JPH06182150A - Method to make nitrogen oxide containing exhaust gas harmless - Google Patents

Method to make nitrogen oxide containing exhaust gas harmless

Info

Publication number
JPH06182150A
JPH06182150A JP4339938A JP33993892A JPH06182150A JP H06182150 A JPH06182150 A JP H06182150A JP 4339938 A JP4339938 A JP 4339938A JP 33993892 A JP33993892 A JP 33993892A JP H06182150 A JPH06182150 A JP H06182150A
Authority
JP
Japan
Prior art keywords
nox
exhaust gas
plasma
oxidized
containing exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4339938A
Other languages
Japanese (ja)
Inventor
Satoshi Uchida
聡 内田
Atsushi Morii
淳 守井
Nobuaki Murakami
信明 村上
Naoyasu Matsuo
直泰 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CHIYOURIYOU SEKKEI KK
Mitsubishi Heavy Industries Ltd
Choryo Sekkei KK
Original Assignee
CHIYOURIYOU SEKKEI KK
Mitsubishi Heavy Industries Ltd
Choryo Sekkei KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CHIYOURIYOU SEKKEI KK, Mitsubishi Heavy Industries Ltd, Choryo Sekkei KK filed Critical CHIYOURIYOU SEKKEI KK
Priority to JP4339938A priority Critical patent/JPH06182150A/en
Publication of JPH06182150A publication Critical patent/JPH06182150A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Treating Waste Gases (AREA)

Abstract

PURPOSE:To remove NOx from NOx containing exhaust gas highly efficiently with a small electric power by oxiding NOx-containing exhaust gas by plasma and adsorbing and removing the oxidized NOx with an adsorbent. CONSTITUTION:NOx-containing exhaust gas of a combustion furnace 1 is led to a plasma reaction container 5 through a dust removing apparatus 3. When voltage is applied between electrodes 110, 111 from an electric power source 6, plasma of the exhaust gas is generated between the electrodes 110, 111. The plasma excites and dissociates gas molecules of NOx to make them chemically active and thus the following chemical reactions; NO+O3 NO2 +Q2 and 2NO2+O3 N2O5+O2; are caused. The reaction formula shows that NO in the exhaust gas of the combustion furnace 1 which is led to the plasma reaction container 5 is oxidized and the oxidized NO2 and N2O5 are removed in an adsorbing tower 8. In this way, the method wherein NOx is once oxidized and the oxidized NOx is removed with an adsorbing agent can suppress the necessary electric power to about 1/10 as compared with a conventional NOx reducing method.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は窒素酸化物含有排ガスの
無害化方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for detoxifying exhaust gas containing nitrogen oxides.

【0002】[0002]

【従来の技術】従来から用いられているプラズマ排ガス
処理方法を例えばディーゼルエンジンの排ガス中の窒素
酸化物(NOx)を処理する場合を例にとり図7により
説明する。
2. Description of the Related Art A conventional plasma exhaust gas treatment method will be described with reference to FIG. 7, taking a case of treating nitrogen oxides (NOx) in exhaust gas of a diesel engine as an example.

【0003】図7において、ディーゼルエンジン101
の排ガスをサイクロン・コレクタ103を経由してプラ
ズマ反応容器105に導入する。プラズマ反応容器10
5は例えば図2に詳細を示すように、筒状のガラス反応
容器109の内部に内部電極110、外側に外部電極1
11を配置し、内部電極110及び外部電極111に電
圧を印加する電源106を有するものである。電極11
0,111間で排ガスをプラズマ化させることにより、
排ガス中のNOxを下記の原理により除去する。すなわ
ち内部電極110と外部電極111の間に電源106を
用いて電圧を印加すると、大気圧グロー放電現象で排ガ
スはプラズマ化される。そして例えばNOxは還元反応
で次の化学反応を起こす。 2NOx → 2NO + O2 ・・・(1) 2NO2 + O2 → N2 + 2O2 ・・・(2)
In FIG. 7, a diesel engine 101
Of the exhaust gas is introduced into the plasma reaction container 105 via the cyclone collector 103. Plasma reactor 10
5, for example, as shown in detail in FIG. 2, an internal electrode 110 is inside the cylindrical glass reaction container 109, and an external electrode 1 is outside.
11 is arranged and a power source 106 for applying a voltage to the internal electrode 110 and the external electrode 111 is provided. Electrode 11
By converting the exhaust gas into plasma between 0 and 111,
NOx in exhaust gas is removed by the following principle. That is, when a voltage is applied between the inner electrode 110 and the outer electrode 111 using the power supply 106, the exhaust gas is turned into plasma by the atmospheric pressure glow discharge phenomenon. Then, for example, NOx causes the following chemical reaction by the reduction reaction. 2NOx → 2NO + O 2 (1) 2NO 2 + O 2 → N 2 + 2O 2 (2)

