JPH06181063A - Hydrogen storage alloy electrode - Google Patents

Hydrogen storage alloy electrode

Info

Publication number
JPH06181063A
JPH06181063A JP4354187A JP35418792A JPH06181063A JP H06181063 A JPH06181063 A JP H06181063A JP 4354187 A JP4354187 A JP 4354187A JP 35418792 A JP35418792 A JP 35418792A JP H06181063 A JPH06181063 A JP H06181063A
Authority
JP
Japan
Prior art keywords
electrode
hydrogen storage
storage alloy
active material
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4354187A
Other languages
Japanese (ja)
Inventor
Masaharu Watada
正治 綿田
Sumiko Mukai
澄子 向井
Masahiko Oshitani
政彦 押谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuasa Corp
Original Assignee
Yuasa Corp
Yuasa Battery Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuasa Corp, Yuasa Battery Corp filed Critical Yuasa Corp
Priority to JP4354187A priority Critical patent/JPH06181063A/en
Publication of JPH06181063A publication Critical patent/JPH06181063A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

PURPOSE:To provide an inexpensive hydrogen storage alloy electrode by which falling or separation of an active material and a short circuit can be prevented. CONSTITUTION:A hydrogen storage alloy electrode is constituted by applying an active material formed by mixing an electrically conductive agent and a binder in hydrogen storage alloy powder in a slurry shape to both sides of an electrode substrate 1 or by binding into a sheet shape. Rectangular through- holes 4 having a pyramid shape projection are arranged alternately on an opposite direction in a core body of this electrode substrate 1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はニッケル金属水素化物電
池に用いられる水素吸蔵合金電極に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrogen storage alloy electrode used in a nickel metal hydride battery.

【0002】[0002]

【従来の技術】従来の水素吸蔵合金電極として,ニッケ
ル金属繊維多孔体或いは発泡金属多孔体などの3次元構
造の基板芯体や,パンチングシートやエキスパンドメタ
ル,網目状ネットなどの2次元基板芯体に,水素吸蔵合
金に導電剤やバインダーを混合したスラリー状活物質を
充填あるいは塗布,結着してなる電極の開発がおこなわ
れている。
2. Description of the Related Art As a conventional hydrogen storage alloy electrode, a substrate core having a three-dimensional structure, such as a nickel metal fiber porous body or a foam metal porous body, or a two-dimensional substrate core body such as a punching sheet, expanded metal or a mesh net. In addition, an electrode has been developed by filling, coating, or binding a slurry-like active material in which a hydrogen storage alloy is mixed with a conductive agent and a binder.

【0003】前者の基板芯体は,例えばポリウレタンフ
ォームにニッケルめっきした後、芯材であるウレタンを
焼成し除去することによってニッケル発泡多孔体を作製
すると言うような繁雑な製造法であり、基板が相当に高
価となる。それに対して,後者の基板芯体は前者に比較
してその製造法は簡素であり安価であるという利点を持
つため,近年開発が盛んである。
The former substrate core is a complicated manufacturing method in which, for example, a polyurethane foam is nickel-plated, and then the urethane, which is the core material, is baked and removed to produce a nickel foam porous body. Quite expensive. On the other hand, the latter substrate core has the advantages that its manufacturing method is simpler and less expensive than the former, and thus has been actively developed in recent years.

【0004】[0004]

【発明が解決しようとする課題】しかしながら,これら
2次元基板は3次元多孔体基板に比べて活物質を基板上
に保持する力が弱く,活物質の脱落や剥離による寿命の
短命化や,活物質と集電体(基板)間の距離d の増大に
よる活物質の利用率の低下を引き起こす。また,エキス
パンドメタルを基板として用いた場合には,電極を所定
寸法に切断する時にバリ等の発生をなくすことが困難で
あり,その結果電池組み込み時に短絡発生率が高いとい
う問題がある。本発明は上記問題点に鑑みてなされたも
のであり,活物質の脱落や剥離および短絡を防止した安
価な水素吸蔵電極を提供するものである。
However, these two-dimensional substrates have a weaker force for holding the active material on the substrate as compared with the three-dimensional porous substrate, and thus the life of the active material is shortened due to dropping or peeling of the active material. The increase in the distance d between the substance and the current collector (substrate) causes a decrease in the utilization rate of the active material. Further, when the expanded metal is used as the substrate, it is difficult to eliminate burrs and the like when the electrode is cut into a predetermined size, and as a result, there is a problem that a short circuit occurrence rate is high when the battery is assembled. The present invention has been made in view of the above problems, and provides an inexpensive hydrogen storage electrode in which the active material is prevented from falling off, peeling off, and a short circuit.

