JPH0618278A - Magnetic sensor - Google Patents

Magnetic sensor

Info

Publication number
JPH0618278A
JPH0618278A JP17137592A JP17137592A JPH0618278A JP H0618278 A JPH0618278 A JP H0618278A JP 17137592 A JP17137592 A JP 17137592A JP 17137592 A JP17137592 A JP 17137592A JP H0618278 A JPH0618278 A JP H0618278A
Authority
JP
Japan
Prior art keywords
magnetic
magnet
medium
yoke
resolution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17137592A
Other languages
Japanese (ja)
Inventor
Noboru Masuda
昇 増田
Tetsuo Osawa
哲夫 大澤
Kenji Tomaki
建治 戸蒔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP17137592A priority Critical patent/JPH0618278A/en
Publication of JPH0618278A publication Critical patent/JPH0618278A/en
Pending legal-status Critical Current

Links

Landscapes

  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

PURPOSE:To enhance the resolution of a magnetic sensor having a magnetoresistance element and to miniaturize the sensor. CONSTITUTION:A confronting yoke 20 is set above a magnet 10. The thickness of the confronting yoke 20 is equal to or slightly smaller than a value of the resolution. The yoke 20 has such magnetic anisotropy as to restrict the dispersion of the magnetic flux of the magnet 10. The deterioration of the resolution due to the distance L between a medium 16 and magnetoresistance elements MR1, MR2 is eliminated and at the same time, the magnet 10 becomes compact in size.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、磁気抵抗素子を用いて
媒体上の磁気パタンを読み取る磁気センサに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic sensor for reading a magnetic pattern on a medium using a magnetoresistive element.

【0002】[0002]

【従来の技術】従来から磁気抵抗素子を用いた磁気セン
サが知られている。磁気抵抗素子は磁束密度の変化に応
じて抵抗値が変化する素子であり、例えばInSb、I
nAs、GaAs等の半導体から形成される素子であ
る。図9には、一従来例に係り磁気抵抗素子を用いた磁
気センサの概略構成が示されている。
2. Description of the Related Art Conventionally, a magnetic sensor using a magnetoresistive element has been known. The magnetoresistive element is an element whose resistance value changes according to the change of the magnetic flux density, and for example, InSb, I
It is an element formed from a semiconductor such as nAs or GaAs. FIG. 9 shows a schematic configuration of a magnetic sensor using a magnetoresistive element according to a conventional example.

【0003】この従来例は、2個の磁気抵抗素子MR
1、MR2、マグネット10、ホルダ12及びケース1
4を備えている。磁気抵抗素子MR1及びMR2は、通
常は図示しない基板上に配置され、この基板上において
図10(a)に示されるような回路を構成するよう接続
される。また、磁気抵抗素子MR1及びMR2(実際に
はその基板)は、マグネット10とともにホルダ12に
よって保持される。ホルダ10には図示しない端子が埋
め込まれており、この端子により磁気抵抗素子MR1及
びMR2に直流電圧が印加され、又は出力電圧が取り出
される。
In this conventional example, two magnetoresistive elements MR are used.
1, MR2, magnet 10, holder 12 and case 1
It is equipped with 4. The magnetoresistive elements MR1 and MR2 are usually arranged on a substrate (not shown), and are connected to form a circuit as shown in FIG. 10 (a) on this substrate. Further, the magnetoresistive elements MR1 and MR2 (actually the substrate thereof) are held by the holder 12 together with the magnet 10. A terminal (not shown) is embedded in the holder 10, and a DC voltage is applied to the magnetoresistive elements MR1 and MR2 or an output voltage is taken out by the terminal.

【0004】この従来例の装置は、例えば紙幣上に形成
された微小磁性体や、紙葉状媒体上に形成された微小磁
性体等を検出する装置である。すなわち、図10(a)
に示されるように結線され両端に直流電圧Vinが印加
されている状態で、磁気パタンを有する媒体16が磁気
抵抗素子MR1及びMR2上方の空間を走行すると、図
10(b)に示されるような電圧Voutが磁気抵抗素
子MR1とMR2の接続点から出力される。
The conventional device is a device for detecting, for example, a minute magnetic substance formed on a bill or a minute magnetic substance formed on a paper-leaf medium. That is, FIG. 10 (a)
When the medium 16 having the magnetic pattern travels in the space above the magnetoresistive elements MR1 and MR2 in a state in which the medium is connected as shown in FIG. 2 and the DC voltage Vin is applied to both ends, as shown in FIG. The voltage Vout is output from the connection point between the magnetoresistive elements MR1 and MR2.

