JPH0618149U - Hydraulic control valve - Google Patents

Hydraulic control valve

Info

Publication number
JPH0618149U
JPH0618149U JP6366992U JP6366992U JPH0618149U JP H0618149 U JPH0618149 U JP H0618149U JP 6366992 U JP6366992 U JP 6366992U JP 6366992 U JP6366992 U JP 6366992U JP H0618149 U JPH0618149 U JP H0618149U
Authority
JP
Japan
Prior art keywords
oil
valve body
throttle
valve
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6366992U
Other languages
Japanese (ja)
Inventor
学 高岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koyo Seiko Co Ltd
Original Assignee
Koyo Seiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koyo Seiko Co Ltd filed Critical Koyo Seiko Co Ltd
Priority to JP6366992U priority Critical patent/JPH0618149U/en
Publication of JPH0618149U publication Critical patent/JPH0618149U/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】 【目的】 動力舵取装置における操舵補助力の増加特性
として望ましい2段折れ特性を損なうことなく、油圧制
御弁内部の絞り部での実質的な同時締切りを可能とし、
流動音及びキャビテーションの発生を抑制する。 【構成】 バルブボディー1側の油溝4における絞り部
6を臨む側縁に切欠き部7を、また、バルブスプール2
側の油溝5における絞り部6を臨む側縁に面取り部8を
夫々形成する。切欠き部7は、バルブボディー1の周面
と略平行をなす第1の部分7aと、第1の部分7a及びバル
ブボディー1の周面に略直角をなして交叉する第2の部
分7bとからなり、バルブボディー1とバルブスプール2
との相対角変位に対して絞り部6の絞り面積を一定に保
つ作用をなす。面取り部8は、バルブスプール2の周面
及び油溝5の側壁の夫々に所定の交叉角を有して傾斜す
る直線状をなし、バルブボディー1とバルブスプール2
との相対角変位に対して絞り部6の絞り面積を一定に保
つ作用をなす。これら両者の相乗作用により2段折れ特
性を実現する。
(57) [Summary] [Purpose] It is possible to achieve a substantially simultaneous shut-off at the throttle portion inside the hydraulic control valve without impairing the desired two-step bending characteristic as an increase characteristic of the steering assist force in the power steering device.
Suppresses flow noise and cavitation. [Structure] A cutout portion 7 is formed on a side edge of the oil groove 4 on the valve body 1 side facing a throttle portion 6, and a valve spool 2 is provided.
The chamfered portions 8 are respectively formed on the side edges of the oil grooves 5 on the side facing the narrowed portions 6. The cutout portion 7 includes a first portion 7a that is substantially parallel to the peripheral surface of the valve body 1 and a second portion 7b that intersects the first portion 7a and the peripheral surface of the valve body 1 at a substantially right angle. It consists of a valve body 1 and a valve spool 2.
With respect to the relative angular displacement with respect to, the function is to keep the diaphragm area of the diaphragm portion 6 constant. The chamfered portion 8 has a linear shape that is inclined at a predetermined crossing angle on each of the peripheral surface of the valve spool 2 and the side wall of the oil groove 5, and includes the valve body 1 and the valve spool 2.
With respect to the relative angular displacement with respect to, the function is to keep the diaphragm area of the diaphragm portion 6 constant. A two-step folding characteristic is realized by the synergistic action of both.

Description

【考案の詳細な説明】[Detailed description of the device]

【0001】[0001]

【産業上の利用分野】[Industrial applications]

本考案は、送油先への送給油圧を同軸上にて生じるバルブボディーとバルブス プールとの相対角変位に応じて制御する回転式の油圧制御弁に関し、特に油圧式 の動力舵取装置において、操舵補助力を発生するパワーシリンダへの送給油圧を 舵輪操作に応じて制御すべく用いられる油圧制御弁に関する。 The present invention relates to a rotary hydraulic control valve that controls the hydraulic pressure to be fed to a destination according to the relative angular displacement between a valve body and a valve spool that are generated coaxially, and particularly in a hydraulic power steering device. The present invention relates to a hydraulic control valve used to control the hydraulic pressure supplied to a power cylinder that generates a steering assist force according to a steering wheel operation.

【0002】[0002]

【従来の技術】[Prior art]

油圧式の動力舵取装置は、舵取機構中に配した複動式の油圧シリンダ(パワー シリンダ)が発生する油圧力により舵取りを補助し、舵輪操作に要する労力負担 を軽減して、快適な操舵感覚を得ようとするものであり、前記パワーシリンダの 両シリンダ室(送油先)と、エンジンにて駆動される油圧ポンプ(油圧源)及び 作動油を収納する油タンク(排油先)との間に、舵輪に加わる操舵トルクの方向 及び大きさに応じて油圧の給排制御を行う油圧制御弁を介装してなる。 The hydraulic power steering system assists steering by the hydraulic pressure generated by the double-acting hydraulic cylinder (power cylinder) arranged in the steering mechanism, reducing the labor load required for steering wheel operation and making it comfortable. It is intended to obtain a steering feeling, both cylinder chambers of the power cylinder (oil destination), a hydraulic pump (hydraulic power source) driven by the engine, and an oil tank (drain destination) for storing hydraulic oil. A hydraulic control valve that controls the supply and discharge of hydraulic pressure according to the direction and magnitude of the steering torque applied to the steered wheels is interposed between the control valve and the control valve.

【0003】 前記油圧制御弁としては、舵輪の回転を直接的に利用する回転式の油圧制御弁 が一般的に用いられている。これは、舵輪に連なる入力軸と舵取機構に連なる出 力軸とをトーションバーを介して同軸的に連結し、一方の連結端に一体的に形成 したバルブスプールを、他方の連結端に係合された筒形のバルブボディーに同軸 上での相対回転自在に内嵌してなり、舵輪に操舵トルクが加えられたとき、前記 トーションバーの捩れに伴ってバルブボディーとバルブスプールとの間に相対角 変位を生ぜしめる構成となっている。As the hydraulic control valve, a rotary hydraulic control valve that directly uses the rotation of the steering wheel is generally used. This is because an input shaft connected to the steering wheel and an output shaft connected to the steering mechanism are coaxially connected via a torsion bar, and a valve spool integrally formed at one connecting end is connected to the other connecting end. When the steering torque is applied to the steered wheels, it is fitted inside the combined tubular valve body so that it can rotate relative to each other coaxially, and the twisting of the torsion bar causes a gap between the valve body and the valve spool. It has a structure that causes relative angular displacement.

【0004】 バルブボディーとバルブスプールとの嵌合周上には、各複数の油溝が等配され ており、これらは前記トーションバーに捩れが生じない状態で周方向に千鳥配置 され、前記油圧源及び排油先に夫々連通された給油室及び排油室と、給油室の両 側にて排油室との間に夫々位置し、送油先となる前記パワーシリンダの両シリン ダ室に各別に連通された一対の送油室とを構成している。これらの各室は、夫々 の油溝の側縁間に形成された絞り部を介して互いに相隣する室と連通させてあり 、これらの絞り部の絞り面積がバルブボディーとバルブスプールとの間の前記相 対角変位に応じて増減し、前述した給排制御に寄与するようになっている。A plurality of oil grooves are equally arranged on the fitting circumference of the valve body and the valve spool, and these oil grooves are arranged in a staggered manner in the circumferential direction in a state where the torsion bar is not twisted. It is located between the oil supply chamber and the oil discharge chamber, which are in communication with the oil source and the oil discharge destination, and between the oil discharge chambers on both sides of the oil supply chamber. A pair of oil feed chambers that communicate with each other are configured. Each of these chambers communicates with the adjacent chambers via a throttle formed between the side edges of the respective oil grooves, and the throttle area of these throttles is between the valve body and the valve spool. It increases or decreases in accordance with the above-mentioned relative angular displacement, and contributes to the above-mentioned supply / discharge control.

【0005】 即ち、バルブボディーとバルブスプールとの間に相対角変位が生じていない場 合、油圧源から給油室に供給される油圧は、該給油室両側の絞り部(制御絞り) を経て両側の送油室に均等に振り分けられ、パワーシリンダに送給されることな く各送油室の他側の絞り部(還流絞り)を経て排油室に導入されて、該排油室内 に一端を開口させた排油孔を経て油タンクに還流するのみであり、前記パワーシ リンダは何らの力も発生しないが、舵輪に操舵トルクが加えられ、バルブボディ ーとバルブスプールとの間に相対角変位が生じている場合、給油室両側の制御絞 りの絞り面積が、一方においては増加し、他方においては減少する結果、給油室 への供給油圧は、一側(絞り面積が増した側)の制御絞りを経て一方の送油室に 主として導入され、該送油室と他方の送油室との間、及びこれら夫々に連通させ てある前記パワーシリンダの両シリンダ室間に圧力差が生じ、該パワーシリンダ はこの圧力差に相当する油圧力を発生する。That is, when the relative angular displacement does not occur between the valve body and the valve spool, the hydraulic pressure supplied from the hydraulic pressure source to the oil supply chamber passes through the throttle parts (control throttles) on both sides of the oil supply chamber to both sides. Of the oil supply chambers, and is not fed to the power cylinder, but is introduced into the oil discharge chamber through the throttle portion (recirculation throttle) on the other side of each oil supply chamber, and once introduced into the oil discharge chamber. The power cylinder only returns to the oil tank through the oil drain hole that opens, but the steering torque is applied to the steering wheel and the relative angular displacement is generated between the valve body and the valve spool. If there is a problem, the throttling area of the control throttling on both sides of the lubrication chamber increases on one side and decreases on the other, and as a result, the hydraulic pressure supplied to the lubrication chamber is on one side (on the side where the throttle area is increased). Mainly in one oil transfer chamber via the control throttle Is introduced as a pressure difference between the oil feed chamber and the other oil feed chamber, and between both cylinder chambers of the power cylinders communicating with each other, and the power cylinder corresponds to this pressure difference. Generates hydraulic pressure.