【0005】[0005]

【課題を解決するための手段】本発明の水素吸蔵合金電
極は,基板の両側に水素吸蔵合金粉末に導電剤およびバ
インダーを混合してなる活物質をスラリー状として塗布
するかシート化して結着する水素吸蔵合金電極であっ
て、該電極基板の芯体であるニッケルシートや銅シー
ト,ニッケルめっきした鉄シートの表裏に交互に反対方
向に角錐状突起を有する方形貫通孔を設けたことを特徴
とするものである。
The hydrogen storage alloy electrode of the present invention is applied to both sides of a substrate by applying an active material obtained by mixing a hydrogen storage alloy powder with a conductive agent and a binder in the form of slurry or binding them into a sheet. In the hydrogen storage alloy electrode, a rectangular through hole having pyramidal protrusions alternately provided in opposite directions is provided on the front and back of a nickel sheet, a copper sheet, or a nickel-plated iron sheet that is the core of the electrode substrate. It is what

【0006】[0006]

【作用】本発明の作用を図1、2(本発明)と図3、4
(従来法の一例)に基づき説明する。本発明によれば,
図1にあるように方形貫通孔4が基板芯体1に規則正し
く配列し,かつその両面に交互に角錐状突起5を密に有
する3次元的構造となるために,芯体両面の活物質2の
結着が強固となり,図3にあるようにパンチングシート
等の従来法の2次元平滑状芯体を基板として用いた場合
のような活物質の脱落や剥離が有効に防止可能となる。
また,貫通孔部の芯体断面(図1のA−A方向断面)は
電極厚み方向に”ハ字”構造をとるために,集電体(基
板芯体)と活物質間距離が従来法(図3のB−B方向断
面)より短くなる効果をも有し,活物質の保持力を高め
ると同時に,活物質利用率の向上も可能となる。
The operation of the present invention will be described with reference to FIGS.
A description will be given based on (an example of a conventional method). According to the invention,
As shown in FIG. 1, since the rectangular through holes 4 are regularly arranged in the substrate core body 1 and the pyramidal protrusions 5 are densely arranged alternately on both surfaces of the substrate, the active material 2 on both sides of the core body 2 is formed. In this case, the binding is strengthened, and it is possible to effectively prevent the active material from falling off or peeling off when a conventional two-dimensional smooth core such as a punching sheet is used as the substrate as shown in FIG.
In addition, since the cross section of the core of the through hole (cross section taken along the line AA in FIG. 1) has a "c-shaped" structure in the thickness direction of the electrode, the distance between the current collector (substrate core) and the active material is reduced by the conventional method. (Cross-section taken along line BB in FIG. 3), it also has the effect of becoming shorter, and it is possible to improve the holding power of the active material and at the same time improve the active material utilization rate.

【0007】[0007]

【実施例】本発明の実施例を以下に詳述する。材厚20
〜80μm のニッケルシートあるいは銅シートを芯体と
し,角錐型針状突起を表面に切削加工した二つのロール
を上下に配したカッターロール間にその芯体を通して,
角錐型針状突起を交互に反対方向に貫通させ,開孔する
と同時に角錐状突起を形成させた。方形開孔径や突起高
さはカッターロール間のクリアランスを調整して,それ
ぞれ方形開孔径500μm ,突起高さ約300μm の基
板芯体を作製した。鉄シートを用いた場合には,その後
周知の硫酸ニッケル浴にて約3μm のニッケルを電気め
っきした。
EXAMPLES Examples of the present invention will be described in detail below. Material thickness 20
Using a nickel sheet or copper sheet of ~ 80 μm as a core, and passing the core between two cutter rolls with two pyramid-shaped needle-like protrusions cut on the surface,
Pyramidal needle-shaped protrusions were alternately penetrated in opposite directions to open the holes and simultaneously form pyramidal protrusions. By adjusting the clearance between the cutter rolls for the square aperture diameter and the protrusion height, a substrate core having a square aperture diameter of 500 μm and a protrusion height of about 300 μm was produced. When an iron sheet was used, it was subsequently electroplated with about 3 μm of nickel in a well-known nickel sulfate bath.

