JPH06179877A - Method and apparatus for thermal decomposition of waste plastics - Google Patents

Method and apparatus for thermal decomposition of waste plastics

Info

Publication number
JPH06179877A
JPH06179877A JP32187092A JP32187092A JPH06179877A JP H06179877 A JPH06179877 A JP H06179877A JP 32187092 A JP32187092 A JP 32187092A JP 32187092 A JP32187092 A JP 32187092A JP H06179877 A JPH06179877 A JP H06179877A
Authority
JP
Japan
Prior art keywords
oil
experimental example
decomposition
thermal decomposition
heavy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32187092A
Other languages
Japanese (ja)
Inventor
Yukishige Maezawa
幸繁 前沢
Isao Ito
功 伊藤
Terunobu Hayata
輝信 早田
Hideki Shimada
島田  秀樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP32187092A priority Critical patent/JPH06179877A/en
Publication of JPH06179877A publication Critical patent/JPH06179877A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)

Abstract

PURPOSE:To provide a method and apparatus for thermal decomposition of waste plastics which enable efficient recovery of a light fuel oil. CONSTITUTION:The thermal decomposition method comprises the step of thermally decomposing waste plastics under pressure in a decomposition vessel 2 and the step of separating the decomposition product thus obtd. into a relatively heavy oil component and a relatively light oil component in a separation vessel 3. The apparatus has means for carrying out these steps, and the thermal decomposition vessel 2 is pref. made of an iron alloy contg. Ni and Cr.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、廃プラスチックを加熱
分解し、燃料油として回収する方法及び装置に係わり、
特に、燃料油の品質及び回収効率を向上させる技術に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for thermally decomposing waste plastic and recovering it as fuel oil,
In particular, it relates to a technique for improving the quality and recovery efficiency of fuel oil.

【0002】[0002]

【従来の技術】プラスチックは、軽量で強度的にも優れ
ていることから、家電製品を含むあらゆる分野の製品に
多く使用されている。従来、その廃物処理には焼却や埋
立てといった手段が採用されているが、埋立て地域の減
少や資源有効利用運動によって1991年度から日本に
おいて施行されたリサイクル促進法により廃プラスチッ
クのリサイクルや再資源化への関心が急速に高まってい
る。
2. Description of the Related Art Since plastics are lightweight and have excellent strength, they are often used in products in various fields including home electric appliances. Conventionally, incineration and landfilling methods have been used for waste treatment, but the recycling and recycling of waste plastics has been implemented by the Recycling Promotion Law that came into effect in Japan in 1991 due to the reduction of landfill areas and the movement for effective use of resources. There is a rapid rise in interest in becoming more popular.

【0003】しかしながら、プラスチックには多くの種
類が存在し、その処理方法もそれぞれ異なるのに対し
て、1つの製品に複数の種類のプラスチックが使用され
るのが一般的であるため分別収集が困難であり、このこ
とが再生品の価値を低下させるばかりか再生そのものを
難しくしている。
However, although there are many kinds of plastics and their processing methods are different from each other, it is common to use a plurality of kinds of plastics for one product, so that separate collection is difficult. This not only reduces the value of the recycled product, but also complicates the recycling itself.

【0004】かかる現状において、再生品として比較的
商品価値が高いものが得られる可能性があることなどか
ら、廃プラスチックを乾留熱分解して燃料油として再資
源化する技術が注目されているが、経済性が低く、回収
効率の改善が望まれる。また、ポリスチレンやポリプロ
ピレン等の熱可塑性廃プラスチックは熱伝導性が低いた
め急速かつ均一に加熱することができず、従って、得ら
れる燃料油は広い沸点領域にわたって多種の成分を含有
するため、油質の向上も必要である。
Under the present circumstances, there is a possibility that recycled products having a relatively high commercial value may be obtained. Therefore, a technique for pyrolyzing waste plastics by pyrolysis to recycle them as fuel oil is drawing attention. However, the economy is low and improvement of recovery efficiency is desired. In addition, thermoplastic waste plastics such as polystyrene and polypropylene cannot be rapidly and uniformly heated due to their low thermal conductivity. Therefore, the resulting fuel oil contains various components over a wide boiling point range, which results in poor oil quality. It is also necessary to improve.

【0005】そこで、油質を改善する方法として、ゼオ
ライトなどの気相接触触媒を用いて油を改質する試みが
特開昭63−178195号公報、特開平2−2949
2号公報に提案されているが、熱分解部と油改質部とを
わけてそれぞれ加熱する必要があるために、装置が大掛
かりになり、燃料コストもかさむという問題が生じてい
る。
Therefore, as a method for improving the oil quality, attempts have been made to reform the oil by using a gas-phase catalytic catalyst such as zeolite, as disclosed in JP-A-63-178195 and JP-A-2-2949.
Although it has been proposed in Japanese Patent Laid-Open No. 2 (1993), there is a problem in that the heat decomposition section and the oil reforming section need to be separately heated, so that the apparatus becomes large-scale and the fuel cost is increased.

【0006】また、塩化ビニル樹脂(以下、PVC樹脂
という)を含む混合プラスチック廃棄物を熱分解する
と、腐食性ガスである塩化水素が発生するため炉材が損
傷し、また、可塑剤の分解生成物によって燃料油収集用
の管が閉塞してしまうという欠点がある。
When a mixed plastic waste containing a vinyl chloride resin (hereinafter referred to as a PVC resin) is pyrolyzed, hydrogen chloride which is a corrosive gas is generated, which damages the furnace material and decomposes the plasticizer. There is a drawback that the pipe for collecting the fuel oil is blocked by an object.

【0007】[0007]

【発明が解決しようとする課題】このように、従来にお
ける廃プラスチックの油化方法では、燃料油の油質及び
回収率を向上させ、塩化水素や可塑剤の分解生成物の発
生による装置の損傷を防止する必要があった。
As described above, according to the conventional method of oiling waste plastics, the oil quality and recovery rate of fuel oil are improved, and the damage of the apparatus due to the generation of hydrogen chloride and decomposition products of the plasticizer. Had to be prevented.

【0008】この発明はこのような従来の課題を解決す
るためになされたもので、その目的は、廃プラスチック
から燃料油を高効率及び高品質で回収し得るプラスチッ
クの熱分解方法を提供することである。
The present invention has been made to solve such conventional problems, and an object thereof is to provide a method for thermally decomposing a plastic capable of recovering fuel oil from waste plastic with high efficiency and high quality. Is.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
本発明に係るプラスチックの熱分解方法は、プラスチッ
クを加圧雰囲気下で加熱分解して熱分解物を得る、加熱
分解工程;前記加熱分解工程による分解物を比較的重質
な油成分と比較的軽質な油性分とに分離する分離工程;
前記分離工程で分離された比較的重質な油成分を熱分解
するために前記加熱分解工程に還流する還流工程;及
び、前記分離工程で分離された比較的軽質な油性分を回
収する回収工程を具備したことが特徴である。
In order to achieve the above object, a method for thermally decomposing a plastic according to the present invention comprises a thermal decomposition step of thermally decomposing a plastic under a pressure atmosphere to obtain a thermally decomposed product; A separation step of separating the decomposition product of the step into a relatively heavy oil component and a relatively light oily component;
A refluxing step of refluxing the relatively heavy oil component separated in the separation step to the thermal decomposition step in order to pyrolyze it, and a recovery step of recovering a relatively light oily component separated in the separation step. It is characterized by having.