【0005】この電圧Voutは、磁気抵抗素子MR1
及びMR2によって定まる直流電位である中性電位を中
心に変化する電圧であり、この変化は磁気抵抗素子MR
1及びMR2の抵抗値変化により生じる。表面に磁性体
が形成された媒体16が磁気抵抗素子MR1及びMR2
上を走行すると、これにより磁束密度が変化し磁気抵抗
素子MR1及びMR2の抵抗値が変化する。従って、こ
の従来例の装置は、紙幣等のように磁気インクで印刷さ
れた磁性体を有する媒体16を、磁気抵抗素子MR1及
びMR2の抵抗値変化による電圧Voutの変化とし
て、検出することができる。マグネット10は、磁気パ
タンの検出にあたって磁気抵抗素子MR1及びMR2を
磁気バイアスする手段であり、これを用いることにより
十分な検出感度等を得ることができる。
This voltage Vout is the magnetoresistive element MR1.
And MR2, which is a voltage that changes around a neutral potential, which is a DC potential determined by MR2.
1 and MR2 caused by a change in resistance value. The medium 16 having a magnetic material formed on its surface is used as the magnetoresistive elements MR1 and MR2.
When the vehicle travels above, the magnetic flux density is changed, and the resistance values of the magnetoresistive elements MR1 and MR2 are changed. Therefore, this conventional apparatus can detect the medium 16 having a magnetic material printed with magnetic ink, such as a bill, as a change in the voltage Vout due to a change in the resistance value of the magnetoresistive elements MR1 and MR2. . The magnet 10 is means for magnetically biasing the magnetoresistive elements MR1 and MR2 in detecting a magnetic pattern, and by using this, sufficient detection sensitivity and the like can be obtained.

【0006】ところで、この装置の分解能は、磁気抵抗
素子MR1とMR2の間隔や、磁気抵抗素子MR1及び
MR2と媒体16の距離Lによって定まる。マグネット
10の磁束が発散していなければ、分解能は磁気抵抗素
子MR1とMR2の間隔となるが、実際にはマグネット
10による磁束は発散しており、分解能は磁気抵抗素子
MR1とMR2の間隔より低くなる。
The resolution of this device is determined by the distance between the magnetoresistive elements MR1 and MR2 and the distance L between the magnetoresistive elements MR1 and MR2 and the medium 16. If the magnetic flux of the magnet 10 is not divergent, the resolution is the distance between the magnetoresistive elements MR1 and MR2, but in reality the magnetic flux due to the magnet 10 is divergent, and the resolution is lower than the distance between the magnetoresistive elements MR1 and MR2. Become.

【0007】また、この装置の検出感度は、磁気抵抗素
子MR1及びMR2と媒体16の距離Lによって左右さ
れる。すなわち、距離Lが大きいと磁気抵抗素子MR1
及びMR2による磁性体の検出感度は低下し、距離Lが
一定でないと読取り信頼性が低下する。
The detection sensitivity of this device depends on the distance L between the magnetoresistive elements MR1 and MR2 and the medium 16. That is, when the distance L is large, the magnetoresistive element MR1
Also, the detection sensitivity of the magnetic substance by MR2 decreases, and the reading reliability decreases unless the distance L is constant.

【0008】従って、分解能及び検出感度を保ちかつ読
取り信頼性を確保するためには、磁気抵抗素子MR1及
びMR2と媒体16の距離Lを一定に保持する手段が必
要である。ケース14、具体的にはその上部の空隙は、
この手段として機能する。すなわち、ケース14の上部
は磁気抵抗素子MR1及びMR2の表面と一定間隔で配
置されており、媒体16をケース14の上部表面に沿っ
て走行させることにより、距離Lはほぼ一定となる。
Therefore, in order to maintain the resolution and detection sensitivity and ensure the reading reliability, a means for keeping the distance L between the magnetoresistive elements MR1 and MR2 and the medium 16 constant is necessary. The case 14, specifically the void above it,
It functions as this means. That is, the upper portion of the case 14 is arranged at a constant distance from the surfaces of the magnetoresistive elements MR1 and MR2, and by causing the medium 16 to run along the upper surface of the case 14, the distance L becomes substantially constant.