【0008】比較例として、材厚80μmの鉄シートに
従来法にて1.4mm径の円形穿孔したパンチング・シ
ートを作製した。この様に作製した基板芯体に、水素吸
蔵合金粉末にニッケル粉末導電剤及びテフロン・バイン
ダーを混合してスラリー状としたものを塗布し、乾燥後
加圧プレスして厚さ0.5mmの水素吸蔵合金電極を作
製した。
As a comparative example, an iron sheet having a material thickness of 80 μm was circularly perforated with a diameter of 1.4 mm by a conventional method to prepare a punching sheet. The substrate core prepared in this manner was coated with a hydrogen-absorbing alloy powder mixed with a nickel powder conductive agent and a Teflon binder to form a slurry, which was dried and pressed to form a 0.5 mm-thick hydrogen film. A storage alloy electrode was produced.

【0009】本発明の基板とそれを用いたニッケル電極
の断面図及び従来の比較例を図1、2、3、4に示し
た。本発明電極では、図2の電極断面図に見られるよう
に貫通孔部の芯体が電極厚み方向に”ハ字”構造を有す
る。その結果、従来の比較例である図4のように芯体の
断面が平滑とは異なるために、活物質層の保持力が向上
し、脱落や剥離が効果的に防止された。更に、上述の”
ハ字”構造のために、電極厚み方向の活物質と集電体
(基板芯体)間距離が短くなるために、従来電極に比較
して活物質利用率や高率放電性能の向上が認められた。
A cross-sectional view of a substrate of the present invention and a nickel electrode using the same and a conventional comparative example are shown in FIGS. In the electrode of the present invention, as shown in the electrode cross-sectional view of FIG. 2, the core body of the through hole has a "V-shaped" structure in the electrode thickness direction. As a result, as shown in FIG. 4, which is a conventional comparative example, the cross section of the core body was different from the smooth one, so that the holding force of the active material layer was improved, and the falling and peeling were effectively prevented. In addition, the above
Due to the "H-shaped" structure, the distance between the active material and the current collector (substrate core) in the electrode thickness direction is shortened, so improvement of the active material utilization rate and high rate discharge performance is recognized compared to conventional electrodes. Was given.

【0010】本発明基板芯体の両面に密に配した角錐状
突起の高さは、電極面より表出して短絡等を生じない範
囲内でできるだけ大きい方が活物質の脱落や剥離の防止
には効果的であるために、電極厚みの5分の2程度にす
るのが適当であることがわかった。
The height of the pyramidal protrusions densely arranged on both sides of the substrate core body of the present invention is as large as possible within the range where the pyramidal protrusions are not exposed from the electrode surface and do not cause a short circuit or the like to prevent the active material from falling off or peeling. Since it is effective, it has been found that it is suitable to set it to about 2/5 of the electrode thickness.

【発明の効果】上述のように、本発明は、安価で簡便な
製造法による電極基板芯体を用いることによって、活物
質の脱落や剥離及び短絡等が効果的に防止された水素吸
蔵合金電極を提供するために、その工業的価値は極めて
高い。
As described above, according to the present invention, the hydrogen storage alloy electrode in which the active material is effectively prevented from falling off, peeling off, short-circuiting or the like by using the electrode substrate core manufactured by the inexpensive and simple manufacturing method. , Its industrial value is extremely high.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の電極基板の平面図である。FIG. 1 is a plan view of an electrode substrate of the present invention.

【図2】本発明の電極の断面図であって、図1のA−A
部に相当するものである。
2 is a cross-sectional view of the electrode of the present invention, which is taken along line AA of FIG.
It corresponds to a section.

【図3】従来の電極基板の平面図である。FIG. 3 is a plan view of a conventional electrode substrate.

【図4】従来の電極の断面図であって、図3のB−B部
に相当するものである。
FIG. 4 is a cross-sectional view of a conventional electrode, which corresponds to a portion BB in FIG.