【0010】又、本発明に係るプラスチックの熱分解装
置は、プラスチックを加圧雰囲気下で加熱分解するため
の加熱分解手段;前記加熱分解手段で得られる分解物を
比較的重質な油性分と比較的軽質な油成分とに分離する
ための分離手段;前記分離手段により分離された比較的
重質な油性分を熱分解するために前記加熱分解手段に還
流する還流手段;及び、前記分離手段により分離された
比較的軽質な油性分を回収するための回収手段を備える
ものである。
Further, the apparatus for thermally decomposing plastics according to the present invention comprises a thermal decomposition means for thermally decomposing the plastic under a pressurized atmosphere; the decomposition product obtained by the thermal decomposition means is converted into a relatively heavy oily component. Separation means for separating into relatively light oil components; reflux means for returning to the thermal decomposition means for thermally decomposing the relatively heavy oily matter separated by the separation means; and the separation means It is provided with a recovery means for recovering a relatively light oily component separated by.

【0011】以下、更に本発明について詳細に説明す
る。
The present invention will be described in more detail below.

【0012】常圧で特別に酸素を供給することなくプラ
スチックを300〜600℃の範囲の温度で加熱分解し
た場合、生成するガスは、軽〜重質の様々な成分が同時
発生するので、ガスを凝縮して得られる油は燃料油とし
て好ましいものでなく、又、例えばポリエチレンを分解
した場合、重質成分の割合が多いため、室温でワックス
状に固化してしまうこともある。これに対し、密閉系で
プラスチックを加熱すると、プラスチックの分解により
自然に系内の圧力が高くなり、分子運動が活発になるた
め伝熱性が向上する。また、圧力増加により各成分の沸
点が上昇するため、重質成分が液相に留まり易いため、
分解率が向上する。圧力が高いほど分解率は向上する
が、高くなり過ぎると室温で凝縮しないガス成分の生成
率が高くなるので液状油の回収率が低下してしまう。従
って、重質成分の少ない油を得るためには、加圧量は、
ゲージ圧で1〜10kg/cm2 の範囲内にするのが好
ましい。しかし、加圧による効果は、生成油成分の分布
が分子量の小さい方へ移行することであるので、加圧操
作のみでは重質成分の混入を避けられず、生成油の分子
量分布の狭小化、即ち、高品質化には対応できない。
When the plastic is heated and decomposed at a temperature in the range of 300 to 600 ° C. without supplying oxygen under normal pressure, various gases of light to heavy are simultaneously generated in the produced gas. The oil obtained by condensing is not preferable as a fuel oil, and when polyethylene is decomposed, for example, it may solidify into a wax at room temperature because the proportion of heavy components is large. On the other hand, when the plastic is heated in the closed system, the pressure inside the system naturally increases due to the decomposition of the plastic, the molecular motion becomes active, and the heat transfer property is improved. Moreover, since the boiling point of each component rises due to the increase in pressure, the heavy component easily stays in the liquid phase,
The decomposition rate is improved. The higher the pressure is, the higher the decomposition rate is, but if the pressure is too high, the production rate of the gas component that does not condense at room temperature becomes high, so that the recovery rate of the liquid oil decreases. Therefore, in order to obtain oil with less heavy components, the amount of pressurization is
The gauge pressure is preferably within the range of 1 to 10 kg / cm 2 . However, since the effect of pressurization is that the distribution of the produced oil component shifts to the smaller molecular weight, it is unavoidable to mix the heavy component only by the pressurizing operation, and the molecular weight distribution of the produced oil is narrowed, That is, high quality cannot be dealt with.

【0013】他方、加熱分解で得られたガスの温度をあ
る程度まで下げて重質分を凝縮分離し分解工程に戻す方
法は、分解生成ガスよりも分子量の分布範囲が狭い燃料
油を得ることを可能にする。しかし、常圧で加熱分解し
た場合には、凝縮分離を行っても、生成ガス自体の重質
成分量が高いために、重質成分の除去は満足なものでは
なく、生成油の収率も低い。
On the other hand, the method of lowering the temperature of the gas obtained by the thermal decomposition to a certain extent and condensing and separating the heavy components and returning to the decomposition step is to obtain a fuel oil having a narrower molecular weight distribution range than the decomposition product gas. to enable. However, when it is decomposed by heating at atmospheric pressure, even if it is condensed and separated, the amount of heavy components in the produced gas itself is high, so removal of the heavy components is not satisfactory, and the yield of produced oil is also low. Low.

【0014】本願発明者等は、廃プラスチックの油化方
法について鋭意検討した結果、加圧下での加熱分解と生
成ガスの凝縮分離とを組み合わせて行うと、得られる油
分の収率及び品質を格段に改善することができ、沸点が
250℃を越える重質成分が殆ど含まれない油をも得る
ことが可能であることを見出した。即ち、本発明のプラ
スチックの熱分解方法は、加圧下でプラスチックを加熱
分解することと、熱分解により得られるガス生成物を所
定温度に冷却して重質な油成分を凝縮分離し加熱分解工
程に戻すこととを特徴とし、分離工程で凝縮しない軽質
な成分のみを含む油を回収するものである。
The inventors of the present invention have made earnest studies on the method of oiling waste plastics. As a result, when the thermal decomposition under pressure and the condensation separation of the produced gas are performed in combination, the yield and quality of the oil obtained can be remarkably improved. It has been found that it is possible to obtain an oil having a boiling point of more than 250 ° C and containing almost no heavy components. That is, the plastic thermal decomposition method of the present invention comprises thermally decomposing the plastic under pressure, cooling the gas product obtained by thermal decomposition to a predetermined temperature, condensing and separating heavy oil components, and conducting a thermal decomposition step. And recovering oil containing only light components that do not condense in the separation step.