【0006】 このとき生じる圧力差は、他側(絞り面積を減じた側)の制御絞りでの絞り面 積の減少程度に依存し、この減少程度は前記相対角変位の大きさ、即ち、舵輪に 加わる操舵トルクの大きさに対応する。従って、前記パワーシリンダが発生する 油圧力(操舵補助力)は、舵輪の操作方向に対応する向きと、舵輪に加わる操舵 トルクの大きさに対応する強さとを有することになり、舵取りを補助することが できる。なお、前記パワーシリンダの動作に伴って他方のシリンダ室から押出さ れる油は、前記油圧制御弁の他方の送油室に還流し、該送油室の一側にて絞り面 積が増した還流絞りを経て相隣する排油室に導入され、該排油室に一端を開口さ せた排油孔を経て前記油タンクに排出される。The pressure difference generated at this time depends on the reduction degree of the throttle area in the control throttle on the other side (the side where the throttle area is reduced), and this reduction degree is the magnitude of the relative angular displacement, that is, the steering wheel. Corresponds to the amount of steering torque applied to. Therefore, the hydraulic pressure (steering assist force) generated by the power cylinder has a direction corresponding to the operating direction of the steering wheel and a strength corresponding to the magnitude of the steering torque applied to the steering wheel, and assists the steering. be able to. The oil pushed out from the other cylinder chamber due to the operation of the power cylinder flows back to the other oil feed chamber of the hydraulic control valve, and the throttle area increases on one side of the oil feed chamber. The oil is introduced into the adjacent oil discharge chambers through the reflux throttle, and is discharged to the oil tank through an oil discharge hole having one end opened in the oil discharge chambers.

【0007】 さて、自動車の舵取りに要する力の大小は、車輪に作用する路面反力の大小に 依存し、停止時及び低速走行時等、路面反力が大きい走行状態においては、舵取 りに多大の力を要する一方、高速走行時等、路面反力が小さい走行状態において は、比較的小さい力にて舵取りを行い得る。このことから、動力舵取装置におけ る望ましい操舵補助力の増加特性は、図7に示す如く、操舵トルクの増加に対す る操舵補助力の増加程度が2段階に変化する特性、所謂2段折れ特性であると言 われている。The magnitude of the force required to steer an automobile depends on the magnitude of the road surface reaction force acting on the wheels. When the road surface reaction force is large, such as when the vehicle is stopped or running at low speed, While a large amount of force is required, steering can be performed with a relatively small force in a traveling state in which the road surface reaction force is small, such as during high-speed traveling. From this, as shown in FIG. 7, a desirable steering assist force increase characteristic in the power steering apparatus is a characteristic in which the degree of increase of the steering assist force with respect to the increase of the steering torque changes in two steps, so-called two-stage. It is said to have a fold characteristic.

【0008】 このような2段折れ特性が得られた場合、舵輪に加わる操舵トルクが小さく、 所定値T1 に達するまでの間(一定域)においては、略一定の小なる操舵補助力 が得られるのみであり、舵輪に適度の剛性が付与されて、高速走行時における直 進安定性を高めることができる。また、舵輪に加わる操舵トルクが大きく所定値 T2 に達した後(急増域)においては、操舵トルクの増大に応じて急激に増大す る舵補助力が得られ、舵取りのための舵輪操作に要する力を可及的に低減するこ とができる。更に、前記T1 とT2 との間(漸増域)においては、操舵トルクの 増大に応じて比例的に漸増する操舵補助力が得られ、舵輪操作の程度に応じて比 例的に増す抵抗が体感されて、自然な操舵感覚が得られることになる。When such a two-step bending characteristic is obtained, the steering torque applied to the steered wheels is small, and a substantially constant small steering assist force is obtained until a predetermined value T 1 is reached (constant range). However, since the steering wheel is provided with appropriate rigidity, it is possible to improve straight running stability during high-speed traveling. Further, after the steering torque applied to the steering wheel reaches a large value T 2 (rapid increase range), a steering assist force that sharply increases as the steering torque increases is obtained, and steering wheel operation for steering is performed. The required force can be reduced as much as possible. Further, between T 1 and T 2 (gradual increase region), a steering assist force that gradually increases in proportion to an increase in steering torque is obtained, and a resistance that increases in proportion to the degree of steering wheel operation. Will be experienced and a natural steering feeling will be obtained.

【0009】 動力舵取装置における操舵補助力は、パワーシリンダの両油室間に生じる圧力 差に対応し、この圧力差は、油圧制御弁の絞り部における絞り面積の変化に応じ て発生する。従って、前述した2段折れ特性を実現するためには、絞り部の絞り 面積が、バルブボディーとバルブスプールとの間の相対角変位の増加に応じて所 定の変化態様、即ち、前記相対角変位が所定の大きさに達するまでは略一定に維 持され、その後急激に変化するという変化態様を示す必要がある。The steering assist force in the power steering apparatus corresponds to a pressure difference generated between both oil chambers of the power cylinder, and this pressure difference occurs in accordance with a change in the throttle area in the throttle portion of the hydraulic control valve. Therefore, in order to realize the above-described two-step bending characteristic, the throttle area of the throttle portion changes in accordance with an increase in the relative angular displacement between the valve body and the valve spool, that is, the relative angle. It is necessary to show a mode of change in which the displacement is maintained substantially constant until it reaches a predetermined magnitude, and then rapidly changes.

【0010】 そこで従来から、絞り部を臨む前記油溝の側縁の角部に切欠き部を形成し、所 望の絞り面積の変化状態を得て、動力舵取装置における2段折れ特性を実現しよ うとした油圧制御弁が従来から種々提案されている。これらの内、前述した変化 態様を比較的忠実に実現できるものとして、例えば、図8に示す切欠き部を備え たものがある。Therefore, conventionally, a notch is formed at a corner of a side edge of the oil groove facing the throttle portion to obtain a desired state of change of the throttle area to obtain a two-step bending characteristic in a power steering apparatus. Various hydraulic control valves have been proposed in the past, which are intended to be realized. Among these, as one that can relatively faithfully realize the above-described change mode, there is, for example, one provided with a notch portion shown in FIG.

【0011】 図において4は、バルブボディー1に形成された油溝、5は、バルブスプール 2に形成された油溝である。バルブボディー1及びバルブスプール2は、共に円 筒形をなし、同軸上での相対回転自在に嵌合されているが、図8は、これらを直 線上に展開した図となっている。図示の如く油溝4,5は、バルブボディー1と バルブスプール2との間に相対角変位が生じていない場合、夫々の幅方向両側の 等面積の絞り部6,6を介して相互に連通するように位置決めされている。In the figure, 4 is an oil groove formed in the valve body 1, and 5 is an oil groove formed in the valve spool 2. The valve body 1 and the valve spool 2 both have a cylindrical shape and are fitted to each other so as to be rotatable relative to each other on the same axis. FIG. 8 is a diagram in which these are expanded in a straight line. As shown in the drawing, the oil grooves 4 and 5 communicate with each other through the throttle portions 6 and 6 having equal areas on both sides in the width direction when the relative angular displacement does not occur between the valve body 1 and the valve spool 2. It is positioned so that

【0012】 前記絞り部6を臨むバルブボディー1側の油溝4の側縁には、前述した如き絞 り面積の変化態様を実現する切欠き部40が形成されている。この切欠き部40は、 図示の如く、油溝4の側壁に基端を発し、バルブボディー1の内周面に略平行を なして延設された第1の部分 40aと、該部分 40aの先端とバルブボディー1の内 周面とを、夫々に交叉して連結する第2の部分 40bとを備えてなる。At the side edge of the oil groove 4 on the valve body 1 side that faces the throttle portion 6, a notch portion 40 that realizes the above-described mode of changing the throttle area is formed. As shown in the drawing, the notch 40 has a first end 40a extending from the side wall of the oil groove 4 and extending substantially parallel to the inner peripheral surface of the valve body 1, and the portion 40a. It is provided with a second portion 40b that connects the tip end and the inner peripheral surface of the valve body 1 so as to cross each other.