【0004】さて、上記のようにエンジンの排ガスを大
気圧グロー放電現象を利用してプラズマ化すると、(N
O+NO2 )が50〜200ppm程度の濃度および2
〜4m3 N/h程度の流量の範囲ではプラズマ発生電力
すなわち電源106より供給される電力が数W〜数10
Wの範囲でNOx除去率80〜90%を達成できる。し
たがってボイラ、ガスタービン及びディーゼルエンジン
等、各種燃焼を伴う装置の排ガス公害対策装置として活
用されつつある。
Now, when the engine exhaust gas is made into plasma by utilizing the atmospheric pressure glow discharge phenomenon as described above, (N
O + NO 2 ) concentration of about 50 to 200 ppm and 2
In the range of a flow rate of about 4 m 3 N / h, the plasma generation power, that is, the power supplied from the power supply 106 is several W to several 10
A NOx removal rate of 80 to 90% can be achieved in the range of W. Therefore, it is being used as an exhaust gas pollution control device for various combustion-related devices such as boilers, gas turbines, and diesel engines.

【0005】[0005]

【発明が解決しようとする課題】従来のプラズマを用い
た処理装置では排ガス流量2〜4m3 N/h程度におい
て、NOx除去率80〜90%を達成するには数W〜数
10Wの範囲で電力を必要とする。これは数10,00
0〜数100,000m3 N/h程度の大容量排ガス処
理装置を考える時、必要電力が数100〜数1,000
KW程度と大きくなり産業上の価値が低い。
In the conventional processing apparatus using plasma, in order to achieve the NOx removal rate of 80 to 90% at the exhaust gas flow rate of about 2 to 4 m 3 N / h, the range of several W to several 10 W is required. Need electricity. This is the number 10,000
When considering a large-capacity exhaust gas treatment device of 0 to several 100,000 m 3 N / h, the required power is several hundred to several 1,000.
It is as large as KW and its industrial value is low.

【0006】本発明は上記技術水準に鑑み、排ガス中の
NOx除去率を低下させることなく、必要電力量を減少
することを可能とした排ガス処理方法を提供しようとす
るものである。
In view of the above-mentioned state of the art, the present invention is to provide an exhaust gas treatment method capable of reducing the required electric power without reducing the NOx removal rate in the exhaust gas.

【0007】[0007]

【課題を解決するための手段】本発明は窒素酸化物含有
排ガスをプラズマによって酸化し、酸化した窒素酸化物
を吸着剤により吸着・除去することを特徴とする窒素酸
化物含有排ガスの無害化方法である。
The present invention is a method for detoxifying a nitrogen oxide-containing exhaust gas, which comprises oxidizing the nitrogen oxide-containing exhaust gas with plasma and adsorbing and removing the oxidized nitrogen oxide with an adsorbent. Is.

【0008】[0008]

【作用】従来のプラズマによる排ガス処理技術において
は、排ガス中のNOxをプラズマにより還元するもの
で、NOxを電気エネルギにより窒素と酸素に直接分解
するものであったためその電力消費率は極めて大きかっ
た。これに対し、本発明は排ガス中に含まれる酸素をプ
ラズマによってオゾン化し、そのオゾンによりNOxを
下記(3),(4)式によって酸化し、吸着剤による吸
脱着が容易なNOxへと変換するものである。 NO + O3 → NO2 + O2 ・・・(3) 2NO2 + O3 → N2 5 + O2 ・・・(4)
In the conventional exhaust gas treatment technology using plasma, NOx in the exhaust gas is reduced by plasma, and NOx is directly decomposed into nitrogen and oxygen by electric energy, so that the power consumption rate is extremely high. On the other hand, in the present invention, oxygen contained in the exhaust gas is converted into ozone by plasma, and the ozone is used to oxidize NOx according to the following equations (3) and (4) to convert into NOx which can be easily adsorbed and desorbed by the adsorbent. It is a thing. NO + O 3 → NO 2 + O 2 ··· (3) 2NO 2 + O 3 → N 2 O 5 + O 2 ··· (4)

【0009】すなわち、NOに電圧を印加していくと、
上記(3)式に示すように酸化されNO2 を生成し、さ
らに電圧を印加すると、上記(4)式に示すように、さ
らに酸化されN2 5 を生成する。これらの消費電力と
NOxの変化の関係の定量的グラフを図6に示す。
That is, when a voltage is applied to NO,
As shown in the above formula (3), NO 2 is oxidized to generate NO 2 , and when a voltage is further applied, as shown in the above formula (4), it is further oxidized to generate N 2 O 5 . A quantitative graph of the relationship between the power consumption and the change in NOx is shown in FIG.

