However, since the resin gear is a relatively small molded product, the entire shrinkage volume is small, and if a full shot measurement value is used, the injected gas body may not pass through the gate. For this reason, the short shot weights were used this time.

【0020】樹脂中に注入するガス体には窒素ガスを用
い、ガス注入口はシリンダーのノズル部に設けた。この
ときシリンダーへのガスの侵入(金型と反対方向への侵
入)を防止する目的でガス注入口のスクリュー側(ホッ
パー側)にシャットオフ弁を設けた。ガス注入装置に窒
素ガスを導入し、100kg/cm2 に昇圧してアキュ
ームレーターに蓄え、樹脂射出後に配管を通して樹脂中
に注入した。ガス体は、ノズルからスプルー、ランナー
を通って歯車のキャビティー中に導入された。このとき
の条件はガス圧入遅延時間(樹脂の射出後ガスを注入す
るまでの時間)を0.5秒、ガス圧入時間(ガス注入を
行う時間)を40秒、圧力保持時間(ガス注入を止めガ
ス系を閉じた状態に保持する時間とガス圧入時間とを加
えた時間)を50秒とした。型開きは圧力保持時間終了
から10秒後に行い、成形品を取り出した。
Nitrogen gas was used as the gas body to be injected into the resin, and the gas injection port was provided in the nozzle portion of the cylinder. At this time, a shut-off valve was provided on the screw side (hopper side) of the gas injection port for the purpose of preventing gas from entering the cylinder (in the direction opposite to the mold). Nitrogen gas was introduced into the gas injection device, the pressure was raised to 100 kg / cm 2 and stored in the accumulator, and after injection of the resin, it was injected into the resin through a pipe. The gas body was introduced from the nozzle through the sprue and runner into the cavity of the gear. The conditions at this time were: gas injection delay time (time from injection of resin to injection of gas) 0.5 seconds, gas injection time (time to inject gas) 40 seconds, pressure holding time (stop gas injection) The time of holding the gas system in the closed state and the time of adding the gas pressure) was set to 50 seconds. Mold opening was performed 10 seconds after the pressure holding time was completed, and the molded product was taken out.

【0021】上記方法により何れも中空構造をもつ成形
品が得られた。中空部の態様の1つを図1の(A)、
(B)に示した。得られた歯車の精度測定にはJIS歯
車精度規格(JIS B 1702)の歯形誤差、歯す
じ方向誤差を用いた。いずれの誤差も理想的なインボリ
ュート歯車からの寸法のずれであり、誤差の値が小さい
ほど正確に作動する歯車と言える。得られた結果を表1
に示した。
Molded articles having a hollow structure were obtained by the above methods. One of the embodiments of the hollow portion is shown in FIG.
It is shown in (B). For the accuracy measurement of the obtained gear, the tooth profile error and the tooth trace direction error of JIS gear accuracy standard (JIS B 1702) were used. Any error is a deviation in dimension from an ideal involute gear, and it can be said that the smaller the error value, the more accurately the gear operates. The results obtained are shown in Table 1.
It was shown to.

【0022】[0022]

【比較例1〜2】実施例1〜2の金型を用い、ガス体の
注入は行わず、樹脂射出、樹脂保圧、冷却といった通常
の射出成形を行った。シリンダー設定温度、金型温度等
は実施例1〜2と同じで、保圧は500kg/cm2
保圧時間は15秒、冷却時間は50秒とした。
[Comparative Examples 1 and 2] Using the molds of Examples 1 and 2, ordinary injection molding such as resin injection, resin pressure holding, and cooling was performed without injecting a gas. Cylinder set temperature, mold temperature, etc. are the same as those in Examples 1 and 2, the holding pressure is 500 kg / cm 2 ,
The pressure holding time was 15 seconds and the cooling time was 50 seconds.

【0023】得られた結果を表1に示した。The results obtained are shown in Table 1.

【0024】[0024]

【表1】 [Table 1]

【0025】[0025]

【発明の効果】表1に示すように本発明による歯車は樹
脂の収縮が抑えられ、より金型に近い形状を持つので、
インボリュート歯車として誤差が少ないことが分かる。
このように、本発明の歯車は誤差の少ない良好な寸法精
度をもつので、機構部品として正確に動き、産業上非常
に有用である。
As shown in Table 1, the gear according to the present invention has a shape closer to the mold because the resin shrinkage is suppressed.
It can be seen that the error is small as an involute gear.
As described above, since the gear of the present invention has good dimensional accuracy with little error, it accurately moves as a mechanical component and is very useful industrially.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1(A)は実施例1〜2によって得られた中
空成形された歯車の断面図の一つで、歯型を一部省略し
た図である。図1(B)は実施例1〜2によって得られ
た中空成形された歯車の歯幅方向の断面図の一つであ
る。
FIG. 1 (A) is one of the cross-sectional views of the hollow-molded gears obtained in Examples 1 and 2, in which a tooth mold is partially omitted. FIG. 1B is one of cross-sectional views in the tooth width direction of the hollow-molded gears obtained in Examples 1 and 2.

【図2】図2(A)は実施例で用いられた金型により得
られた歯車の断面図で、歯形を一部省略した図である。
図2(B)は実施例で用いられた金型により得られた歯
車の歯幅方向の断面図の一つである。
FIG. 2 (A) is a cross-sectional view of a gear obtained by a mold used in Examples, in which a tooth profile is partially omitted.
FIG. 2B is one of cross-sectional views in the tooth width direction of the gear obtained by the mold used in the example.