【0013】 図9は、前記切欠き部40を有する絞り部6における絞り面積の変化状態の説明 図である。バルブボディー1とバルブスプール2との相対角変位は、前記図8に 示す中立位置と、図9(c)に示す如く、第2の部分 40bとバルブボディー1の 内周との交叉部にバルブスプール2側の前記油溝5の側縁が達した位置、所謂、 締切り位置との間にて生じる。FIG. 9 is an explanatory diagram of a changing state of the aperture area in the aperture portion 6 having the cutout portion 40. The relative angular displacement between the valve body 1 and the valve spool 2 is caused by the valve at the intersection between the neutral position shown in FIG. 8 and the second portion 40b and the inner circumference of the valve body 1 as shown in FIG. 9 (c). It occurs between the position reached by the side edge of the oil groove 5 on the spool 2 side, a so-called shut-off position.

【0014】 この間、絞り部6の絞り面積は、図9(a)に示す如く、前記油溝5の側縁が バルブボディー1側の油溝4の側縁に整合するまでは急減するが、その後、図9 (b)に示す如く、第1,第2の部分 40a,40bの交叉部近傍に前記油溝5の側縁 が達するまでの間には、第1の部分 40aの深さ寸法aに支配されるようになり、 第1の部分 40aがバルブボディー1の外周面と略平行であることから、前記絞り 面積は相対角変位の増大に拘わらず略一定に維持され、図7における操舵補助力 の漸増域が得られる。During this time, the throttle area of the throttle portion 6 sharply decreases until the side edge of the oil groove 5 is aligned with the side edge of the oil groove 4 on the valve body 1 side, as shown in FIG. 9A. Then, as shown in FIG. 9 (b), until the side edge of the oil groove 5 reaches near the intersection of the first and second portions 40a, 40b, the depth dimension of the first portion 40a. Since the first portion 40a is substantially parallel to the outer peripheral surface of the valve body 1, the throttle area is maintained substantially constant regardless of an increase in relative angular displacement. A gradually increasing range of steering assist force can be obtained.

【0015】 更に大なる相対角変位が生じ、図9(c)に示す締切り位置に至るまでの間に は、絞り部6の絞り面積は、油溝5の側縁と第2の部分 40bとの間の周方向の隙 間sに支配されるようになり、この隙間sは、相対角変位の増大に応じて急激な 減少を示すことから、図7における操舵補助力の急増域が得られる。なお、前記 急増域に適宜の傾斜を与え、舵輪操作に際しての急激な抵抗感の変化を緩和する ために、バルブボディー1の内周と第2の部分 40bとの間には、45°前後の交叉 角θ(図10参照)が確保されている。By the time the greater relative angular displacement occurs and the shut-off position shown in FIG. 9C is reached, the throttle area of the throttle portion 6 is the side edge of the oil groove 5 and the second portion 40b. Between them, the clearance s in the circumferential direction becomes dominant, and this clearance s shows a sharp decrease in accordance with an increase in the relative angular displacement, so that a steep increase range of the steering assist force in FIG. 7 can be obtained. . It should be noted that, in order to give an appropriate inclination to the sudden increase area and to mitigate a sudden change in resistance when operating the steering wheel, there is a 45 ° angle between the inner circumference of the valve body 1 and the second portion 40b. The crossing angle θ (see Fig. 10) is secured.

【0016】[0016]

【考案が解決しようとする課題】[Problems to be solved by the device]

さて、以上の如き形状を有する切欠き部40は、絞り部6を臨むバルブスプール 2側の油溝5の側縁に形成してもよいが、実際には、加工上の制約により、バル ブボディー1側の油溝4の側縁に形成されることが多い。即ち、バルブボディー 1側の油溝4,4…の形成は、従来から、各油溝4,4…の形状に夫々対応する 複数の刃を周方向に等配をなして備えたブローチをバルブボディー1の材料とな る筒体の内側に貫入せしめるブローチ加工によって行われており、これらの油溝 4,4…側での切欠き部40の形成は、対応する刃の角部に切欠き部40の形状に対 応する突起を有するブローチを用いることにより、油溝4,4…の形成と同時に なし得るのに対し、バルブスプール2側の油溝5,5…は、バルブスプール2の 外周への溝加工により形成されるのが一般的であり、このような油溝5,5…の 側縁に前述した形状をなす切欠き部40,40…を形成するためには、夫々の側縁で の各別の溝加工が必要であり、多大の手間を要するためである。 The notch 40 having the above-described shape may be formed on the side edge of the oil groove 5 on the valve spool 2 side facing the throttle portion 6, but in reality, due to processing restrictions, the valve body is not formed. It is often formed on the side edge of the oil groove 4 on the first side. That is, the oil grooves 4, 4 on the side of the valve body 1 are conventionally formed by using a broach having a plurality of blades corresponding to the shapes of the oil grooves 4, 4, ... The broaching process is performed so that it penetrates into the inside of the cylinder that is the material of the body 1, and the cutouts 40 are formed on these oil grooves 4, 4 ... Side by forming cutouts at the corners of the corresponding blades. By using a broach having a protrusion corresponding to the shape of the portion 40, the oil grooves 4, 4 ... Can be formed simultaneously with the formation of the oil grooves 4, 5 ,. Generally, it is formed by groove processing on the outer circumference, and in order to form the cutouts 40, 40 ... Having the above-described shapes on the side edges of such oil grooves 5, 5 ,. This is because it is necessary to separately form grooves on the side edges, which requires a great deal of labor.

【0017】 ところが、バルブボディー1の内周面は、バルブスプール2との嵌合のために 高精度の仕上げ加工を必要とし、この仕上げ加工は、ブローチ加工による油溝4 及び切欠き部40の形成後に行われることから、両加工時における芯ずれにより、 バルブボディー1の内周面と切欠き部40の第2の部分 40bとの交叉線の位置が、 周方向にずれる不都合が生じる。However, the inner peripheral surface of the valve body 1 requires high-precision finishing for fitting with the valve spool 2, and this finishing requires that the oil groove 4 and the notch 40 are formed by broaching. Since it is performed after the formation, the position of the line of intersection between the inner peripheral surface of the valve body 1 and the second portion 40b of the cutout portion 40 is displaced in the circumferential direction due to the misalignment during the both processes.

【0018】 この様子を図10に示す。図示の油溝4の形成部位において、実線にて示す位置 にあるべきバルブボディー1の内周面が、加工時に生じたαなる芯ずれにより、 破線にて示す位置に変位した場合、バルブボディー1の内周面と切欠き部40の第 2の部分 40bとの交叉線は、バルブボディー1及びバルブスプール2の周方向に 、図中にβにて示す距離だけ変位することになる。This state is shown in FIG. When the inner circumferential surface of the valve body 1 which should be at the position shown by the solid line in the formation portion of the oil groove 4 shown in the figure is displaced to the position shown by the broken line due to the misalignment of α generated during processing, the valve body 1 The line of intersection between the inner peripheral surface and the second portion 40b of the cutout 40 is displaced in the circumferential direction of the valve body 1 and the valve spool 2 by the distance indicated by β in the figure.

【0019】 更に、油溝4はバルブボディー1の内周に複数個等配してあり、図示の油溝4 と半径方向に対向する位置にある油溝4においては、前記αなる大きさの芯ずれ が半径方向逆向きに生じていることから、これら夫々における切欠き部40の第2 の部分 40bとバルブボディー1の内周面との交叉線は、周方向に相対的に2βな る距離だけずれる。Further, a plurality of oil grooves 4 are equally arranged on the inner circumference of the valve body 1, and the oil groove 4 at a position radially opposed to the illustrated oil groove 4 has a size of α. Since the misalignment occurs in the radial opposite direction, the intersection line between the second portion 40b of the cutout portion 40 and the inner circumferential surface of the valve body 1 in each of these is 2β relatively in the circumferential direction. Only the distance is shifted.

【0020】 即ち、従来の油圧制御弁においては、バルブボディー1とバルブスプール2と の相対角変位により一部の絞り部6に前述した締切り状態が得られたとき、他の 絞り部6に前記芯ずれに伴う隙間が残存している虞がある、周方向に並ぶ複数の 絞り部6,6…での同時締切りを達成することが困難であり、作動油の流れが一 部の絞り部6に集中し、該絞り部6における油の通流に伴って耳障りな流動音が 発生し、運転者に不快感を与えるのみならず、前記絞り部6前後での急激な減圧 によりキャビテーションが発生し、一部の絞り部6のみが早期に損傷し、油圧制 御弁の正常な動作が阻害される虞があった。That is, in the conventional hydraulic control valve, when the above-described shut-off state is obtained in some throttle portions 6 due to the relative angular displacement between the valve body 1 and the valve spool 2, the other throttle portions 6 are subject to the above-mentioned shut-off state. It is difficult to achieve simultaneous shut-off at a plurality of throttle portions 6, 6 arranged side by side in the circumferential direction, which may leave a gap due to misalignment, and the flow of hydraulic oil is part of the throttle portion 6. And the flow of oil in the throttle 6 causes annoying flow noise, which not only makes the driver uncomfortable, but also causes cavitation due to a sudden pressure reduction before and after the throttle 6. However, there is a risk that only a part of the throttle portion 6 may be damaged early and the normal operation of the hydraulic control valve may be hindered.