【0015】前述したように、加熱分解工程における圧
力が高いほど分解生成物の軽質化が進むので、本発明に
係るプラスチックの熱分解方法の加熱分解工程における
加圧度は、目的とする燃料油質に応じて適宜設定され
る。灯油程度の燃料油に転換しようとする場合には、加
圧量は、ゲージ圧で1〜6kg/cm2 の範囲内にする
のが好ましく、この範囲において、約50〜80wt%の
収率で燃料油を得ることができる。約3〜5kg/cm
2 の範囲内であれば、更に好ましい。この様な好適な範
囲内の圧力下でプラスチックは約300〜600℃に加
熱される。
As described above, the higher the pressure in the thermal decomposition step, the lighter the decomposition products become. Therefore, the degree of pressurization in the thermal decomposition step of the plastic thermal decomposition method according to the present invention depends on the target fuel oil. It is set appropriately according to the quality. When converting to fuel oil of kerosene, the amount of pressurization is preferably in the range of 1 to 6 kg / cm 2 in gauge pressure. In this range, a yield of about 50 to 80 wt% is obtained. Fuel oil can be obtained. About 3-5kg / cm
Within the range of 2 , it is more preferable. Under such suitable pressure, the plastic is heated to about 300-600 ° C.

【0016】分解ガス生成物は、分離工程において熱分
解温度より低い所定温度に冷却され、重質成分が凝縮し
軽質成分と分離して加熱分解工程に戻される。凝縮せず
に分離工程を通過した軽質成分ガスを更に常温程度まで
冷却して液化することにより軽質な油が回収される。凝
縮工程を通過して回収される油の成分は、凝縮工程にお
けるガス冷却温度によって変化するので、冷却温度も目
的とする燃料油質に応じて適宜設定される。沸点150
〜250℃の灯油程度の燃料油に転換する場合には、前
述の加熱分解に好適な圧力下において約200〜350
℃、より好ましくは約250〜300℃に冷却する。冷
却温度を低くすると沸点250℃以上の重質成分の混入
が減少するが、低すぎると時間当りに回収される油量が
減少する。生成ガスの冷却を常圧において行った場合で
も好適に分離することができるが、上述の温度範囲より
低めの温度で冷却するのが望ましい。
The decomposed gas product is cooled to a predetermined temperature lower than the thermal decomposition temperature in the separation step, the heavy component is condensed and separated from the light component, and is returned to the thermal decomposition step. Light oil is recovered by further cooling the light component gas that has passed through the separation step without condensation to room temperature and liquefied. The oil component that is recovered after passing through the condensing step varies depending on the gas cooling temperature in the condensing step, so the cooling temperature is also appropriately set according to the target fuel oil quality. Boiling point 150
In the case of converting to fuel oil of about kerosene at ~ 250 ° C, about 200 to 350 at a pressure suitable for the above-mentioned thermal decomposition.
C., more preferably about 250-300.degree. When the cooling temperature is lowered, the incorporation of heavy components having a boiling point of 250 ° C. or higher is reduced, but when it is too low, the amount of oil recovered per hour is reduced. Even if the produced gas is cooled at normal pressure, it can be suitably separated, but it is desirable to cool it at a temperature lower than the above temperature range.

【0017】上記の方法は、例えば、図1に示されるよ
うな構成の装置を用いて行われる。この構成において、
装置1は、プラスチックを加熱分解する分解槽2、発生
したガスから重質成分を分離する分離槽3、重質成分を
分離槽3から分解槽2へ還流させるポンプ4、及び、重
質成分が除かれたガスを冷却管を通して冷却して軽質成
分からなる油分を回収するための回収槽5を備えてい
る。分解槽2と分離槽3は圧力制御弁6を介して接続さ
れ、分解槽2内の圧力が加熱により上昇し所定値を越え
たときに分解槽内のガスを分離槽3へ解放することによ
って分解槽3の内圧を所定値に維持するよう構成されて
いる。又、分離槽3と回収槽5も圧力制御弁7を介して
接続され、分離槽3内の圧力が一定値を越えるとガスを
回収槽5に放出して圧力を一定に保つように構成されて
いる。分離槽3は分解槽2より低い所定温度に維持され
る。
The above method is performed by using, for example, an apparatus having a structure shown in FIG. In this configuration,
The apparatus 1 comprises a decomposition tank 2 for thermally decomposing plastic, a separation tank 3 for separating heavy components from generated gas, a pump 4 for refluxing the heavy components from the separation tank 3 to the decomposition tank 2, and a heavy component. The recovery tank 5 is provided for cooling the removed gas through a cooling pipe and recovering an oil component composed of a light component. The decomposition tank 2 and the separation tank 3 are connected via a pressure control valve 6, and by releasing the gas in the decomposition tank to the separation tank 3 when the pressure in the decomposition tank 2 rises by heating and exceeds a predetermined value. It is configured to maintain the internal pressure of the decomposition tank 3 at a predetermined value. The separation tank 3 and the recovery tank 5 are also connected via a pressure control valve 7, and when the pressure in the separation tank 3 exceeds a certain value, gas is discharged to the recovery tank 5 to keep the pressure constant. ing. The separation tank 3 is maintained at a predetermined temperature lower than that of the decomposition tank 2.

【0018】上記構成に従って、廃プラスチックの粉砕
体を分解槽2内で加熱すると、加熱分解されてガスが生
成し、槽内圧力が上昇する。圧力が所定圧力に達する
と、ガスは分離槽3へ放出され分離槽3内の温度に冷却
されるため、ガスの成分のうち沸点の高い重質成分が凝
縮する。これは、ポンプ4により分解槽2へ戻され、再
度分解反応に供される。一方、分離槽3内の圧力が圧力
制御弁7によって設定される圧力に達すると、凝縮しな
い軽質ガス成分は、回収槽5へ放出され、常温程度まで
十分に冷却されて液化し、容器8に収容される。回収槽
5において液化しない低沸点分は、ガス処理槽9へ送ら
れ、処理される。
When the crushed waste plastics are heated in the decomposition tank 2 according to the above-mentioned constitution, they are thermally decomposed to generate gas and the pressure in the tank rises. When the pressure reaches a predetermined pressure, the gas is discharged to the separation tank 3 and cooled to the temperature in the separation tank 3, so that the heavy component having a high boiling point is condensed among the gas components. This is returned to the decomposition tank 2 by the pump 4 and used again for the decomposition reaction. On the other hand, when the pressure in the separation tank 3 reaches the pressure set by the pressure control valve 7, the light gas component that does not condense is released to the recovery tank 5, is sufficiently cooled to about room temperature and is liquefied, and then is stored in the container 8. Be accommodated. The low boiling point component that is not liquefied in the recovery tank 5 is sent to the gas treatment tank 9 and processed.