【0010】NOが酸化され生成したNO2 及びN2
5 は吸着剤により除去することが可能となる。
NO 2 and N 2 O produced by oxidation of NO
5 can be removed by an adsorbent.

【0011】[0011]

【実施例】本発明の一実施例を図1によって説明する。
図1において、排ガスの公害対策を講じるための対象物
である汎用の燃焼炉1は排気管2によって除塵器(サイ
クロン・コレクタ等)3に連結される。前記除塵器3で
は排ガス中に含まれる粒子類を除去する。除塵器3を出
た排ガスは排気管4によりプラズマ反応容器5に移送さ
れる。プラズマ反応容器5の電極(図示省略)は電源6
に連結される。プラズマ反応容器5を出た排ガスは排気
管7により吸着塔8に導入される。図中9は排ガス出口
管である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described with reference to FIG.
In FIG. 1, a general-purpose combustion furnace 1 which is an object for taking measures for pollution of exhaust gas is connected to a dust remover (cyclone collector, etc.) 3 by an exhaust pipe 2. The dust remover 3 removes particles contained in the exhaust gas. The exhaust gas from the dust remover 3 is transferred to the plasma reaction container 5 by the exhaust pipe 4. The electrode (not shown) of the plasma reaction vessel 5 is a power source 6
Connected to. The exhaust gas leaving the plasma reaction vessel 5 is introduced into the adsorption tower 8 through the exhaust pipe 7. In the figure, 9 is an exhaust gas outlet pipe.

【0012】プラズマ反応容器5は前述した図2に示し
たような筒形で、その中に石英ガラス、シリカガラス、
ほうけい酸ガラス、アルミナけい酸ガラス等でできた筒
形壁109をもっている。該反応容器5の入口は図1の
排気管4に、出口は図1の排気管7につながれている。
また筒形壁109の外側に電極111が設けられ、内側
に電極110が設けられている。これらの電極111,
110は電源106に連結されている。
The plasma reaction vessel 5 has a cylindrical shape as shown in FIG. 2 and contains quartz glass, silica glass,
It has a cylindrical wall 109 made of borosilicate glass, alumina silicate glass, or the like. The inlet of the reaction vessel 5 is connected to the exhaust pipe 4 in FIG. 1, and the outlet is connected to the exhaust pipe 7 in FIG.
Further, the electrode 111 is provided on the outer side of the cylindrical wall 109, and the electrode 110 is provided on the inner side. These electrodes 111,
110 is connected to the power supply 106.

【0013】吸収塔8は図4に示すような筒形で、その
内にゼオライト系の吸着剤が充填されている。吸収塔8
の入口は図1の排気管7に、出口は図1の出口管9に連
結されている。
The absorption tower 8 has a cylindrical shape as shown in FIG. 4, and is filled with a zeolite-based adsorbent. Absorption tower 8
The inlet is connected to the exhaust pipe 7 in FIG. 1, and the outlet is connected to the outlet pipe 9 in FIG.

【0014】以上のような構成において、燃焼炉1のN
Oxを含む排ガスは除塵器3を介してプラズマ反応容器
5に導入される。また電源6から電極110,111に
電圧が印加されると電極111,110間には排ガスの
プラズマが発生する。このプラズマはNOxのガス分子
を励起及び解離させ、化学的に活性な状態とし、それに
よって前記(3),(4)式の化学反応がひき起こされ
る。
With the above structure, the N of the combustion furnace 1 is
The exhaust gas containing Ox is introduced into the plasma reaction container 5 via the dust remover 3. When a voltage is applied from the power source 6 to the electrodes 110 and 111, plasma of exhaust gas is generated between the electrodes 111 and 110. This plasma excites and dissociates the gas molecules of NOx and brings them into a chemically active state, which causes the chemical reactions of the above formulas (3) and (4).

【0015】前記(3),(4)式はプラズマ反応容器
5に導入された燃焼炉1の排ガス中のNOが酸化される
ことを意味しており、酸化されたNO2 及びN2 5
吸着塔8により除去される。このようにNOxを一度酸
化し、その酸化されたNOxを吸着剤で除去する方法は
従来のNOx還元法に比べ必要電力を1/10程度とす
ることが可能である。
The above expressions (3) and (4) mean that NO in the exhaust gas of the combustion furnace 1 introduced into the plasma reactor 5 is oxidized, and the oxidized NO 2 and N 2 O 5 Are removed by the adsorption tower 8. As described above, the method of once oxidizing NOx and removing the oxidized NOx with the adsorbent can reduce the required electric power to about 1/10 as compared with the conventional NOx reduction method.