【0009】[0009]

【発明が解決しようとする課題】しかしながら、このよ
うな構成では分解能の向上が困難であり、また装置構成
の小型化も困難である。すなわち、分解能は距離Lによ
って制限されており、できるだけ発散の影響を受けない
ようマグネットを大きくする必要があるため装置構成が
大きくなっている。さらに、分解能や検出感度のばらつ
きも生じやすい。本発明は、このような問題点を解決す
ることを課題としてなされたものであり、小型かつ高分
解能で特性のばらつきが生じにくい磁気センサを提供す
ることを目的とする。
However, it is difficult to improve the resolution with such a structure, and it is also difficult to downsize the device structure. That is, the resolution is limited by the distance L, and it is necessary to make the magnet large so as not to be affected by divergence as much as possible, so that the device configuration is large. Furthermore, variations in resolution and detection sensitivity are likely to occur. The present invention has been made to solve the above problems, and an object of the present invention is to provide a magnetic sensor which is small in size, has high resolution, and is less likely to cause characteristic variations.

【0010】[0010]

【課題を解決するための手段】このような目的を達成す
るために、本発明は、媒体の走行空間の上方に配置さ
れ、当該空間におけるマグネットの磁束の発散を抑制す
るよう形状磁気異方性を有する磁性片を備えることを特
徴とする。
In order to achieve such an object, the present invention is arranged above a running space of a medium and has a shape magnetic anisotropy so as to suppress the divergence of magnetic flux of a magnet in the space. It is characterized by including a magnetic piece having.

【0011】[0011]

【作用】本発明においては、媒体の走行空間の上方に形
状磁気異方性を有する磁性片が配置される。形状磁気異
方性とは、磁束の方向に沿った長さと当該方向に垂直な
断面の面積の比によって、反磁場係数の値が変化する性
質である。本発明に係る磁性片が有する形状磁気異方性
は、媒体の走行空間におけるマグネットによる磁束の発
散を抑制するような異方性である。すなわち、少なくと
も走行空間近傍の部分において、マグネットの磁束の方
向に沿った長さlと当該方向に垂直な断面の面積Aの
比A/lが小さく、走行空間における磁束を平行磁束
又は収束磁束とする異方性である。したがって、分解能
や検出感度が、磁気抵抗素子と媒体の距離に対して概ね
依存しなくなるため、分解能・検出感度の向上・一定化
が実現される。また、マグネットを小さくできるため、
装置構成が小型化される。
In the present invention, the magnetic piece having the shape magnetic anisotropy is arranged above the running space of the medium. The shape magnetic anisotropy is a property in which the value of the demagnetizing factor changes depending on the ratio of the length along the direction of the magnetic flux and the area of the cross section perpendicular to the direction. The shape magnetic anisotropy of the magnetic piece according to the present invention is anisotropy that suppresses the divergence of magnetic flux due to the magnet in the running space of the medium. That is, at least in a portion near the traveling space, the ratio A / l B of the length 1 B along the direction of the magnetic flux of the magnet and the area A of the cross section perpendicular to the direction is small, and the magnetic flux in the traveling space is a parallel magnetic flux or converges. It is anisotropy to be magnetic flux. Therefore, the resolution and the detection sensitivity do not substantially depend on the distance between the magnetoresistive element and the medium, so that the resolution and the detection sensitivity can be improved and made constant. Also, because the magnet can be made smaller,
The device configuration is downsized.

【0012】[0012]

【実施例】以下、本発明の好適な実施例について図面に
基づき説明する。なお、図9及び図10に示される従来
例と同様の構成には同一の符号を付し、説明を省略す
る。図1には、本発明の第1実施例に係る磁気センサの
概略構成が示されている。また、図2には、この実施例
の磁気回路が示されている。これらの図に示される磁気
センサは、2個の磁気抵抗素子MR1及びMR2を前述
の図10(a)のように結線し、これをマグネット10
とともにホルダ18により保持した構成である。磁気抵
抗素子MR1及びMR2は図示しない基板上に配置さ
れ、また、その表面には、媒体16との接触による雑音
等を防ぐべく、非磁性金属板等が配置される。なお、図
中22は磁気抵抗素子MR1とMR2の素子間結線、2
4は電源・接地結線である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT A preferred embodiment of the present invention will be described below with reference to the drawings. The same components as those in the conventional example shown in FIGS. 9 and 10 are designated by the same reference numerals, and the description thereof will be omitted. FIG. 1 shows a schematic configuration of a magnetic sensor according to the first embodiment of the present invention. Further, FIG. 2 shows a magnetic circuit of this embodiment. In the magnetic sensor shown in these figures, two magnetoresistive elements MR1 and MR2 are connected as shown in FIG.
Along with this, the holder 18 holds it. The magnetoresistive elements MR1 and MR2 are arranged on a substrate (not shown), and a non-magnetic metal plate or the like is arranged on the surface thereof in order to prevent noise or the like due to contact with the medium 16. In the figure, 22 is a connection between the magnetoresistive elements MR1 and MR2.
4 is a power / ground connection.