【0019】実際に廃プラスチックを取り扱う場合、多
種類のプラスチックの混合物を種類によって分別するこ
とは煩雑であるので、混合物の状態で加熱分解すること
が望まれる。この場合、熱分解の際のプラスチックポリ
マーの開裂の仕方はプラスチックの種類によって異な
り、例えば、ポリプロピレン、ポリエチレン等はランダ
ム開裂し、ポリスチレン等はモノマー開裂が優先し、ポ
リ塩化ビニル等は側鎖の開裂が優先される。いずれにし
ても、生成物はオレフィン系または芳香族系の不飽和炭
化水素が主成分となる。一方、燃料油としては、例えば
灯油のような、パラフィン系成分を主成分として少量の
芳香族成分を含むものであるのが好ましい。従って、オ
レフィン系成分をパラフィン系成分に転換することが望
ましい。活性アルミナやゼオライト等の触媒はオレフィ
ン二重結合を水素化するので、この目的の達成に好都合
である。この様な触媒11は、図2に示すように、分離
層3に備え付けて用いることができる。あるいは、分離
槽に代えて、前述の冷却分離に適した温度に調節した触
媒槽を接続して用いることにより、触媒槽の働きと冷却
分離槽の働きを兼ね備えることができる。
When actually handling waste plastics, it is complicated to separate a mixture of various kinds of plastics depending on the type, and therefore it is desirable to decompose the mixture by heating. In this case, the method of cleaving the plastic polymer during thermal decomposition differs depending on the type of plastic.For example, polypropylene, polyethylene, etc. randomly cleave, polystyrene, etc. preferentially monomer cleaving, and polyvinyl chloride, etc. cleave the side chain. Has priority. In any case, the product is mainly composed of an olefinic or aromatic unsaturated hydrocarbon. On the other hand, it is preferable that the fuel oil is, for example, kerosene, which contains a paraffinic component as a main component and a small amount of an aromatic component. Therefore, it is desirable to convert olefinic components to paraffinic components. Catalysts such as activated alumina and zeolites hydrogenate olefinic double bonds and are therefore convenient for achieving this purpose. Such a catalyst 11 can be installed in the separation layer 3 and used as shown in FIG. Alternatively, the function of the catalyst tank and the function of the cooling separation tank can be provided by connecting and using the catalyst tank whose temperature is adjusted to be suitable for the cooling separation, instead of the separation tank.

【0020】廃プラスチックにポリ塩化ビニルが含まれ
る場合、加熱分解により有害な塩化水素ガスが発生し、
装置を腐食したり、得られる油を汚染する。又、ポリ塩
化ビニル製品は、ジ(2−エチルヘキシル)フタレート
(DOP)等の可塑剤を30wt%程度の割合で含む場合
が多く、これが化1のように加熱により昇華性の無水フ
タル酸となって装置の配管などに付着して管の閉塞を招
く。この問題を解決するには、廃プラスチックを加熱す
る際にアルカリ成分を共存させるのが有効である。
When polyvinyl chloride is contained in waste plastic, harmful hydrogen chloride gas is generated by thermal decomposition,
Corrodes equipment and contaminates the resulting oil. Further, polyvinyl chloride products often contain a plasticizer such as di (2-ethylhexyl) phthalate (DOP) in a proportion of about 30 wt%, which becomes a sublimable phthalic anhydride by heating as shown in Chemical formula 1. Adheres to the piping of the device and causes blockage of the piping. To solve this problem, it is effective to make an alkaline component coexist when heating the waste plastic.

【0021】[0021]

【化1】 アルカリ成分としては、例えば、水酸化ナトリウム等の
アルカリ金属水酸化物、アルカリ土類金属水酸化物等が
挙げられるが、このアルカリ成分は、塩化水素ガスと反
応して塩と水蒸気を生成する。従って、化2に示すよう
に、PVCの1次熱分解(側鎖の分解)によって生成す
る塩化水素ガスは、その大部分が金属塩化物となって分
解槽内に留まる。従って、生成油は塩素化合物をほとん
ど含まない高品質なものとなる。
[Chemical 1] Examples of the alkali component include alkali metal hydroxides such as sodium hydroxide and alkaline earth metal hydroxides. The alkali component reacts with hydrogen chloride gas to generate a salt and water vapor. Therefore, as shown in Chemical formula 2, most of the hydrogen chloride gas produced by the primary thermal decomposition of PVC (decomposition of the side chain) remains in the decomposition tank as metal chlorides. Therefore, the produced oil is of high quality containing almost no chlorine compounds.

【0022】[0022]

【化2】 更に、アルカリ成分の存在下では、PVC樹脂に可塑剤
として含まれるDOPは、化3に示すように、アルカリ
鹸化反応によってフタル酸金属塩となり、フタル酸ある
いは無水フタル酸は生成されないので、分解ガスを導く
管の閉塞を防止することができる。又、無水フタル酸な
どが生成して配管などに付着した場合であっても、アル
カリと塩化水素ガスとの中和反応によって生じる水蒸気
がこれを溶解し槽内に還流するので、管の閉塞の恐れは
ない。廃プラスチック中に添加剤として含まれる他のエ
ステル成分も同様に加水分解される。従って廃プラスチ
ックは熱分解されやすくなり、難分解性廃プラスチック
の分解率を向上することが可能となる。
[Chemical 2] Furthermore, in the presence of an alkali component, DOP contained in the PVC resin as a plasticizer becomes a metal salt of phthalic acid by an alkali saponification reaction as shown in Chemical formula 3, and phthalic acid or phthalic anhydride is not produced, so that decomposition gas is generated. It is possible to prevent blockage of the pipe that guides. Also, even if phthalic anhydride or the like is generated and adheres to the pipes, etc., steam generated by the neutralization reaction between the alkali and hydrogen chloride gas dissolves this and recirculates into the tank. There is no fear. Other ester components contained as an additive in the waste plastic are also hydrolyzed. Therefore, the waste plastic is likely to be thermally decomposed, and the decomposition rate of the hardly decomposable waste plastic can be improved.

【0023】[0023]

【化3】 更に、塩は水に溶けるので、槽内の塩に付着した廃プラ
スチックの分解残渣(カーボン)は、反応後に水洗によ
って容易に取除くことが可能である。また、未反応のア
ルカリも水に溶けるので、反応後の装置の洗浄が容易で
ある。
[Chemical 3] Further, since the salt dissolves in water, the decomposition residue (carbon) of the waste plastic attached to the salt in the tank can be easily removed by washing with water after the reaction. Further, since unreacted alkali is also soluble in water, it is easy to clean the device after the reaction.