【0016】この実施例による本発明の具体的データを
従来の還元法のデータと対比して下記表1に示す。
Specific data of the present invention according to this example are shown in Table 1 below in comparison with the data of the conventional reduction method.

【0017】[0017]

【表1】 [Table 1]

【0018】実施例1の筒形のプラズマ反応容器の代り
に、図3に示すような電極110,111が平板なプラ
ズマ反応容器を使用し、実施例1の筒形吸着塔の代りに
図5に示すような角形吸着塔を使用した。その結果、実
施例1と同様な結果が得られた。
A plasma reactor having flat electrodes 110 and 111 as shown in FIG. 3 is used in place of the cylindrical plasma reactor of Example 1, and the tubular adsorption tower of Example 1 is replaced with FIG. A rectangular adsorption tower as shown in was used. As a result, the same results as in Example 1 were obtained.

【0019】また、NOxの組成における吸着剤の吸脱
着特性を下記表2に示す。
Further, the adsorption / desorption characteristics of the adsorbent in the composition of NOx are shown in Table 2 below.

【0020】[0020]

【表2】 [Table 2]

【0021】吸着剤としてはアルミナ系、ゼオライト
系、シリカ系、チタニア系、マグネシア系のものが使用
しうる。
As the adsorbent, those of alumina type, zeolite type, silica type, titania type and magnesia type can be used.

【0022】[0022]

【発明の効果】以上のように本発明によれば、NOxを
含む排ガスを小電力で高効率に除去することが可能とな
る。また、本発明において、プラズマ反応容器を多数直
列又は並列に設置し、もしくは大型化し、吸着塔を大容
量化すれば、排ガス処理量は大幅に増加できるので、大
容量排ガスNOx除去方法としての産業上の価値は著し
く高くなる。
As described above, according to the present invention, exhaust gas containing NOx can be removed with high efficiency and low power. Further, in the present invention, if a large number of plasma reaction vessels are installed in series or in parallel, or if the size is increased and the adsorption tower is increased in capacity, the amount of exhaust gas treated can be greatly increased. The value above is significantly higher.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の説明図。FIG. 1 is an explanatory diagram of an embodiment of the present invention.

【図2】本発明及び従来法で使用する円筒形プラズマ反
応容器の説明図。
FIG. 2 is an explanatory view of a cylindrical plasma reaction container used in the present invention and a conventional method.

【図3】本発明及び従来法で使用する平板形プラズマ反
応容器の説明図。
FIG. 3 is an explanatory view of a flat plate type plasma reaction container used in the present invention and the conventional method.

【図4】本発明で使用する筒形吸着塔の説明図。FIG. 4 is an explanatory view of a cylindrical adsorption tower used in the present invention.

【図5】本発明で使用する角形吸着塔の説明図。FIG. 5 is an explanatory view of a rectangular adsorption tower used in the present invention.

【図6】本発明のプラズマ反応容器の消費電力とNOx
の変化の関係を示す定量的グラフ。
FIG. 6 is power consumption and NOx of the plasma reactor of the present invention.
Quantitative graph showing the relationship between changes in.

【図7】従来のプラズマ反応器を使用する排ガス処理方
法の説明図。
FIG. 7 is an explanatory view of an exhaust gas treatment method using a conventional plasma reactor.

フロントページの続き (72)発明者 村上 信明 長崎県長崎市深堀町五丁目717番1号 三 菱重工業株式会社長崎研究所内 (72)発明者 松尾 直泰 長崎県長崎市飽の浦町5番3号 西日本菱 重興産ビル4階 長菱設計株式会社内Front page continued (72) Inventor Nobuaki Murakami 5-717-1, Fukahori-cho, Nagasaki-shi, Nagasaki Sanhishi Heavy Industries Ltd. Nagasaki Laboratory (72) Inventor Naoyasu Matsuo 5-3, Atsunoura-cho, Nagasaki-shi, Nagasaki Western Japan Hishijukosan Building, 4th floor, within Choryo Design Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 窒素酸化物含有排ガスをプラズマによっ
て酸化し、酸化した窒素酸化物を吸着剤により吸着・除
去することを特徴とする窒素酸化物含有排ガスの無害化
方法。
1. A method for detoxifying a nitrogen oxide-containing exhaust gas, which comprises oxidizing the nitrogen oxide-containing exhaust gas with plasma and adsorbing and removing the oxidized nitrogen oxide with an adsorbent.
JP4339938A 1992-12-21 1992-12-21 Method to make nitrogen oxide containing exhaust gas harmless Pending JPH06182150A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4339938A JPH06182150A (en) 1992-12-21 1992-12-21 Method to make nitrogen oxide containing exhaust gas harmless