【0021】 本考案は斯かる事情に鑑みてなされたものであり、前述の如き形状の切欠き部 の形成により得られる2段折れ特性を損なうことなく、各絞り部での実質的な同 時締切りが可能となり、作動油の通流に伴う流動音及びキャビテーションの発生 を抑制し得る油圧制御弁を提供することを目的とする。The present invention has been made in view of such circumstances, and it is possible to achieve substantially the same time in each narrowing portion without impairing the two-step folding characteristic obtained by forming the notch portion having the above-described shape. An object of the present invention is to provide a hydraulic control valve that can be shut off and can suppress the generation of flow noise and cavitation associated with the flow of hydraulic oil.

【0022】[0022]

【課題を解決するための手段】[Means for Solving the Problems]

本考案に係る油圧制御弁は、同軸上にて相対角変位する筒形のバルブボディー とバルブスプールとの嵌合周上に形成された各複数の油溝を千鳥配置し、油圧源 に連なる給油室と、排油先に連なる排油室と、両室間にて送油先に連なる送油室 とを並設してなり、これら各室を連通する絞り部の絞り面積を前記相対角変位に 応じて増減させ、前記送油先への送給油圧を制御する油圧制御弁において、前記 絞り部を臨むバルブボディー側の油溝の側縁に、前記相対角変位が所定の大きさ に達するまでの間、前記絞り面積を略一定に保つ形状を有する切欠き部を備え、 該切欠き部に対向するバルブスプール側の油溝の側縁に、周方向に所定の幅を有 する面取り部を備えることを特徴とする。 A hydraulic control valve according to the present invention has a plurality of oil grooves formed on the fitting circumference of a cylindrical valve body and a valve spool that are coaxially displaced relative to each other in a staggered arrangement, and is connected to a hydraulic source. Chamber, an oil discharge chamber connected to the oil discharge destination, and an oil feed chamber connected to the oil feed destination between the two chambers are arranged side by side. In the hydraulic control valve that controls the hydraulic pressure to be fed to the oil destination, the relative angular displacement reaches a predetermined magnitude at the side edge of the oil groove on the valve body side that faces the throttle portion. Until then, a chamfered portion having a predetermined width in the circumferential direction is provided at a side edge of the oil groove on the valve spool side facing the notched portion, the chamfered portion having a shape that keeps the throttle area substantially constant. It is characterized by including.

【0023】[0023]

【作用】[Action]

本考案においては、バルブボディー側の油溝の側縁には、絞り面積を一定に保 つ作用をなす部分のみからなる切欠き部を設け、バルブボディーの内周と切欠き 部との交叉線が周方向の位置ずれすることを防ぐと共に、前記切欠き部に対向す るバルブスプール側の油溝の側縁に所定幅の面取り部を形成し、この面取り部に より、前記第2の部分の作用、即ち、締切り前における絞り面積の急減作用を行 わせ、切欠き部と面取り部との相乗作用により2段折れ特性を実現する。 In the present invention, a notch portion is provided at the side edge of the oil groove on the valve body side, and only a portion that acts to keep the throttle area constant is provided, and the intersection line between the inner periphery of the valve body and the notch portion is provided. Is prevented from being displaced in the circumferential direction, and a chamfered portion having a predetermined width is formed on the side edge of the oil groove on the valve spool side facing the notch portion, and the chamfered portion causes the second portion to move. That is, the drawing area is sharply reduced before the cutoff, and the two-step folding characteristic is realized by the synergistic effect of the notch and the chamfer.

【0024】[0024]

【実施例】【Example】

以下本考案をその実施例を示す図面に基づいて詳述する。図1は、動力舵取装 置の油圧回路と共に示す本考案に係る油圧制御弁の横断面図である。 Hereinafter, the present invention will be described in detail with reference to the drawings showing an embodiment thereof. FIG. 1 is a transverse sectional view of a hydraulic control valve according to the present invention, which is shown together with a hydraulic circuit of a power steering device.

【0025】 図中1はバルブボディー、2はバルブスプールである。円筒形をなすバルブボ ディー1の内周面には、互いに等しい所定の幅を有する8本の油溝4,4…が、 周方向に等配をなして形成されている。また、バルブボディー1の内径と略等し い外径を有する厚肉の円筒形をなすバルブスプール2の外周面には、同様に、互 いに等しい所定の幅を有する8本の油溝5,5…が、周方向に等配をなして形成 されている。In the figure, 1 is a valve body and 2 is a valve spool. On the inner peripheral surface of the cylindrical valve body 1, eight oil grooves 4, 4 ... Having a predetermined width equal to each other are formed at equal intervals in the circumferential direction. Further, on the outer peripheral surface of the valve spool 2 having a thick cylindrical shape having an outer diameter substantially equal to the inner diameter of the valve body 1, similarly, eight oil grooves 5 having mutually equal predetermined widths are formed. , 5 ... Are formed so as to be evenly arranged in the circumferential direction.

【0026】 バルブスプール2は、同軸上での相対回転自在にバルブボディー1に内嵌して あり、両者は、バルブスプール2の内側に挿通されたトーションバー3により相 互に連結されている。バルブボディー1側の油溝4,4…とバルブスプール2側 の油溝5,5…とは、前記トーションバー3に捩れが生じていない中立状態にお いて、図示の如く周方向に千鳥配置され、夫々の両側の等幅の間隙を介して相隣 するものと連通するように位置決めされている。The valve spool 2 is internally fitted to the valve body 1 so as to be rotatable relative to each other on the same axis, and both are mutually connected by a torsion bar 3 inserted inside the valve spool 2. The oil grooves 4, 4 on the valve body 1 side and the oil grooves 5, 5 on the valve spool 2 side are staggered in the circumferential direction as shown in the drawing in a neutral state where the torsion bar 3 is not twisted. And are positioned so as to communicate with the adjacent ones through the uniform width gaps on both sides.

【0027】 以上の構成により、バルブボディー1側の油溝4,4…とバルブスプール2の 外周面との間、及びバルブスプール2側の油溝5,5…とバルブボディー1の内 周面との間に夫々形成された各8つの油室がバルブボディー1とバルブスプール 2との嵌合周上に交互に並設されたことになり、これら各室を連通する前記間隙 は、トーションバー3の捩れに伴って生じるバルブボディー1とバルブスプール 2との間の相対角変位に応じて、その絞り面積を変化する絞り部6,6…として 機能する。With the above structure, between the oil grooves 4, 4 on the valve body 1 side and the outer peripheral surface of the valve spool 2, and between the oil grooves 5, 5 on the valve spool 2 side and the inner peripheral surface of the valve body 1. The eight oil chambers respectively formed between the two chambers are alternately arranged in parallel on the fitting circumference of the valve body 1 and the valve spool 2, and the gaps communicating these chambers are formed by the torsion bar. ... function as throttle portions 6, 6 ... Which change the throttle area according to the relative angular displacement between the valve body 1 and the valve spool 2 caused by the twist of the valve 3.

【0028】 前記油溝5,5…外側の前記8つの油室の内、1つおきに位置する4つの油室 は、バルブボディー1の周壁を貫通する各別の導油孔を介して油圧源たる油圧ポ ンプPの吐出側に接続され、該油圧ポンプPの発生油圧が供給される給油室10, 10…を構成している。また、残りの4つの油室の内、半径方向に対向して位置す る2つは、バルブスプール2を半径方向に貫通する各別の排油孔及びバルブスプ ール2内側の中空部を介して排油先となる油タンクTに接続され、該油タンクT への排出油の通路となる排油室 11a,11aを構成しており、残りの2つは、油圧ポ ンプP、油タンクT、及び後述するパワーシリンダSのシリンダ室SR ,SL の いずれにも接続されておらず、単に油の通路として機能する通油室 11b,11bを構 成している。Out of the eight oil chambers on the outside of the oil grooves 5, 5, ..., four oil chambers located at every other one of the eight oil chambers are hydraulically operated through respective oil guide holes penetrating the peripheral wall of the valve body 1. Connected to the discharge side of the source hydraulic pump P, the oil supply chambers 10, 10 ... To which the generated hydraulic pressure of the hydraulic pump P is supplied are configured. Further, of the remaining four oil chambers, the two located opposite to each other in the radial direction are provided with respective separate oil drain holes penetrating the valve spool 2 in the radial direction and hollow portions inside the valve spool 2. Is connected to an oil tank T which is an oil discharge destination, and constitutes oil discharge chambers 11a and 11a which are passages of the oil discharged to the oil tank T. The remaining two are a hydraulic pump P and an oil tank. T, and the cylinder chamber S R to be described later power cylinder S, not connected to any of S L, is simply Configure the passing oil chamber 11b, 11b which serves as a passage for oil.