【0024】添加するアルカリの量は、廃プラスチック
中のPVC含有率により異なるが、PVCプラスチック
に対し、アルカリ金属水酸化物の形で約0.2〜2.0
重量部が適当であり、アルカリの量が不足すると、生じ
た塩化水素ガスから有機塩素化合物が多く生成し、また
可塑剤の分解生成物による配管等の閉塞が生じる。多す
ぎると、エネルギーコストが増大し、アルカリによる分
解槽の腐食が進み、又、生成油にアルカリ成分が混入す
る。アルカリ成分は、水酸化物の形だけでなく、金属、
酸化物の形で添加してもよい。供給方法は特に限定され
ず、所定量のアルカリ成分を加熱前に直接加えることが
できる。
The amount of alkali added varies depending on the PVC content in the waste plastic, but is about 0.2 to 2.0 in the form of alkali metal hydroxide with respect to PVC plastic.
If the weight part is appropriate and the amount of alkali is insufficient, a large amount of organic chlorine compounds will be produced from the produced hydrogen chloride gas, and the decomposition products of the plasticizer will cause clogging of pipes and the like. If it is too large, the energy cost will increase, the decomposition tank will be corroded by alkali, and the produced oil will contain an alkaline component. The alkaline component is not only in the form of hydroxide, but also metal,
It may be added in the form of an oxide. The supply method is not particularly limited, and a predetermined amount of alkali component can be added directly before heating.

【0025】上述のアルカリによる効果は、適量の水分
を添加することにより更に向上するので、水の添加は生
成油質を改善する上で好ましい。管の閉塞防止効果も顕
著になる。添加する水分の適量は、廃プラスチックの種
類や処理温度により変化するが、概して、PVCに対し
重量比で約0.1〜1部である。水分の量が少なくなる
と分解効率が低下する。多すぎると、エネルギー効率が
低下する。水は不純物の少ないものが望ましい。供給方
法は特に限定されず、所定量の水分を加熱以前に直接分
解槽内に加えればよい。アルカリ水溶液として加えても
よい。廃プラスチックが適量の水分を含む場合は特に加
えなくてもよい。
Since the effect of the above-mentioned alkali is further improved by adding an appropriate amount of water, the addition of water is preferable for improving the quality of the produced oil. The effect of preventing the blockage of the pipe becomes remarkable. The appropriate amount of water to be added varies depending on the type of waste plastic and the treatment temperature, but is generally about 0.1 to 1 part by weight with respect to PVC. When the amount of water decreases, the decomposition efficiency decreases. If it is too large, energy efficiency will decrease. Water with less impurities is desirable. The supply method is not particularly limited, and a predetermined amount of water may be directly added to the decomposition tank before heating. You may add as an alkaline aqueous solution. If the waste plastic contains a proper amount of water, it is not necessary to add it.

【0026】水は油を改質するための水素源になり得る
が、加熱時に蒸発離散してしまっては効率が悪い。しか
し、この点に関して、本発明においては分解槽内を加圧
するので水蒸気の密度が高く、効率よく使用される。こ
のため、プラスチックのポリマー直鎖が分断がされ易く
なり、生成油はガソリンのような分子量の小さい成分を
多く含むものになり高品質化される。
Although water can be a hydrogen source for reforming oil, it is inefficient if it evaporates and separates during heating. In this regard, however, in the present invention, the inside of the decomposition tank is pressurized, so that the density of water vapor is high and it can be used efficiently. For this reason, the polymer straight chain of the plastic is likely to be fragmented, and the produced oil contains a large amount of components having a small molecular weight such as gasoline, so that the quality is improved.

【0027】更に、上述のアルカリ成分は、PVC、P
VC以外のプラスチックのどちらについても分解率を向
上させる触媒的な効果を示すことが見出された。この効
果は、常圧での加熱分解のみならず、加圧状態において
も発揮されるので、廃プラスチックに水酸化ナトリウム
等のアルカリ成分と水を加えて加圧下で加熱することに
より、PVCに限らず種々のプラスチックからの燃料油
の回収率を向上し、かつ、その成分を低分子量化でき
る。
Furthermore, the above-mentioned alkaline components are PVC, P
It has been found that both plastics other than VC exhibit a catalytic effect of improving the decomposition rate. This effect is exhibited not only by thermal decomposition at normal pressure but also in a pressurized state. Therefore, by adding an alkaline component such as sodium hydroxide and water to waste plastic and heating it under pressure, it is possible to limit the effect to PVC. In addition, the recovery rate of fuel oil from various plastics can be improved, and the component can be made to have a low molecular weight.

【0028】触媒的効果を得るために添加するアルカリ
の量は、例えば水酸化ナトリウムの場合、プラスチック
に対し5重量%以上が好ましい。水酸化ナトリウムの量
が5重量%よりも少なくなると廃プラスチックの分解率
が低下する。供給方法は特に限定されず、所定量の水酸
化ナトリウムを加熱以前に直接加えることができる。添
加する水の量は、プラスチックに対し10重量%以上が
好ましい。水の添加量が10重量%よりも少なくなると
生成油中の重油質の割合が増加する。水は不純物の少な
いものが望ましい。供給方法は特に限定されず、所定量
の水を加熱以前に直接加えることができる。分解槽の加
圧度は、ゲージ圧で1気圧(≒1.03kg/cm2 )以上
が好ましい。
The amount of alkali added to obtain the catalytic effect is preferably 5% by weight or more based on the plastic in the case of sodium hydroxide. If the amount of sodium hydroxide is less than 5% by weight, the decomposition rate of the waste plastic will decrease. The supply method is not particularly limited, and a predetermined amount of sodium hydroxide can be directly added before heating. The amount of water added is preferably 10% by weight or more based on the plastic. When the amount of water added is less than 10% by weight, the ratio of heavy oil quality in the produced oil increases. Water with less impurities is desirable. The supply method is not particularly limited, and a predetermined amount of water can be directly added before heating. The pressure of the decomposition tank is preferably 1 atm (≈1.03 kg / cm 2 ) or more in gauge pressure.

【0029】この際、高温度、圧力下で、高濃度のアル
カリを使用する上述の反応条件に耐え得る装置を用いる
ことが必要となるが、本願発明者らは、ニッケルとクロ
ムを含む耐蝕合金が分解槽の材質として適することを見
出した。この耐蝕合金は、SUS304ステンレス鋼等
の、5%以上のニッケルと10%以上のクロムを含む鉄
系合金である。ニッケルの量が少なくなると耐蝕性が悪
くなり、高濃度のアルカリを高温度、圧力下で使用する
のが困難になる。クロムの量が少なくなると高温度での
機械特性が悪くなり、加圧条件での使用が困難になる。
At this time, it is necessary to use an apparatus capable of withstanding the above-mentioned reaction conditions using a high concentration of alkali under high temperature and pressure. The inventors of the present invention have found that the corrosion-resistant alloy containing nickel and chromium. Was found to be suitable as a material for the decomposition tank. This corrosion-resistant alloy is an iron-based alloy containing 5% or more nickel and 10% or more chromium, such as SUS304 stainless steel. When the amount of nickel decreases, the corrosion resistance deteriorates, making it difficult to use a high-concentration alkali under high temperature and pressure. When the amount of chromium decreases, the mechanical properties at high temperature deteriorate, making it difficult to use under pressure.