【0013】この実施例が特徴とするところは、平板状
の対向ヨーク20を媒体16の走行空間上方に配置した
点である。対向ヨーク20は、パーマロイ、純鉄、ケイ
素鋼板等の軟磁性材料から形成され、その端面が特性変
異点、すなわち磁気抵抗素子MR1とMR2のほぼ中間
線上に位置し、長手方向が図中上下方向となるよう配置
されている。ホルダー18は、このような配置となるよ
う、磁気抵抗素子MR1及びMR2から空隙gを隔てて
対向ヨーク20を保持する。
The feature of this embodiment is that the flat opposed yoke 20 is arranged above the traveling space of the medium 16. The facing yoke 20 is made of a soft magnetic material such as permalloy, pure iron, or a silicon steel plate, and its end face is located at the characteristic variation point, that is, approximately on the midline between the magnetoresistive elements MR1 and MR2, and the longitudinal direction is the vertical direction in the figure. It is arranged so that. The holder 18 holds the facing yoke 20 with a gap g from the magnetoresistive elements MR1 and MR2 so as to have such an arrangement.

【0014】対向ヨーク20の主な機能は、マグネット
10による磁束を空隙gにおいてやや収束気味の磁束と
することにより、分解能の向上等を実現するところにあ
る。すなわち、マグネット10による磁束は対向ヨーク
20の形状磁気異方性により発散を抑制される。このよ
うな形状磁気異方性を得るべく、対向ヨーク20は前述
したように図中上下方向に長く、左右方向に狭い(断面
積が小さい)形状を有している。
The main function of the opposed yoke 20 is to improve the resolution by making the magnetic flux from the magnet 10 slightly convergent in the air gap g. That is, the magnetic flux generated by the magnet 10 is suppressed from diverging due to the shape magnetic anisotropy of the facing yoke 20. In order to obtain such shape magnetic anisotropy, the facing yoke 20 has a shape that is long in the vertical direction and narrow in the horizontal direction (small cross-sectional area) as described above.

【0015】本実施例の装置を実際に設計する場合、対
向ヨーク20の寸法を飽和磁束密度や反磁場係数等に鑑
みて決定する。飽和磁束密度は対向ヨーク20に使用す
る磁性材料の種類や形状により決まり、その値が大きい
ほど磁束の収束の効果は大きい。また、反磁場係数は形
状、具体的にはA/l(図3参照)で決まる。対向ヨ
ーク20の厚みtは、分解能と同じか、やや小さくす
る。これにより、空隙gにおける磁束を収束気味とす
る。
When actually designing the device of this embodiment, the dimensions of the opposed yoke 20 are determined in consideration of the saturation magnetic flux density, the demagnetizing factor, and the like. The saturation magnetic flux density is determined by the type and shape of the magnetic material used for the facing yoke 20, and the larger the value, the greater the effect of magnetic flux convergence. The demagnetizing factor is determined by the shape, specifically A / l B (see FIG. 3). The thickness t of the opposing yoke 20 is equal to or slightly smaller than the resolution. As a result, the magnetic flux in the gap g tends to converge.