【符号の説明】[Explanation of symbols]

1 基板 2 活物質 3 電極 4 貫通孔 5 角錐状突起 1 substrate 2 active material 3 electrode 4 through hole 5 pyramidal protrusion

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 電極基板の両側に、水素吸蔵合金粉末に
導電剤およびバインダーを混合してなる活物質をスラリ
ー状として塗布するか、あるいはシート化して結着する
水素吸蔵電極であって,該電極基板の芯体に交互に反対
方向に角錐状突起を有する方形貫通孔が設けられている
ことを特徴とする水素吸蔵合金電極。
1. A hydrogen storage electrode, which is formed by applying an active material prepared by mixing a hydrogen storage alloy powder with a conductive agent and a binder in the form of slurry on both sides of an electrode substrate, or forming a sheet to bind the active material. A hydrogen storage alloy electrode, characterized in that the core of the electrode substrate is provided with rectangular through holes having pyramidal protrusions alternately in opposite directions.
【請求項2】 芯材がニッケル金属シート,銅シート,
ニッケルめっき鉄シートであり,角錐状突起の高さが該
電極厚さの5分の2以下である芯体である請求項1記載
の水素吸蔵合金電極。
2. The core material is a nickel metal sheet, a copper sheet,
2. The hydrogen storage alloy electrode according to claim 1, which is a nickel-plated iron sheet and is a core body in which the height of the pyramidal protrusion is not more than ⅕ of the electrode thickness.
JP4354187A 1992-12-14 1992-12-14 Hydrogen storage alloy electrode Pending JPH06181063A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4354187A JPH06181063A (en) 1992-12-14 1992-12-14 Hydrogen storage alloy electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4354187A JPH06181063A (en) 1992-12-14 1992-12-14 Hydrogen storage alloy electrode

Publications (1)

Publication Number Publication Date
JPH06181063A true JPH06181063A (en) 1994-06-28

Family

ID=18435876

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4354187A Pending JPH06181063A (en) 1992-12-14 1992-12-14 Hydrogen storage alloy electrode

Country Status (1)

Country Link
JP (1) JPH06181063A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2763427A1 (en) * 1997-05-15 1998-11-20 Alsthom Cge Alcatel METAL-HYDRIDE NEGATIVE ELECTRODE IN COATED PERFORATED STRIP
JP2001325962A (en) * 2000-05-12 2001-11-22 Matsushita Electric Ind Co Ltd Electrode for storage battery and its manufacturing method
WO2022071386A1 (en) * 2020-09-30 2022-04-07 東洋アルミニウム株式会社 Electrode material for aluminum electrolytic capacitor and method for manufacturing same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2763427A1 (en) * 1997-05-15 1998-11-20 Alsthom Cge Alcatel METAL-HYDRIDE NEGATIVE ELECTRODE IN COATED PERFORATED STRIP
EP0884793A1 (en) * 1997-05-15 1998-12-16 Alcatel Metal hydride negative electrode comprising a coated perforated sheet
JP2001325962A (en) * 2000-05-12 2001-11-22 Matsushita Electric Ind Co Ltd Electrode for storage battery and its manufacturing method
WO2022071386A1 (en) * 2020-09-30 2022-04-07 東洋アルミニウム株式会社 Electrode material for aluminum electrolytic capacitor and method for manufacturing same

Similar Documents

Publication Publication Date Title
DE69416930T2 (en) Electrode for collector battery and process for its manufacture
DE69901178T2 (en) NON-SINTERED ELECTRODES AND METHOD FOR PRODUCING THE SAME
EP0924783A1 (en) Porous pasted electrode, cell using the same and process for producing electrode
JPH07335208A (en) Coated electrode for battery, and its manufacture
WO2012011351A1 (en) Secondary battery porous electrode
JPH06181063A (en) Hydrogen storage alloy electrode
US6099991A (en) Electrode for alkaline storage batteries and process for producing the same
JP3402333B2 (en) Nickel electrode for alkaline storage battery
JP3402335B2 (en) Nickel electrode
JP2000077054A (en) Battery and its manufacture
US20050164088A1 (en) Secondary battery-use pole plate material
JPH02309558A (en) Negative electrode for lithium secondary battery
JPH09120819A (en) Secondary battery electrode board, electrode, and secondary battery using it
JP2001297756A (en) Manufacturing device of pole plate for battery
JPH0679065U (en) Electrode
JP2000345210A (en) Negative electrode plate of secondary battery and its production
JPH11297315A (en) Manufacture of long electrode plate, and cylindrical secondary battery having the plate
JP2003317723A (en) Electrode substrate and electrode
JP2003282050A (en) Electrode and battery
KR970018808A (en) Ni-MH battery negative electrode and its manufacturing method
JP2004006409A (en) Method of manufacturing electrode for battery
JP2005038730A (en) Non-sintered nickel electrode and alkaline storage battery
JP2004039295A (en) Nickel electrode for secondary battery
JP2005071788A (en) Alkaline battery
JPH11339813A (en) Electrode substrate for battery