【0030】ニッケルとクロムを含む耐蝕合金は耐蝕性
のみならず高温度での機械強度にも優れており、本発明
を実施する装置の構成材料として最適である。合金に含
まれるニッケルとクロムは加圧条件下において廃プラス
チック分解触媒としての作用も示す。
The corrosion-resistant alloy containing nickel and chromium is excellent not only in corrosion resistance but also in mechanical strength at high temperatures, and is optimal as a constituent material of a device for carrying out the present invention. Nickel and chromium contained in the alloy also act as a waste plastic decomposition catalyst under pressure.

【0031】廃プラスチックには、ポリエチレン、ポリ
スチレン、ポリプロピレン等の熱可塑性のプラスチック
の他に、半導体封止樹脂等の熱硬化性の廃プラスチック
もある。本願発明者らは、これらを分別することなく熱
分解することを検討した結果、半導体封止樹脂が共存す
るとポリスチレンやポリプロピレン等のプラスチックか
らの油の回収率が向上することを見出した。半導体封止
樹脂には溶融石英ガラス粉や結晶性シリカ粉等の二酸化
珪素が含まれており、この様な二酸化珪素材は熱伝導性
に優れるため、ポリスチレンやポリプロピレン等の熱伝
導性の低さを補って、分解槽内全体の温度を均一且つ急
速に上昇させる働きをするものと考えられる。従って、
廃プラスチックの熱分解において、熱可塑性プラスチッ
クと熱硬化性プラスチックは必ずしも分別する必要はな
く、逆に、混合することによって回収率を高めることが
できる。約70wt%の二酸化珪素を含む半導体封止樹脂
を用いる場合、廃プラスチックに対して10〜20wt%
添加すると、油回収率が8〜10%上昇する。
The waste plastics include thermoplastic plastics such as polyethylene, polystyrene and polypropylene, as well as thermosetting waste plastics such as semiconductor sealing resin. As a result of studying the thermal decomposition of these without separating them, the present inventors have found that the coexistence of a semiconductor sealing resin improves the recovery rate of oil from plastics such as polystyrene and polypropylene. The semiconductor encapsulating resin contains silicon dioxide such as fused silica glass powder and crystalline silica powder. Since such silicon dioxide material has excellent thermal conductivity, it has low thermal conductivity such as polystyrene and polypropylene. It is considered that the temperature of the entire decomposition tank is uniformly and rapidly increased by supplementing the above. Therefore,
In the thermal decomposition of waste plastics, it is not always necessary to separate thermoplastics and thermosetting plastics, but conversely, the recovery rate can be increased by mixing them. When a semiconductor encapsulating resin containing about 70 wt% silicon dioxide is used, it is 10 to 20 wt% with respect to the waste plastic.
Addition increases oil recovery by 8-10%.

【0032】反応系の熱伝導性を向上させるためには、
シリコーン等の不活性なオイルや溶融塩等の熱媒体を用
いることも有効である。熱分解温度で液体である熱媒体
を用いると、伝熱性が高まり急速加熱が可能になるとと
もに、均一に加熱されるのでホットスポットがなくなり
安全性が向上する。さらに、加熱媒体は、生成するター
ル分が加熱炉に付着するのを防止する効果も示す。又、
一般に、酸素はプラスチックを部分酸化するので分解開
始剤としては用いても、生成する油の特性に悪影響を及
ぼすので熱分解中には酸素の補給はしない。特に、酸素
濃度が15%を越えると燃料油の粘性が高くなりタール
状成分も多くなるとともに、生成量も減少する。しか
し、熱媒体を用いると、廃プラスチックを液体で覆い酸
素を遮断することも可能になるので、有効である。
In order to improve the thermal conductivity of the reaction system,
It is also effective to use an inert oil such as silicone or a heat medium such as a molten salt. When a heat medium which is a liquid at the thermal decomposition temperature is used, the heat transfer property is enhanced and rapid heating is possible, and since it is uniformly heated, hot spots are eliminated and safety is improved. Further, the heating medium also has an effect of preventing the generated tar content from adhering to the heating furnace. or,
In general, oxygen partially oxidizes plastics, so even if it is used as a decomposition initiator, it adversely affects the properties of the produced oil, so that oxygen is not replenished during thermal decomposition. In particular, when the oxygen concentration exceeds 15%, the viscosity of the fuel oil increases, the amount of tar-like components increases, and the production amount decreases. However, the use of a heating medium is effective because it is possible to cover the waste plastic with a liquid and block oxygen.

【0033】用いられる熱媒体としては、沸点が400
℃以上の不活性なオイルあるいは融点200℃以下の溶
融塩が挙げられるが、これらに限定されるものではな
く、加熱分解中に液体でありプラスチックと望ましくな
い反応をしないものであればよい。特定すると、シリコ
ーンオイル、三元系硝酸塩(例えば、7 mol%NaNO
3 +44 mol%KNO3 +49 mol%NaNO2 )等の
無機溶融塩が挙げられる。
The heat medium used has a boiling point of 400.
Examples include, but are not limited to, an inert oil having a melting point of 200 ° C. or higher and a molten salt having a melting point of 200 ° C. or lower, as long as the liquid is a liquid during thermal decomposition and does not react undesirably with a plastic. Specifically, silicone oils, ternary nitrates (eg, 7 mol% NaNO
An inorganic molten salt such as 3 +44 mol% KNO 3 +49 mol% NaNO 2 ) can be used.

【0034】また、廃プラスチックの性状に合わせて、
酸化ニッケル、酸化鉄、酸化銅、二酸化マンガン、シリ
カ、ジルコニア、チタニアのうち1種以上を廃プラスチ
ックの分解触媒としてプラスチックに加えて使用する
と、低分子量の油が増え分子量分布も狭くなるため、燃
料油の特性向上に効果的である。触媒の量は、プラスチ
ックに対して10〜200wt%が好ましい。
Also, according to the properties of the waste plastic,
If one or more of nickel oxide, iron oxide, copper oxide, manganese dioxide, silica, zirconia, and titania is used as a decomposition catalyst for waste plastics in addition to the plastics, low molecular weight oil increases and the molecular weight distribution narrows. Effective in improving oil characteristics. The amount of catalyst is preferably 10 to 200 wt% with respect to the plastic.