【0029】 なお、このような通油室 11b,11bを備えた油圧制御弁は、内部流動音の低減を 図るべく本願出願人により提案されたものであり、実開平2-26974号に開示され ているが、本考案の適用は、これらの通油室 11b,11bを備えない一般的な油圧制 御弁においても可能である。The hydraulic control valve provided with such oil passage chambers 11b and 11b was proposed by the applicant of the present application in order to reduce internal flow noise, and is disclosed in Japanese Utility Model Laid-Open No. 2-26974. However, the present invention can be applied to a general hydraulic control valve that does not include these oil passage chambers 11b and 11b.

【0030】 一方、前記油溝4,4…内側の前記8つの油室の内、周方向の同側から前記給 油室10,10…の相隣する4つは、バルブボディー1の周壁を貫通する各別の導油 孔を介して、油圧の送給先であるパワーシリンダSの一方のシリンダ室SR に接 続され、該シリンダ室SR への送油室12,12…を構成しており、残りの4つの油 室は、同じくパワーシリンダSの他方のシリンダ室SL に連なる送油室13,13… を構成している。On the other hand, among the eight oil chambers inside the oil grooves 4, 4, ..., four adjacent to the oil supply chambers 10, 10 ... from the same side in the circumferential direction are the peripheral walls of the valve body 1. The oil supply chambers 12, 12, ... To the cylinder chamber S R are connected to one cylinder chamber S R of the power cylinder S, which is the destination of the hydraulic pressure, through the respective oil passage holes penetrating therethrough. The remaining four oil chambers also constitute oil feed chambers 13, 13 ... Which are connected to the other cylinder chamber S L of the power cylinder S.

【0031】 図2は、バルブボディー1とバルブスプール2との嵌合周上に並ぶ前記各室を 直線展開して示す説明図である。前述した構成により給油室10の一側には、送油 室12(又は送油室13)を経て排油室 11aに至る油路が、また他側には、送油室13 (又は送油室12)を経て通油室 11bに至り、更に、該通油室 11bの他側に相隣す る送油室12(又は送油室13)を経て他の給油室10に至る油路が、各室間を各別の 絞り部6,6…により連通して形成される。FIG. 2 is an explanatory view showing the respective chambers lined up on the fitting circumference of the valve body 1 and the valve spool 2 by linearly expanding them. With the configuration described above, the oil passage extending from the oil feed chamber 12 (or the oil feed chamber 13) to the oil drain chamber 11a is provided on one side of the oil feed chamber 10, and the oil feed chamber 13 (or the oil feed chamber 13 is provided on the other side). Through the chamber 12) to the oil passage chamber 11b, and further to the other oil supply chamber 10 via the oil feed chamber 12 (or the oil feed chamber 13) adjacent to the other side of the oil passage chamber 11b. , The respective chambers are communicated with each other by the narrowed portions 6, 6 ...

【0032】 各室両側の絞り部6,6は、夫々の形成位置の関係上、バルブボディー1とバ ルブスプール2との相対角変位に対して互いに逆向きの開閉動作をなす。即ち、 一方の送油室12(又は送油室13)と、給油室10、排油室 11a又は通油室 11bとの 間の絞り部6の絞り面積が減少する場合、他方の送油室13(又は送油室12)にお ける同種の絞り部6の絞り面積は増加する。The throttle portions 6 and 6 on both sides of each chamber open and close in opposite directions with respect to the relative angular displacement between the valve body 1 and the valve spool 2 due to their respective forming positions. That is, when the throttle area of the throttle portion 6 between the oil supply chamber 12 (or the oil supply chamber 13) and the oil supply chamber 10, the oil discharge chamber 11a or the oil passage chamber 11b decreases, the other oil supply chamber The throttle area of the throttle portion 6 of the same type in 13 (or the oil supply chamber 12) increases.

【0033】 さて本考案に係る油圧制御弁においては、通油室 11bと送油室12,13との間の 絞り部6,6を臨むバルブボディー1側の油溝4の側縁に切欠き部7が、この切 欠き部7に対向する油溝5の側縁に面取り部8が夫々形成してあり、残りの絞り 部6,6…を臨むバルブスプール2側の油溝5の側縁に切欠き部9が形成してあ る。In the hydraulic control valve according to the present invention, the notch is formed in the side edge of the oil groove 4 on the valve body 1 side facing the throttle portions 6 and 6 between the oil passage chamber 11b and the oil feed chambers 12 and 13. The chamfered portion 8 is formed on the side edge of the oil groove 5 facing the cutout portion 7, and the side edge of the oil groove 5 on the valve spool 2 side facing the remaining throttle portions 6, 6 ... A notch 9 is formed on the bottom.

【0034】 図3は、切欠き部7の拡大図である。図示の如く切欠き部7は、従来の油圧制 御弁における切欠き部40と同様、油溝4の側壁に基端を発し、バルブボディー1 の内周面に略平行をなして延設された第1の部分7aと、該部分7aの先端とバルブ ボディー1の内周面とを夫々に交叉して連結する第2の部分7bとを備えてなる。 バルブボディー1の内周と第2の部分7bとの間の交叉角θは、従来の切欠き部40 とは異なり、直角に近い角度、具体的には、75°前後の角度としてある。FIG. 3 is an enlarged view of the cutout portion 7. As shown in the drawing, the cutout portion 7 has a base end that extends from the side wall of the oil groove 4 and extends substantially parallel to the inner peripheral surface of the valve body 1, as with the cutout portion 40 in the conventional hydraulic control valve. Further, it is provided with a first portion 7a and a second portion 7b which connects the tip of the portion 7a and the inner peripheral surface of the valve body 1 so as to cross each other. The crossing angle θ between the inner circumference of the valve body 1 and the second portion 7b is different from the conventional cutout 40, and is an angle close to a right angle, specifically, an angle of about 75 °.

【0035】 以上の如き切欠き部7の形成は、従来と同様、ブローチ加工による油溝4,4 …の形成と同時に行われ、前述の如くこの後、バルブスプール2との嵌合のため にバルブボディー1の内周面に仕上げ加工が施される。従って、本考案に掛かる 油圧制御弁においてもまた、図3に示す如く、両加工時に生じたαなる芯ずれに より、バルブボディー1の内周面と第2の部分7bとの交叉線に、周方向にβなる 大きさの位置ずれが生じる。The notch 7 as described above is formed at the same time as the formation of the oil grooves 4, 4, ... By broaching, as in the conventional case, and as described above, thereafter, for fitting with the valve spool 2. The inner peripheral surface of the valve body 1 is finished. Therefore, also in the hydraulic control valve according to the present invention, as shown in FIG. 3, due to the center misalignment α generated during both processes, the crossing line between the inner peripheral surface of the valve body 1 and the second portion 7b is A positional deviation of β is generated in the circumferential direction.

【0036】 ところが、切欠き部7の第2の部分7bは、直角に近い交叉角θを有してバルブ ボディー1の内周に交叉しているから、前述した位置ずれ量βを極めて小さく保 つことができる。このことは図3と図10との比較から明らかである。なお、前記 位置ずれ量βの極小化のためには、前記交叉角θを直角(=90°)とするのが望 ましいが、実際の交叉角θは、加工上の制約により直角よりも小さい角度とせざ るを得ず、前述した如く75°前後とする。However, since the second portion 7b of the cutout portion 7 intersects with the inner circumference of the valve body 1 with a crossing angle θ close to a right angle, the above-mentioned positional deviation β is kept extremely small. Can be done. This is clear from the comparison between FIG. 3 and FIG. It is desirable that the crossing angle θ be a right angle (= 90 °) in order to minimize the amount of positional deviation β, but the actual crossing angle θ is smaller than the right angle due to processing restrictions. It is unavoidable that the angle is small, and it is set to around 75 ° as described above.

【0037】 一方、切欠き部7に対向して油溝5の側縁に形成された面取り部8は、周方向 に所定の幅bを有し、油溝5の側壁とバルブスプール2の外周面とに夫々45°前 後の角度をなして交叉する直線状の切欠きであり、また、切欠き部7を有しない 絞り部6を臨む油溝5の側縁に形成された切欠き部9は、切欠き部7と面取り部 8とを合わせた深さ及び周方向幅Bを有する直線状又は円弧状の切欠きであって 、このような面取り部8及び切欠き部9は、バルブスプール2の外周に油溝5, 5…を穿設した後、これらの両側の角部を研削することにより、周方向の幅寸法 b及びBを精度良く管理しつつ容易に形成し得る。On the other hand, the chamfered portion 8 formed on the side edge of the oil groove 5 facing the cutout portion 7 has a predetermined width b in the circumferential direction, and has a side wall of the oil groove 5 and the outer periphery of the valve spool 2. It is a linear notch that intersects the surface at an angle of 45 ° before and after, and a notch formed on the side edge of the oil groove 5 that faces the throttle 6 without the notch 7. Reference numeral 9 is a linear or arcuate notch having a depth and a circumferential width B in which the notch 7 and the chamfer 8 are combined. After the oil grooves 5, 5, ... Are bored on the outer circumference of the spool 2, the corner portions on both sides of these oil grooves are ground, so that the width dimensions b and B in the circumferential direction can be easily formed while accurately controlling them.