【0016】いま、図4(b)に示されるような条件で
図4(c)の試料を読み取らせた場合、従来例の構成で
は図4(a)に示されるようなスペーシング特性、第1
実施例の構成では図5に示されるようなスペーシング特
性が得られる。媒体16上の磁性体のパタンのピッチが
磁気センサの分解能より大きい場合には図10(b)に
示されるような出力波形が得られるところ、図4(a)
の特性では、ピッチ大の部分(図4(c)中右寄りの部
分)を読み取ったときしか、そのような波形は得られて
いない。これに対し、図5の特性では、ピッチ小の部分
(図4(c)中左寄りの部分)を読み取ったときにも、
そのような波形が得られている。すなわち、本実施例に
よれば、より高い分解能が得られることがわかる。
When the sample of FIG. 4 (c) is read under the conditions shown in FIG. 4 (b), the spacing characteristic as shown in FIG. 1
With the configuration of the embodiment, the spacing characteristic as shown in FIG. 5 is obtained. When the pattern pitch of the magnetic material on the medium 16 is larger than the resolution of the magnetic sensor, the output waveform as shown in FIG. 10 (b) is obtained.
In the characteristic of No. 2, such a waveform is obtained only when the pitch large portion (the portion on the right side in FIG. 4C) is read. On the other hand, according to the characteristic of FIG. 5, even when the small pitch portion (the portion on the left side in FIG. 4C) is read,
Such a waveform has been obtained. That is, according to this embodiment, higher resolution can be obtained.

【0017】また、本実施例によれば、磁束の発散の抑
制により、検出感度を上げることができ、出力電圧Vo
utを増幅する回路の構成を簡素化・安価化できる。ま
た、分解能や検出感度が距離Lに概ね依存しなくなるた
め、特性のばらつきも抑制される。さらに、マグネット
10としてより小型のものを使用でき、磁気センサの小
型化を実現できる。
Further, according to this embodiment, the detection sensitivity can be increased by suppressing the divergence of the magnetic flux, and the output voltage Vo
It is possible to simplify and reduce the cost of the configuration of the circuit that amplifies ut. Further, since the resolution and the detection sensitivity do not substantially depend on the distance L, variations in characteristics are also suppressed. Further, a smaller magnet can be used as the magnet 10, and the magnetic sensor can be downsized.

【0018】なお、本発明は、上記実施例の構成に限定
されるものではない。例えば磁気抵抗素子の配列や、マ
グネットの形状・寸法等に限定されるものではない。た
だし、分解能を高めようとすると磁気抵抗素子に対する
対向ヨークの位置合せが困難になるから、そのような場
合には方形のマグネットを用いるほうが好ましい。
The present invention is not limited to the configuration of the above embodiment. For example, the arrangement of the magnetoresistive elements and the shape and size of the magnet are not limited. However, since it is difficult to position the opposing yoke with respect to the magnetoresistive element when attempting to increase the resolution, it is preferable to use a rectangular magnet in such a case.

【0019】また、本発明は、マグネットによる磁束の
媒体走行空間での発散を抑制するものであるから、対向
ヨークは、これを実現する形状磁気異方性を有していれ
ば足りる。したがって、対向ヨークの部分形状を第1実
施例と異なる形状とすることもできる。図6乃至図8に
は、本発明の第2乃至第4実施例、特にその対向ヨーク
の形状が示されている。
Further, since the present invention suppresses the divergence of the magnetic flux by the magnet in the medium traveling space, it is sufficient for the opposing yoke to have the shape magnetic anisotropy for realizing this. Therefore, the partial shape of the facing yoke may be different from that of the first embodiment. 6 to 8 show the second to fourth embodiments of the present invention, particularly the shape of the opposing yoke thereof.

【0020】第2実施例に係る対向ヨーク26は、その
上部を厚くし、リラクタンスを低下させた構成である。
また、第3実施例に係る対向ヨーク28は、その上部の
幅を大きくし、やはりリラクタンスを低下させた構成で
ある。第4実施例に係る対向ヨーク30はE字形状であ
り、マグネット10の磁束のリターン回路を有するもの
である。これらいずれの構成によっても、第1実施例と
同様の効果を得ることができる。
The opposed yoke 26 according to the second embodiment has a structure in which the upper portion is thickened to reduce the reluctance.
The opposing yoke 28 according to the third embodiment has a structure in which the width of the upper portion thereof is increased and the reluctance is also reduced. The opposed yoke 30 according to the fourth embodiment is E-shaped and has a return circuit for the magnetic flux of the magnet 10. With any of these configurations, the same effect as that of the first embodiment can be obtained.