【符号の説明】[Explanation of symbols]

1 歯先円 2 歯底円 3 歯の付け根部分 4 ウエッブ部 5 歯 6 中空部 1 Tip circle 2 Bottom circle 3 Base of tooth 4 Web part 5 Tooth 6 Hollow part

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 歯の付け根部分3の全周もしくは一部に
中空部6を持つ熱可塑性樹脂製歯車。
1. A thermoplastic resin gear having a hollow portion 6 on the entire circumference or a part of the root portion 3 of the tooth.
JP4340102A 1992-12-21 1992-12-21 Gas assist molding of gears made of thermoplastic resin Expired - Fee Related JP2714338B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4340102A JP2714338B2 (en) 1992-12-21 1992-12-21 Gas assist molding of gears made of thermoplastic resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4340102A JP2714338B2 (en) 1992-12-21 1992-12-21 Gas assist molding of gears made of thermoplastic resin

Publications (2)

Publication Number Publication Date
JPH06182821A true JPH06182821A (en) 1994-07-05
JP2714338B2 JP2714338B2 (en) 1998-02-16

Family

ID=18333741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4340102A Expired - Fee Related JP2714338B2 (en) 1992-12-21 1992-12-21 Gas assist molding of gears made of thermoplastic resin

Country Status (1)

Country Link
JP (1) JP2714338B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2783743A1 (en) * 1998-09-25 2000-03-31 Rhodia Engineering Plastics Sa PROCESS FOR PRODUCING HOLLOW BODIES BY GAS INJECTION
FR2806344A1 (en) * 2000-03-17 2001-09-21 Rhodia Engineering Plastics Sa PROCESS FOR MANUFACTURING HOLLOW BODIES BY LIQUID INJECTION

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04296521A (en) * 1991-03-27 1992-10-20 Matsushita Electric Ind Co Ltd Resin-molded gear

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04296521A (en) * 1991-03-27 1992-10-20 Matsushita Electric Ind Co Ltd Resin-molded gear

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2783743A1 (en) * 1998-09-25 2000-03-31 Rhodia Engineering Plastics Sa PROCESS FOR PRODUCING HOLLOW BODIES BY GAS INJECTION
WO2000018558A1 (en) * 1998-09-25 2000-04-06 Rhodia Engineering Plastics Sa Method for making a hollow body by gas injection moulding
EP1733864A1 (en) * 1998-09-25 2006-12-20 Rhodia Engineering Plastics SA Moulding material composition for hollow products made by gas-assisted injection moulding
FR2806344A1 (en) * 2000-03-17 2001-09-21 Rhodia Engineering Plastics Sa PROCESS FOR MANUFACTURING HOLLOW BODIES BY LIQUID INJECTION
EP1136221A1 (en) * 2000-03-17 2001-09-26 Rhodia Engineering Plastics S.A. Method for producing hollow bodies by liquid injection moulding

Also Published As

Publication number Publication date
JP2714338B2 (en) 1998-02-16

Similar Documents

Publication Publication Date Title
US7883659B2 (en) Method for equalizing the orientation of fillers and/or distribution of fillers in injection moulded parts
JP3023703B2 (en) Hollow injection molding method of shaft-integrated rotary body and molded product thereof
JP3015971B2 (en) Resin-made shaft-integrated hollow mechanism component and injection molding method for manufacturing the same
JPH06182821A (en) Gear made of thermoplastic resin
JPH0791522A (en) Shaft-integrated gear made of thermoplastic resin
EP1733859B1 (en) Process and apparatus for manufacturing a connection and stress transmission element by overinjection, and connection and stress transmission element
JPH08108484A (en) Thermoplastic resin screw
JP3087010B2 (en) Cylindrical molded product made of thermoplastic resin
JP3054911B2 (en) Manufacturing method of hollow molded product with integrated metal insert
JPH07171910A (en) Stirring rod made of thermoplastic resin
JP3580623B2 (en) Flapper made of thermoplastic resin
JPH06272748A (en) Highly rigid gear made of thermoplastic resin
JPH10337744A (en) Manufacture of fiber reinforced thermoplastic resin molded product, and molded product
JP2989471B2 (en) Mechanical parts made of thermoplastic resin by hollow injection molding
JP3108314B2 (en) Thermoplastic resin gear, hollow injection molding method thereof and mold
JP3076737B2 (en) Hollow injection molding of thermoplastic resin
JP3004872B2 (en) Bearing parts made of thermoplastic resin
JP3108318B2 (en) Shaft-integrated gear made of thermoplastic resin, molding die and hollow injection molding method
JPH0771564A (en) Multistage gear made of resin and manufacture thereof
JPH1113766A (en) Bearing component made of thermoplastic resin
JP3076736B2 (en) Hollow injection molding of thermoplastic resin gears
JP2002248649A (en) Method for injection-molding insert-containing resin gear
JP2000199560A (en) Gear integrated rotary body, and mold therefor and molding method thereby
JPH07100961A (en) Shaft-integrated resin roller
JPH08132467A (en) Production of resin roller by hollow injection molding method

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19971021

LAPS Cancellation because of no payment of annual fees