【0038】 図1及び図2は、バルブボディー1とバルブスプール2との間に相対角変位が 生じていない状態(中立状態)を示している。この場合、前記各室間の絞り部6 ,6…は相等しい絞り面積を有して図示の如く開放された状態にあり、油圧ポン プPから給油室10に供給される圧油は両側の油路に均等に配分され、送油室12又 は13を経て排油室 11aに達し、これら夫々に開口する排油孔を経てバルブスプー ル2の中空部内に流れ込み、該中空部内にて合流して油タンクTに還流する。1 and 2 show a state (neutral state) in which relative angular displacement is not generated between the valve body 1 and the valve spool 2. In this case, the throttle portions 6, 6 between the chambers have the same throttle area and are in an open state as shown in the drawing, and the pressure oil supplied from the hydraulic pump P to the oil supply chamber 10 is on both sides. The oil is evenly distributed to the oil passages, reaches the oil discharge chamber 11a via the oil supply chamber 12 or 13, and flows into the hollow portion of the valve spool 2 through the oil discharge holes opening to each of them, and joins in the hollow portion. Then, the oil is returned to the oil tank T.

【0039】 従ってこのとき、前記送油室12,13間、及びこれら夫々に接続されたパワーシ リンダSの両シリンダ室SR ,SL 間に圧力差は発生せず、該パワーシリンダS はなんらの力も発生しない。また、油圧ポンプPから油タンクTに至る油路中に 大なる通流抵抗を発する部分が存在しないから、前記油圧ポンプPの駆動負荷は 小さく保たれる。Therefore, at this time, no pressure difference is generated between the oil feed chambers 12 and 13 and between both cylinder chambers S R and S L of the power cylinder S connected to each of them, and the power cylinder S is The power of does not occur. Further, since there is no portion that generates a great flow resistance in the oil passage from the hydraulic pump P to the oil tank T, the driving load of the hydraulic pump P is kept small.

【0040】 一方、バルブボディー1に対してバルブスプール2が、例えば、図1における 時計回りに相対回転した場合、両者の相対角変位の増加に応じて、一方の送油室 12と給油室10との間の絞り部6、及び他方の送油室13と排油室 11aとの間の絞り 部6の絞り面積が夫々増大し、給油室10と送油室13との間、及び送油室12と排油 室 11aとの間の絞り部6,6の絞り面積が夫々減少する。更に、送油室12,13と 通油室 11bとの間においては、排油室 11aの両側と同様に、送油室13側の絞り部 6の絞り面積が増大し、送油室12側の絞り部6の絞り面積が減少する。On the other hand, when the valve spool 2 rotates relative to the valve body 1 in the clockwise direction in FIG. 1, for example, one of the oil supply chamber 12 and the oil supply chamber 10 increases in accordance with an increase in relative angular displacement between the two. Between the oil supply chamber 10 and the oil supply chamber 13 and between the oil supply chamber 13 and the oil discharge chamber 11a. The throttle areas of the throttle portions 6 and 6 between the chamber 12 and the oil discharge chamber 11a respectively decrease. Further, between the oil feed chambers 12 and 13 and the oil feed chamber 11b, the throttling area of the throttle portion 6 on the oil feed chamber 13 side increases and the oil feed chamber 12 side increases, as on both sides of the oil drain chamber 11a. The squeezing area of the squeezing portion 6 is reduced.

【0041】 このとき、給油室10への供給油の大部分は、絞り面積を増した側の絞り部6を 経て送油室12内に導入され、残りの一部が絞り面積を減じた側の絞り部6を経て 送油室13に漏れ出す。また一方、送油室12への導入油の一部は、これの他側にお いて絞り面積を減じた絞り部6を経て、通油室 11b及び送油室13に漏れ出す。従 って、送油室12の内圧は給油室5と略等圧に保たれるのに対し、送油室13の内圧 は、該送油室13と給油室10との間、及び送油室12と通油室 11bとの間にて、夫々 の絞り面積を減じた絞り部6の通油に伴う減圧分だけ低下することになり、送油 室12,13間、及びこれら夫々に連通されたシリンダ室SR ,SL 間には、絞り面 積を減じた絞り部6,6…での減圧量に相当する圧力差が生じ、パワーシリンダ Sは、シリンダ室SR からSL に向かう油圧力を発生する。At this time, most of the oil supplied to the oil supply chamber 10 is introduced into the oil supply chamber 12 via the throttle portion 6 on the side where the throttle area is increased, and the remaining part is on the side where the throttle area is decreased. The oil leaks into the oil supply chamber 13 through the throttle portion 6 of the. On the other hand, a part of the oil introduced into the oil feed chamber 12 leaks into the oil feed chamber 11b and the oil feed chamber 13 via the throttle portion 6 having a reduced throttle area on the other side. Therefore, the internal pressure of the oil feed chamber 12 is maintained substantially equal to that of the oil feed chamber 5, while the internal pressure of the oil feed chamber 13 is set between the oil feed chamber 13 and the oil feed chamber 10 and between the oil feed chamber 5 and the oil feed chamber 10. Between the chamber 12 and the oil passage chamber 11b, the pressure is reduced by the amount of pressure reduction due to the oil passage of the throttle portion 6 in which the throttle area is reduced. between been cylinder chamber S R, S L, caused a pressure difference corresponding to the pressure reduction amount in the throttle portion 6, 6 ... minus the stop surface product is, the power cylinder S from the cylinder chamber S R to S L Generates an oncoming hydraulic pressure.

【0042】 パワーシリンダSが発生する油圧力は、前記各絞り部6において生じる絞り面 積の減少程度に依存し、この絞り面積の減少は、バルブボディー1とバルブスプ ール2との間の相対角変位に応じて生じる一方、この相対角変位は、バルブボデ ィー1とバルブスプール2とを連結するトーションバー3に捩れを生ぜしめるべ く加えられた力の大きさに対応する。従って、トーションバー3に舵輪(ステア リングホィール)に加わる操舵トルクを作用させた場合、パワーシリンダSが発 生する操舵補助力は、舵輪に加わる操舵トルクの方向及び大きさに対応すること になる。The hydraulic pressure generated by the power cylinder S depends on the degree of reduction of the throttle area that occurs in each of the throttle portions 6, and the reduction of the throttle area causes the relative reduction between the valve body 1 and the valve spool 2. While occurring in response to the angular displacement, this relative angular displacement corresponds to the magnitude of the force applied to the torsion bar 3 connecting the valve body 1 and the valve spool 2 so as to twist the torsion bar 3. Therefore, when the steering torque applied to the steered wheels is applied to the torsion bar 3, the steering assist force generated by the power cylinder S corresponds to the direction and magnitude of the steering torque applied to the steered wheels. .

【0043】 なお、パワーシリンダSの前述した動作に伴って、一方のシリンダ室SL 内の 封入油が押し出されるが、この油は、前記シリンダ室SL に連通する送油室13に 還流し、前記給油室10からの漏出し油と合流して、該送油室13の他側において絞 り面積を増した状態にある絞り部6を経て前記排油室 11aに抵抗なく流入し、バ ルブスプール2の中空部を経て油タンクTに排出される。Note that, with the above-described operation of the power cylinder S, the enclosed oil in one cylinder chamber S L is pushed out, but this oil is returned to the oil feed chamber 13 communicating with the cylinder chamber S L. , Joins the oil leaking from the oil supply chamber 10 and flows into the oil discharge chamber 11a without resistance through the throttle portion 6 on the other side of the oil supply chamber 13 where the throttle area is increased. The oil is discharged to the oil tank T through the hollow portion of the lube spool 2.

【0044】 以上の如き動作中における絞り部6の絞り面積の変化状態を、図2と同様に直 線展開して図4、図5及び図6に示す。なお、各図中の白抜矢符は、バルブボデ ィー1に対するバルブスプール2の移動方向を示している。The changing state of the aperture area of the aperture section 6 during the above-described operation is shown in FIGS. 4, 5 and 6 which is linearly expanded as in FIG. The white arrow in each drawing indicates the moving direction of the valve spool 2 with respect to the valve body 1.

【0045】 バルブボディー1とバルブスプール2との相対角変位は、図1及び図2に示す 中立位置から、図4に示す第1中間位置、図5に示す第2中間位置を経て、図6 に示す如く、送油室13と給油室10との間の絞り部6、及び給油室12と通油室 11b との間の絞り部6が閉止する位置(締切り位置)に至るまでの間にて生じる。そ してこの間、切欠き部9を備えた送油室13と給油室10との間の絞り部6の絞り面 積は、相対角変位の増加に応じて略比例的に減少するのに対し、バルブボディー 1側の切欠き部7とバルブスプール2側の面取り部8とを備えた給油室12と通油 室 11bとの間の絞り部6の絞り面積は、前記相対角変位に応じて次の如き変化態 様を示す。The relative angular displacement between the valve body 1 and the valve spool 2 is calculated from the neutral position shown in FIGS. 1 and 2 through the first intermediate position shown in FIG. 4 and the second intermediate position shown in FIG. As shown in FIG. 4, the throttle portion 6 between the oil supply chamber 13 and the oil supply chamber 10 and the throttle portion 6 between the oil supply chamber 12 and the oil passage chamber 11b reach a position (closed position) to be closed. Occurs. During this time, the throttle area of the throttle portion 6 between the oil supply chamber 13 having the cutout portion 9 and the oil supply chamber 10 decreases substantially proportionally as the relative angular displacement increases. The throttle area of the throttle portion 6 between the oil supply chamber 12 having the cutout portion 7 on the valve body 1 side and the chamfered portion 8 on the valve spool 2 side and the oil passage chamber 11b depends on the relative angular displacement. The following changes are shown.