【0021】[0021]

【発明の効果】以上説明したように、本発明によれば、
媒体の走行空間の上方に磁性片を配置し、この磁性片の
形状を、媒体の走行空間におけるマグネットによる磁束
の発散を抑制するような形状磁気異方性を生じさせる形
状としたため、分解能や検出感度が磁気抵抗素子と媒体
の距離に対して概ね依存しなくなり、分解能・検出感度
の向上・一定化を実現できる。また、マグネットを小さ
くできるため、装置構成を小型化できる。
As described above, according to the present invention,
A magnetic piece is placed above the running space of the medium, and the shape of this magnetic piece is configured to generate magnetic anisotropy that suppresses the divergence of magnetic flux by the magnet in the running space of the medium. The sensitivity is almost independent of the distance between the magnetoresistive element and the medium, and the resolution and detection sensitivity can be improved and stabilized. Moreover, since the magnet can be made small, the device configuration can be made compact.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例に係る磁気センサの概略構
成を示す断面図である。
FIG. 1 is a sectional view showing a schematic configuration of a magnetic sensor according to a first embodiment of the invention.

【図2】この実施例の磁気回路を示す斜視図である。FIG. 2 is a perspective view showing a magnetic circuit of this embodiment.

【図3】この実施例における対向ヨークの形状を示す斜
視図である。
FIG. 3 is a perspective view showing the shape of a facing yoke in this embodiment.

【図4】(a)は対向ヨーク“なし”の場合の特性を、
(b)はその測定条件を、(c)は測定試料を、それぞ
れ示す図である。
FIG. 4 (a) shows the characteristics when the opposing yoke is “none”,
(B) is a figure which shows the measurement conditions, (c) is a figure which shows a measurement sample, respectively.

【図5】対向ヨーク“あり”の場合の特性を示す図であ
る。
FIG. 5 is a diagram showing characteristics in the case of “with” an opposing yoke.

【図6】本発明の第2実施例に係る磁気センサにおける
対向ヨークの形状を示す斜視図である。
FIG. 6 is a perspective view showing the shape of a facing yoke in a magnetic sensor according to a second embodiment of the invention.

【図7】本発明の第3実施例に係る磁気センサにおける
対向ヨークの形状を示す斜視図である。
FIG. 7 is a perspective view showing the shape of a facing yoke in a magnetic sensor according to a third embodiment of the invention.

【図8】本発明の第4実施例に係る磁気センサにおける
対向ヨークの形状を示す斜視図である。
FIG. 8 is a perspective view showing a shape of a facing yoke in a magnetic sensor according to a fourth embodiment of the invention.

【図9】一従来例に係る磁気センサの概略構成を示す断
面図である。
FIG. 9 is a cross-sectional view showing a schematic configuration of a magnetic sensor according to a conventional example.

【図10】(a)は従来例の回路構成を、(b)は出力
波形を、それぞれ示す図である。
10A is a diagram showing a circuit configuration of a conventional example, and FIG. 10B is a diagram showing an output waveform.

【符号の説明】[Explanation of symbols]

10 マグネット 16 媒体 20,26,28,30 対向ヨーク MR1,MR2 磁気抵抗素子 L 媒体と磁気抵抗素子の距離 g 媒体が走行する空隙 10 Magnet 16 Medium 20, 26, 28, 30 Opposing yoke MR1, MR2 Magnetoresistive element L Distance between medium and magnetoresistive element g Air gap in which medium runs

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 平面上に配置され加わる磁束の変化によ
り抵抗値が変化する磁気抵抗素子と、この磁気抵抗素子
を磁気バイアスするマグネットと、を備え、マグネット
から見て磁気抵抗素子の配置面上方空間を走行する媒体
上の磁性体を磁気抵抗素子の抵抗値変化により検出する
磁気センサにおいて、 媒体の走行空間の上方に配置され、当該空間におけるマ
グネットの磁束の発散を抑制するよう形状磁気異方性を
有する磁性片を備えることを特徴とする磁気センサ。
1. A magnetoresistive element arranged on a plane, the resistance value of which changes according to a change of an applied magnetic flux, and a magnet for magnetically biasing the magnetoresistive element. In a magnetic sensor that detects a magnetic substance on a medium traveling in a space by changing the resistance value of a magnetoresistive element, the magnetic sensor is placed above the traveling space of the medium and is configured to suppress magnetic flux divergence of the magnet in the space. A magnetic sensor comprising a magnetic piece having properties.
JP17137592A 1992-06-30 1992-06-30 Magnetic sensor Pending JPH0618278A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17137592A JPH0618278A (en) 1992-06-30 1992-06-30 Magnetic sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17137592A JPH0618278A (en) 1992-06-30 1992-06-30 Magnetic sensor