【0035】分解槽内で触媒を用いる場合においても、
水の添加は、燃料油の特性をさらに向上させる。この場
合の添加する水の量は、プラスチックの種類や処理温度
により変化するが、概して、廃プラスチックに対し重量
比で0.1〜2倍程度が良い。水の量が少なくなると、
分解効率が低下するとともに、燃料油の分子量分布が広
がり、オレフィン系の炭化水素が増える等の特性低下が
起こる。反対に多すぎると、エネルギーコストが増大す
る。また、水は不純物の少ないものが望ましい。供給法
は特に限定されず、一般的には所定量の水を加熱以前に
分解槽内に直接加える。
Even when a catalyst is used in the decomposition tank,
The addition of water further improves the properties of the fuel oil. The amount of water added in this case varies depending on the type of plastic and the treatment temperature, but is generally about 0.1 to 2 times the weight of waste plastic by weight. When the amount of water decreases,
As the decomposition efficiency decreases, the molecular weight distribution of the fuel oil broadens, and characteristics such as the increase of olefinic hydrocarbons occur. On the other hand, too much increases energy costs. Moreover, it is desirable that the water has few impurities. The supply method is not particularly limited, and generally, a predetermined amount of water is directly added to the decomposition tank before heating.

【0036】上述の熱媒体、分解触媒及び水は、単独で
用いても組み合わせて用いても効果を発揮し、組み合わ
せて用いると、より効果的である。
The above-mentioned heat medium, decomposition catalyst, and water exhibit effects when used alone or in combination, and are more effective when used in combination.

【0037】上述の熱分解方法によって得られる油は、
発熱量が約10000kcal/kgと高く、廃プラスチック
を熱分解する工程自体の燃料として利用することができ
る。従って、熱分解によって得られた燃料の一部を分解
槽の加熱に用いる手段を、前述の本発明に係る熱分解装
置に加えることによって、効率的に装置を稼働すること
ができ、非常に経済的である。又、得られる油が軽質で
あるので、エコロジーの面においても優れている。
The oil obtained by the above-mentioned thermal decomposition method is
It has a high calorific value of about 10,000 kcal / kg and can be used as a fuel in the process of thermally decomposing waste plastic. Therefore, by adding a means for using a part of the fuel obtained by thermal decomposition for heating the decomposition tank to the above-described thermal decomposition apparatus according to the present invention, the apparatus can be efficiently operated, which is very economical. Target. Moreover, since the oil obtained is light, it is also excellent in terms of ecology.

【0038】[0038]

【実施例】以下、実験結果に基づいて本発明の好適な実
施例について説明する。
EXAMPLES Preferred examples of the present invention will be described below based on experimental results.

【0039】1.加圧下での熱分解及び重質成分の分離
/還流操作による効果 (実験例1)図1に示される装置1のステンレス製分解
槽2にポリエチレンペレット100gを入れ、圧力制御
弁6、7を各々ゲージ圧が4kg/cm2 となるように
設定した。分離槽3の冷却温度を300℃に設定し、分
解槽2を450℃に加熱した。
1. Effect of Pyrolysis under Pressure and Separation / Reflux Operation of Heavy Components (Experimental Example 1) 100 g of polyethylene pellets were placed in the stainless steel decomposition tank 2 of the apparatus 1 shown in FIG. 1, and pressure control valves 6 and 7 were respectively provided. The gauge pressure was set to be 4 kg / cm 2 . The cooling temperature of the separation tank 3 was set to 300 ° C, and the decomposition tank 2 was heated to 450 ° C.

【0040】プラスチックの温度が上昇し分解温度に達
すると、プラスチックの分解ガスによって分解槽2の内
圧が上昇し始めた。分解ガスが分解槽2及び分離槽3の
両方に充満し、その圧力がゲージ圧4kg/cm2 を越
えたときに分解ガスの一部は圧力制御弁6介して回収槽
5に逃げた。従って、分解槽2内及び分離槽3内のゲー
ジ圧は共に4kg/cm2 に保たれた。ガスが回収槽5
へ逃げたのを確認した時点でポンプ4を稼働した。これ
により、分離槽3内で液化した重質成分はポンプ4を介
して分解槽2へ再度移送され、さらに分解されるという
過程を繰返した。分解温度に達してから1時間で、油回
収容器8には80gの液状油が回収でき、その成分はガ
ソリン相当分(沸点150℃以下)20%、灯油相当分
(沸点150〜250℃)70%、ワックス分(沸点2
50℃以上)10%であった。
When the temperature of the plastic increased and reached the decomposition temperature, the internal pressure of the decomposition tank 2 started to increase due to the decomposition gas of the plastic. When the decomposition gas filled both the decomposition tank 2 and the separation tank 3 and the pressure thereof exceeded a gauge pressure of 4 kg / cm 2 , a part of the decomposition gas escaped to the recovery tank 5 via the pressure control valve 6. Therefore, the gauge pressures in the decomposition tank 2 and the separation tank 3 were both kept at 4 kg / cm 2 . Gas recovery tank 5
The pump 4 was started when it was confirmed that it escaped to. As a result, the process in which the heavy component liquefied in the separation tank 3 was transferred again to the decomposition tank 2 via the pump 4 and further decomposed was repeated. One hour after reaching the decomposition temperature, 80 g of liquid oil can be recovered in the oil recovery container 8, and its components are 20% equivalent to gasoline (boiling point 150 ° C. or lower), kerosene equivalent (boiling point 150 to 250 ° C.) 70%. %, Wax content (boiling point 2
50% or more) 10%.

【0041】(実験例2〜11)圧力制御弁6、7のゲ
ージ圧設定及び分離槽3の温度設定を表1に記載の値に
変更した点を除いては実験例1と同様の条件でポリエチ
レンペレットの熱分解を行った。結果を表1に示す。
(Experimental Examples 2 to 11) Under the same conditions as Experimental Example 1 except that the gauge pressure settings of the pressure control valves 6 and 7 and the temperature setting of the separation tank 3 were changed to the values shown in Table 1. The polyethylene pellets were pyrolyzed. The results are shown in Table 1.

【0042】(実験例12)装置1から分離槽3、ポン
プ4、圧力制御弁6を取り外して分解層を圧力制御弁7
に直接接続したものを用いて、表1に示す条件で熱分解
を行った。結果を表1に示す。
(Experimental Example 12) The separation tank 3, the pump 4, and the pressure control valve 6 were removed from the apparatus 1 to remove the decomposition layer from the pressure control valve 7.
Pyrolysis was performed under the conditions shown in Table 1 using the one directly connected to. The results are shown in Table 1.