【0046】 図4に示す第1中間位置は、バルブスプール2側の油溝5の側壁がバルブボデ ィー1側の油溝4の側壁と周方向に略整合した位置であり、また、図5に示す第 2中間位置は、バルブスプール2側の油溝5の側壁が、前記切欠き部7における 第1の部分7aと第2の部分7bとの交叉線に整合した位置である。中立位置から第 1中間位置に至るまでの間においては、絞り部6の絞り面積は急減するが、第1 中間位置から第2中間位置に至るまでの間においては、絞り部6の絞り面積は、 切欠き部7の第1の部分7aの深さ寸法aに支配されるようになり、第1の部分7a がバルブボディー1の外周と略平行をなすことから、相対角変位の増大に拘わら ず絞り面積が略一定に維持される。The first intermediate position shown in FIG. 4 is a position where the side wall of the oil groove 5 on the valve spool 2 side is substantially aligned with the side wall of the oil groove 4 on the valve body 1 side in the circumferential direction. The second intermediate position shown in is the position where the side wall of the oil groove 5 on the valve spool 2 side is aligned with the intersection line of the first portion 7a and the second portion 7b in the cutout portion 7. From the neutral position to the first intermediate position, the aperture area of the aperture section 6 decreases sharply, but from the first intermediate position to the second intermediate position, the aperture area of the aperture section 6 decreases. The depth dimension a of the first portion 7a of the cutout portion 7 is dominated, and the first portion 7a is substantially parallel to the outer circumference of the valve body 1. The squeezing area is maintained substantially constant.

【0047】 更に相対角変位が増し、第2中間位置を超えて締切り位置に達するまでの間に おいては、絞り部6の絞り面積は、切欠き部7の第2の部分7bとバルブボディー 1の内周面との交叉線と、油溝5側縁の面取り部8とバルブスプール2の外周と の交叉線との間の周方向の隙間sに支配されるようになり、相対角変位の増大に 応じて急激な減少を示す。Until the relative angular displacement further increases and reaches the shut-off position beyond the second intermediate position, the throttle area of the throttle portion 6 is the same as that of the second portion 7b of the notch portion 7 and the valve body. 1 is controlled by the gap s in the circumferential direction between the line of intersection with the inner peripheral surface of No. 1 and the line of intersection between the chamfered portion 8 on the side edge of the oil groove 5 and the outer periphery of the valve spool 2, and relative angular displacement Shows a sharp decrease with increasing.

【0048】 パワーシリンダSの左右のシリンダ室SR ,SL 間の圧力差は、給油室12と通 油室 11bとの間の絞り部6でのこのような絞り面積の減少と、送油室13と給油室 10との間の絞り部6での略比例的な絞り面積の減少とにより支配されるから、第 1の中間位置と第2の中間位置との間では、操舵トルクの増大に対して小なる増 加率を示し、図7における操舵補助力の漸増域が得られ、第2の中間位置と締切 り位置との間では、給油室12と通油室 11bとの間の絞り部6での絞り面積の急減 に応じて、大なる増加率を示すようになり、図7における操舵補助力の急増域が 得られる。The pressure difference between the left and right cylinder chambers S R, S L of the power cylinder S is a reduction of such restriction area at the throttle portion 6 between the oil supply chamber 12 and the oil passage chamber 11b, the oil feed The steering torque is increased between the first intermediate position and the second intermediate position because it is governed by the substantially proportional reduction of the throttle area in the throttle portion 6 between the chamber 13 and the fuel supply chamber 10. A small increase rate is shown, and the gradual increase region of the steering assist force in Fig. 7 is obtained, and between the second intermediate position and the dead position, between the oil supply chamber 12 and the oil passage chamber 11b. As the throttle area in the throttle section 6 decreases sharply, a large increase rate is exhibited, and a steep increase area of the steering assist force in FIG. 7 is obtained.

【0049】 本考案に係る油圧制御弁においては、バルブボディー1側に形成される切欠き 部7の第2の部分7bとバルブボディー1の内周とが略直角をなして交叉しており 、この交叉線の周方向位置に切欠き部7及びバルブボディー1の内周面の加工時 における芯ずれの影響が殆ど生じず、またバルブスプール2側の面取り部8及び 切欠き部9は、夫々の周方向幅b及びBを精度良く管理して形成し得る。従って 、バルブボディー1及びバルブスプール2の嵌合周上に図1に示す如く並設され た全ての絞り部6,6…において、図6に示す如き締切り状態を略同時的に得る ことができる。In the hydraulic control valve according to the present invention, the second portion 7b of the cutout portion 7 formed on the valve body 1 side and the inner circumference of the valve body 1 intersect at a substantially right angle, The notch 7 and the notch 9 on the valve spool 2 side are not affected by misalignment at the time of machining the inner peripheral surface of the valve body 1 at the circumferential position of the crossover line. The widths b and B in the circumferential direction can be accurately managed and formed. Therefore, in all the throttle portions 6, 6 ... Arranged side by side on the fitting circumference of the valve body 1 and the valve spool 2 as shown in FIG. 1, the shut-off state as shown in FIG. 6 can be obtained almost simultaneously. .

【0050】 また、前記切欠き部7に対向するバルブスプール2側の油溝5の側縁に面取り 部8が設けてあることから、締切り位置前の絞り面積に適度の変化率を付与でき 、この間に得られる操舵補助力の急増域に所定の傾斜を確保して、舵輪操作に際 しての急激な抵抗感の変化を緩和することが可能である。Further, since the chamfered portion 8 is provided on the side edge of the oil groove 5 on the valve spool 2 side facing the cutout portion 7, it is possible to impart an appropriate change rate to the throttle area before the shutoff position. It is possible to secure a predetermined inclination in the area where the steering assist force is rapidly increased during this period, and to mitigate a sudden change in resistance during steering wheel operation.

【0051】 つまり本考案に係る油圧制御弁においては、絞り部6に臨ませて設けられた切 欠き部7と面取り部8との相乗作用により、図7に示す如き2段折れ特性を達成 できると共に、バルブスプール2側の面取り部8の作用により前記急増域での傾 斜を確保できることから、切欠き部7の第2の部分7bをバルブボディー1の内周 に略直角をなしてに交叉させることにより、両者の交叉線においてバルブボディ ー1の内周加工の影響により生じる位置ずれを未然に回避でき、複数か所の絞り 部6,6…での同時締切りが達成されて、締切り前に一部の絞り部6に流れが集 中することがなく、この集中に起因する流動音の発生及びキャビテーションの発 生の虞を緩和できる。That is, in the hydraulic control valve according to the present invention, the two-step folding characteristic as shown in FIG. 7 can be achieved by the synergistic action of the notch portion 7 and the chamfer portion 8 which are provided so as to face the throttle portion 6. At the same time, the chamfered portion 8 on the side of the valve spool 2 can secure the inclination in the sudden increase area. Therefore, the second portion 7b of the cutout portion 7 intersects the inner periphery of the valve body 1 at a substantially right angle. By doing so, it is possible to avoid the positional deviation caused by the inner peripheral processing of the valve body 1 on the intersection line of both, and the simultaneous closing at the multiple throttle parts 6, 6 ... In addition, the flow does not concentrate in a part of the throttle portions 6, and it is possible to mitigate the risk of flow noise and cavitation caused by this concentration.

【0052】 なお本実施例においては、バルブボディー1の油溝4,4…により、送油先と なるパワーシリンダSの両シリンダ室SR ,SL に連通する送油室12,13を構成 し、バルブスプール2側の油溝5,5…により、油圧ポンプPと油タンクTとに 夫々連通する給油室10及び排油室 11a、並びに通油室 11bを構成したが、逆に、 油溝4,4…により給油室10、排油室 11a及び通油室 11bを構成し、油溝5,5 …により送油室12,13を構成してもよい。[0052] In the present embodiment, constituted by the oil grooves 4, 4 ... valve body 1, two cylinder chambers S R of the power cylinder S serving as the oil supply destination, the oil transfer chambers 12 and 13 communicating with the S L Then, the oil grooves 5, 5 on the side of the valve spool 2 constitute the oil supply chamber 10, the oil discharge chamber 11a, and the oil communication chamber 11b, which communicate with the hydraulic pump P and the oil tank T, respectively. The oil supply chamber 10, the oil discharge chamber 11a and the oil passage chamber 11b may be configured by the grooves 4, 4, ... And the oil supply chambers 12, 13 may be configured by the oil grooves 5, 5 ,.