Publications (1)

Publication Number Publication Date
JPH0618278A true JPH0618278A (en) 1994-01-25

Family

ID=15922020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17137592A Pending JPH0618278A (en) 1992-06-30 1992-06-30 Magnetic sensor

Country Status (1)

Country Link
JP (1) JPH0618278A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0662667A2 (en) * 1994-01-11 1995-07-12 Murata Manufacturing Co., Ltd. Magnetic sensor with member having magnetic contour anisotropy
US7382122B2 (en) 2003-08-19 2008-06-03 Kabushiki Kaisha Minerva Magnetic sensor
KR20140116929A (en) 2012-02-13 2014-10-06 가부시키가이샤 무라타 세이사쿠쇼 Magnetic sensor apparatus
WO2016013650A1 (en) * 2014-07-25 2016-01-28 三菱電機株式会社 Magnetic sensor device
US9279866B2 (en) 2012-04-09 2016-03-08 Mitsubishi Electric Corporation Magnetic sensor
JP2018004618A (en) * 2016-06-23 2018-01-11 Tdk株式会社 Magnetic sensor

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0662667A2 (en) * 1994-01-11 1995-07-12 Murata Manufacturing Co., Ltd. Magnetic sensor with member having magnetic contour anisotropy
EP0662667A3 (en) * 1994-01-11 1995-11-15 Murata Manufacturing Co Magnetic sensor with member having magnetic contour anisotropy.
US5512822A (en) * 1994-01-11 1996-04-30 Murata Mfg. Co., Ltd. Magnetic sensor with member having magnetic contour antisotropy
US7382122B2 (en) 2003-08-19 2008-06-03 Kabushiki Kaisha Minerva Magnetic sensor
KR20140116929A (en) 2012-02-13 2014-10-06 가부시키가이샤 무라타 세이사쿠쇼 Magnetic sensor apparatus
US9279866B2 (en) 2012-04-09 2016-03-08 Mitsubishi Electric Corporation Magnetic sensor
WO2016013650A1 (en) * 2014-07-25 2016-01-28 三菱電機株式会社 Magnetic sensor device
JPWO2016013650A1 (en) * 2014-07-25 2017-04-27 三菱電機株式会社 Magnetic sensor device
US10353021B2 (en) 2014-07-25 2019-07-16 Mitsubishi Electric Corporation Magnetic sensor device
JP2018004618A (en) * 2016-06-23 2018-01-11 Tdk株式会社 Magnetic sensor

Similar Documents

Publication Publication Date Title
EP0484474B1 (en) Shorted dual element magnetoresistive reproduce head exhibiting high density signal amplification
US6791807B1 (en) Spin-valve magnetic transducing element and magnetic head having free layer with negative magnetostriction
US5731937A (en) Giant magnetoresistive transducer with increased output signal
US4967298A (en) Magnetic head with magnetoresistive sensor, inductive write head, and shield
US4803580A (en) Double-gap magnetoresistive head having an elongated central write/shield pole completely shielding the magnetoresistive sensor strip in the read gap
US5818685A (en) CIP GMR sensor coupled to biasing magnet with spacer therebetween
US4891725A (en) Magnetoresistive sensor having antiferromagnetic exchange-biased ends
US4649447A (en) Combed MR sensor
US5512822A (en) Magnetic sensor with member having magnetic contour antisotropy
US5592082A (en) Magnetic sensor with permanent magnet bias layers
JPS5836744B2 (en) magnetic sensing device
JPH11513128A (en) Magnetic field sensor with magnetoresistive bridge
JPS63117309A (en) Magnetic reluctivity reader/converter
JPH0339324B2 (en)
JP2008064499A (en) Magnetic sensor
JPS641848B2 (en)
US5260652A (en) Magnetoresistive sensor with electrical contacts having variable resistive regions for enhanced sensor sensitivity
JPH07272221A (en) Magneto-resistance effect type thin-film head
JPH0618278A (en) Magnetic sensor
JP2010020826A (en) Magnetic sensor
JP3321852B2 (en) Magnetic sensor device
US5905610A (en) Combined read/write magnetic head having MRE positioned between broken flux guide and non-magnetic substrate
JPS6227449B2 (en)
JPS638531B2 (en)
EP0738896A2 (en) Exchange coupled barber pole magnetoresistive sensor