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4339938A JPH06182150A (en) 1992-12-21 1992-12-21 Method to make nitrogen oxide containing exhaust gas harmless

Publications (1)

Publication Number Publication Date
JPH06182150A true JPH06182150A (en) 1994-07-05

Family

ID=18332183

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4339938A Pending JPH06182150A (en) 1992-12-21 1992-12-21 Method to make nitrogen oxide containing exhaust gas harmless

Country Status (1)

Country Link
JP (1) JPH06182150A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003080025A (en) * 2001-09-10 2003-03-18 Mitsubishi Heavy Ind Ltd Reduction apparatus and denitrification apparatus
US6893617B2 (en) 2001-06-14 2005-05-17 Delphi Technologies, Inc. Apparatus and method for retention of non-thermal plasma reactor
US7078000B2 (en) 2001-06-14 2006-07-18 Delphi Technologies, Inc. Apparatus and method for mat protection of non-thermal plasma reactor
CN110479070A (en) * 2018-05-15 2019-11-22 三星工程株式会社 The sweep-out method and device of nitrogen oxides of exhaust gas
US10613043B2 (en) 2013-02-14 2020-04-07 Jeol Ltd. Method and apparatus for sample analysis

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6893617B2 (en) 2001-06-14 2005-05-17 Delphi Technologies, Inc. Apparatus and method for retention of non-thermal plasma reactor
US7078000B2 (en) 2001-06-14 2006-07-18 Delphi Technologies, Inc. Apparatus and method for mat protection of non-thermal plasma reactor
JP2003080025A (en) * 2001-09-10 2003-03-18 Mitsubishi Heavy Ind Ltd Reduction apparatus and denitrification apparatus
US10613043B2 (en) 2013-02-14 2020-04-07 Jeol Ltd. Method and apparatus for sample analysis
CN110479070A (en) * 2018-05-15 2019-11-22 三星工程株式会社 The sweep-out method and device of nitrogen oxides of exhaust gas

Similar Documents

Publication Publication Date Title
Kuroki et al. Single-stage plasma-chemical process for particulates, NO/sub x/, and SO/sub x/simultaneous removal
JP4590618B2 (en) Exhaust gas treatment method and treatment apparatus
Liu et al. Removal of Hg0 from containing‐SO2/NO flue gas by ultraviolet/H2O2 process in a novel photochemical reactor
Okubo et al. Single-Stage Simultaneous Reduction of Diesel Particulate and $\hbox {NO} _ {\rm x} $ Using Oxygen-Lean Nonthermal Plasma Application
Mohapatro et al. Cascaded cross flow DBD-adsorbent technique for NO x abatement in diesel engine exhaust
JPH0615143A (en) Plasma reaction vessel for nitrogen oxide decomposition device
JPH06106025A (en) Plasma reaction vessel in nitrogen oxide decomposition device
JPH06182150A (en) Method to make nitrogen oxide containing exhaust gas harmless
JPH06269635A (en) Waste gas treatment apparatus
KR100996671B1 (en) Exhaust gas processing system
Penetrante et al. Fundamental limits on NOx reduction by plasma
CN105879566A (en) Method and device for removing NOx in flue gas by induced reduction of dielectric barrier discharge
JPH06178914A (en) Waste gas treatment device
CN208436658U (en) A kind of electric discharge basic unit, catalytic converter and waste gas cleaning system
JP2002263444A (en) Method and equipment for removing nox
Yamamoto et al. PM and $\hbox {NO} _ {\rm x} $ Removal for Diesel Engine Emission Using Ozonizer and Chemical Hybrid Reactor
Yamamoto et al. Novel $\hbox {NO} _ {\rm x} $ and VOC Treatment Using Concentration and Plasma Decomposition
JP2002213228A (en) Exhaust emission control device for internal combustion engine
CN211988018U (en) Adsorption-ozone oxidation regeneration organic waste gas treatment device
JPH05115746A (en) Exhaust gas treatment apparatus
Yamasaki et al. Toward NO x/SO x and nanoparticle control technology using a single-stage wet-type nonthermal plasma reactor
JP4828056B2 (en) Reduction device and denitration device
JPH04219123A (en) Device for treating waste gas with glow discharge plasma
JP2554161B2 (en) Exhaust gas treatment device
Akdemir et al. Effect of Induction Heating Aided Dielectric Barrier Discharge on the Elimination of SO2, NO X, and CO Gases

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20000321