【0053】 また本実施例においては、バルブボディー1とバルブスプール2との嵌合周上 に並ぶ絞り部6,6…の内、一部の絞り部6,6…、具体的には通油室 11bの両 側の絞り部6,6…にのみ切欠き部7及び面取り部8を設けたが、全ての絞り部 6,6…に切欠き部7及び面取り部8を設けてもよい。Further, in the present embodiment, among the throttle portions 6, 6 ... Lined up on the fitting circumference of the valve body 1 and the valve spool 2, a part of the throttle portions 6, 6 ,. The cutouts 7 and the chamfered portions 8 are provided only on both sides of the chamber 11b, but the cutouts 7 and the chamfered portions 8 may be provided on all the throttled portions 6, 6 ...

【0054】 更に本実施例においては、動力舵取装置のパワーシリンダへの送給油圧を制御 する油圧制御弁について述べたが、本考案に係る油圧制御弁は、図7に示す如き 油圧力の増加特性が要求される用途に適用し得ることは言うまでもない。Further, in the present embodiment, the hydraulic control valve for controlling the hydraulic pressure to be fed to the power cylinder of the power steering apparatus has been described. The hydraulic control valve according to the present invention has the hydraulic pressure control valve as shown in FIG. It goes without saying that it can be applied to applications in which increased characteristics are required.

【0055】[0055]

【考案の効果】[Effect of device]

以上詳述した如く本考案に係る油圧制御弁においては、絞り部を臨むバルブボ ディー側の油溝の側縁に設けた切欠き部が、バルブボディーとバルブスプールと の相対角変位が所定の大きさに達するまでの間に絞り部の絞り面積を一定に保つ 作用のみを行い、また、前記絞り部を臨むバルブスプール側の油溝の側縁に設け た面取り部が、締切り前に絞り面積を急減させる作用をなすから、望ましい特性 である2段折れ特性を損なうことなく、面取り部の幅管理により各絞り部での実 質的な同時締切りが可能となり、作動油の通流に伴って発生する耳障りな流動音 を低減でき、またキャビテーションの発生を抑制して、一部の絞り部の損傷によ る特性変化を未然に防止できる等、本考案は優れた効果を奏する。 As described above in detail, in the hydraulic control valve according to the present invention, the notch provided on the side edge of the oil groove on the valve body side facing the throttle has a predetermined relative angular displacement between the valve body and the valve spool. It only acts to keep the throttle area of the throttle part constant until it reaches the limit, and the chamfered part provided on the side edge of the oil groove on the valve spool side facing the throttle part reduces the throttle area before shutting off. Since it has the effect of sharply reducing it, it is possible to achieve a practical simultaneous shutoff at each throttle by controlling the width of the chamfered portion without deteriorating the desired two-step fold characteristic, and it occurs with the flow of hydraulic oil. The present invention has excellent effects such as reducing the jarring flowing sound, suppressing the occurrence of cavitation, and preventing characteristic changes due to damage to some of the throttles.

【図面の簡単な説明】[Brief description of drawings]

【図1】本考案に係る油圧制御弁の模式的横断面図であ
る。
FIG. 1 is a schematic cross-sectional view of a hydraulic control valve according to the present invention.

【図2】本考案に係る油圧制御弁内部の油路を直線展開
して示す図である。
FIG. 2 is a diagram in which an oil passage inside a hydraulic control valve according to the present invention is linearly developed.

【図3】本考案に係る油圧制御弁における切欠き部の拡
大図である。
FIG. 3 is an enlarged view of a cutout portion in the hydraulic control valve according to the present invention.

【図4】本考案に係る油圧制御弁の動作説明図である。FIG. 4 is an operation explanatory view of the hydraulic control valve according to the present invention.

【図5】本考案に係る油圧制御弁の動作説明図である。FIG. 5 is an operation explanatory view of the hydraulic control valve according to the present invention.

【図6】本考案に係る油圧制御弁の動作説明図である。FIG. 6 is an explanatory view of the operation of the hydraulic control valve according to the present invention.

【図7】動力舵取装置における操舵補助力の望ましい増
加特性を示すグラフである。
FIG. 7 is a graph showing a desirable increase characteristic of steering assist force in the power steering apparatus.

【図8】従来の油圧制御弁における切欠き部の形成態様
を示す図である。
FIG. 8 is a view showing a manner of forming a notch portion in a conventional hydraulic control valve.

【図9】従来の油圧制御弁の動作説明図である。FIG. 9 is an operation explanatory diagram of a conventional hydraulic control valve.

【図10】従来の油圧制御弁の問題点の説明図である。FIG. 10 is an explanatory diagram of a problem of the conventional hydraulic control valve.

【符号の説明】[Explanation of symbols]

1 バルブボディー 2 バルブスプール 4 油溝 5 油溝 6 絞り部 7 切欠き部 8 面取り部 10 給油室 11 排油室 12 送油室 13 送油室 50 切欠き部 P 油圧ポンプ S パワーシリンダ 1 Valve Body 2 Valve Spool 4 Oil Groove 5 Oil Groove 6 Throttling Part 7 Notch 8 Chamfer 10 Lubrication Chamber 11 Oil Discharge Chamber 12 Oil Feed Chamber 13 Oil Feed Chamber 50 Notch P Hydraulic Pump S Power Cylinder

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】 同軸上にて相対角変位する筒形のバルブ
ボディーとバルブスプールとの嵌合周上に形成された各
複数の油溝を千鳥配置し、油圧源に連なる給油室と、排
油先に連なる排油室と、両室間にて送油先に連なる送油
室とを並設してなり、これら各室を連通する絞り部の絞
り面積を前記相対角変位に応じて増減させ、前記送油先
への送給油圧を制御する油圧制御弁において、前記絞り
部を臨むバルブボディー側の油溝の側縁に、前記相対角
変位が所定の大きさに達するまでの間、前記絞り面積を
略一定に保つ形状を有する切欠き部を備え、該切欠き部
に対向するバルブスプール側の油溝の側縁に、周方向に
所定の幅を有する面取り部を備えることを特徴とする油
圧制御弁。
1. A plurality of oil grooves formed on a fitting periphery of a cylindrical valve body and a valve spool, which are coaxially displaced relative to each other in a relative angle, are arranged in a staggered manner, and an oil supply chamber connected to a hydraulic pressure source and a drainage chamber are provided. An oil discharge chamber connected to the oil destination and an oil supply chamber connected to the oil destination between both chambers are installed side by side, and the throttle area of the throttle unit that connects these chambers is increased or decreased according to the relative angular displacement. In the hydraulic control valve for controlling the hydraulic pressure to be fed to the oil destination, on the side edge of the oil groove on the valve body side facing the throttle portion, until the relative angular displacement reaches a predetermined magnitude, A cutout portion having a shape that keeps the throttle area substantially constant is provided, and a chamfered portion having a predetermined width in the circumferential direction is provided at a side edge of the oil groove on the valve spool side facing the cutout portion. And hydraulic control valve.
JP6366992U 1992-08-18 1992-08-18 Hydraulic control valve Pending JPH0618149U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6366992U JPH0618149U (en) 1992-08-18 1992-08-18 Hydraulic control valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6366992U JPH0618149U (en) 1992-08-18 1992-08-18 Hydraulic control valve

Publications (1)

Publication Number Publication Date
JPH0618149U true JPH0618149U (en) 1994-03-08

Family

ID=13235993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6366992U Pending JPH0618149U (en) 1992-08-18 1992-08-18 Hydraulic control valve

Country Status (1)

Country Link
JP (1) JPH0618149U (en)

Similar Documents

Publication Publication Date Title
JPH0417817B2 (en)
JPH07156812A (en) Hydraulic power steering device
JP2523170Y2 (en) Hydraulic control valve
JPH0224373Y2 (en)
JP3238672B2 (en) Hydraulic fluid control valve device
JPH0618149U (en) Hydraulic control valve
JP3807853B2 (en) Hydraulic control valve
KR100253501B1 (en) Hydraulic pressure control valve
JP2552765Y2 (en) Hydraulic control valve
JP2520788Y2 (en) Hydraulic control valve
JP3574910B2 (en) Hydraulic control valve
US6349788B1 (en) Power steering apparatus
KR0174296B1 (en) Vehicle speed sensitive type power steering device
JP4042314B2 (en) Power steering device
JP2594904Y2 (en) Steering force control device for power steering device
JP3973240B2 (en) Hydraulic control valve
JPH10318382A (en) Variable throttle valve
JP3532964B2 (en) Valve device and hydraulic power steering device
JP2523985Y2 (en) Hydraulic control valve
JPH07323860A (en) Vehicle speed responsive type power steering device
JPH08104246A (en) Power steering device
JP3810931B2 (en) Hydraulic power steering device
JP2000318630A (en) Variable throttle valve
JP3847487B2 (en) Hydraulic power steering device
JPH09109910A (en) Power steering device