【0043】 表1 加圧熱分解及び分離還流操作の効果 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 反応条件 生成油 分離槽 ゲージ圧 成分含量(wt %) No 冷却温度 (kg/cm2) 収量 ガソリン 灯油 ワックス ( ℃) 弁6 弁7 (wt%) −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 実験例1 300 4 4 80 20 70 10 2 300 4 0 80 20 60 20 3 300 2 2 60 10 60 30 4 300 6 6 70 40 60 0 5 300 10 10 50 70 30 0 6 300 15 15 40 90 10 0 7 200 4 4 50 40 50 10 8 250 4 4 70 30 70 0 9 250 4 0 70 30 60 10 10 350 4 4 80 20 50 30 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 実験例11 300 0 0 40 20 30 50 12 −−− 4 − 80 20 40 40 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 表1に示されるように、実験例2では、80gの液状油
が回収されたが、成分は、ガソリン相当分20%、灯油
相当分60%、ワックス分20%となった。これは、分
離槽3内が常圧となったため重質分解ガスの分離性が実
験例1の場合より低下したと考えられる。
Table 1 Effects of pressure pyrolysis and separation / reflux operation ---------------------- Conditions Produced oil Separation tank Gauge pressure Component content (wt%) No Cooling temperature (kg / cm 2) Yield Gasoline Kerosene wax (° C) Valve 6 Valve 7 (wt%) −−−−−−−−−−−−−−− −−−−−−−−−−−−−−−−−−−−− Experimental example 1 300 4 4 80 20 70 70 10 2 300 4 0 80 80 20 60 60 20 3 300 2 2 60 60 10 60 30 4 300 6 6 70 40 60 0 5 300 300 10 10 50 70 30 30 0 6 300 300 15 15 40 40 90 10 0 7 200 4 4 4 50 40 50 10 8 8 250 4 4 4 70 30 70 70 0 9 250 4 0 0 70 30 60 60 10 10 350 4 20 50 30 −−−−−−−−−−−−−−− −−−−−−−−−−−−−−−−−−− Experimental example 11 300 0 0 40 20 30 50 50 12 −−− 4−80 20 20 40 40 −−−−−−−−−−−− As shown in Table 1, in Experimental Example 2, 80 g of liquid oil was recovered, but the component was gasoline. Equivalent 20%, kerosene 60%, wax 20%. It is considered that this is because the separability of the heavy cracked gas was lower than that in Experimental Example 1 because the pressure inside the separation tank 3 became normal pressure.

【0044】実験例3及び実験例11から明らかなよう
に、分解槽内のゲージ圧が小さい場合には、重質成分の
生成率が高くなるため、軽質油化する速度が遅くなり、
その結果、油の収量が減り、また生成油に混入する重質
成分が多くなった。しかし、加圧量を大きくし過ぎる
と、回収層5の冷却管でも凝縮しない軽質ガス成分が増
えるため、生成油は軽質となるが油の収量が減ること
が、実験例4〜6の結果からわかる。
As is clear from Experimental Example 3 and Experimental Example 11, when the gauge pressure in the cracking tank is small, the production rate of heavy components becomes high, and the speed of light oil conversion becomes slow,
As a result, the yield of oil was reduced and the amount of heavy components mixed in the produced oil was increased. However, if the amount of pressurization is made too large, the light gas component that does not condense even in the cooling pipe of the recovery layer 5 increases, so the produced oil becomes light, but the oil yield decreases. From the results of Experimental Examples 4 to 6, Recognize.

【0045】実験例7では、油中の軽質分の割合は高く
なるが、収率が低くなり、1時間で分解は終了しなかっ
た。従って、分離槽の冷却温度を下げると、分解時間が
長くなる。
In Experimental Example 7, the proportion of light components in the oil was high, but the yield was low, and the decomposition was not completed in 1 hour. Therefore, if the cooling temperature of the separation tank is lowered, the decomposition time becomes longer.

【0046】実験例11では、生成ガスの分離を行って
いるが、生成ガス自体が重質成分を多く含むこと及び低
圧では重質分が液化しにくくなり分離効率が下がること
により、得られた油には多量の重質成分が混入してい
る。又、実験例12では、加圧をしているため油量は多
いが、重質分の分離・再分解を行っていないのでワック
ス分を多く含む、粘性率の高い油となった。いずれの場
合も、重質成分を十分に除去することができない。これ
に対し、加圧下での熱分解と重質成分分離操作とを組み
合わせることにより予期せぬ程に重質成分を除去するこ
とが可能であることが、実験例11、12と上記実験例
1〜10の結果を比較することにより理解される。
In Experimental Example 11, the product gas was separated, but it was obtained because the product gas itself contained a large amount of heavy components, and at low pressure, the heavy components were difficult to liquefy and the separation efficiency decreased. Oil contains a large amount of heavy components. Further, in Experimental Example 12, although the amount of oil was large due to the pressurization, since the separation and re-decomposition of heavy components were not performed, the oil contained a large amount of wax and had a high viscosity. In either case, the heavy component cannot be sufficiently removed. On the other hand, it is possible to remove the heavy component unexpectedly by combining the thermal decomposition under pressure and the heavy component separation operation. It is understood by comparing the results of -10.

【0047】(実験例13〜17)分離槽3に表2に記
載する触媒を各々備え付けた図2に示す構成の装置を用
いて、実験例1と同様の条件でポリエチレンペレットの
熱分解を行った。結果を表2に示す。
(Experimental Examples 13 to 17) Using the apparatus shown in FIG. 2 in which the catalysts listed in Table 2 are provided in the separation tank 3, the polyethylene pellets are pyrolyzed under the same conditions as in Experimental Example 1. It was The results are shown in Table 2.

【0048】 表2 触媒の効果 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 生成油 No 触媒 収量 成分(wt%) (wt%) ガソリン 灯油 ワックス −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 実験例1 − 80 20 70 10 13 活性アルミナ 80 20 80 0 14 ゼオライト 80 20 80 0 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 実験例15 珪藻土 80 20 70 10 16 シリカ 80 20 70 10 17 酸化ニッケル 50 10 60 30 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 活性アルミナ及びゼオライトを触媒として用いた場合に
は、どちらもワックス分を含まない80gの油が得られ
た。これらにおいては、オレフィン系の成分が減少し、
相対的に芳香族系成分やパラフィン系成分が増加した。
Table 2 Effect of catalyst --------------------------------------------------------------------------------------------------------------------------------------------- wt%) (wt%) Gasoline Kerosene wax --------------------------------------------------- Experimental Example 1-80 20 70 10 13 Activated alumina 80 20 80 0 14 Zeolite 80 20 80 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− -Experimental Example 15 Diatomaceous earth 80 20 70 10 16 Silica 80 20 70 10 10 17 Nickel oxide 50 10 60 30 --------------------------------------- When using activated alumina and zeolite as the catalyst, 80 g of oil containing no wax was obtained. In these, the olefinic components are reduced,
Aromatic and paraffinic components increased relatively.

【0049】珪藻土、シリカを用いた実験例15、16
の場合は触媒添加効果がみられなかった。ニッケルを用
いた実験例17では、ワックス分が増え、また、油量が
減少した。いずれの場合も、オレフィン系成分の含量は
ほとんど減少しなかった。
Experimental Examples 15 and 16 using diatomaceous earth and silica
In the case of, the effect of adding the catalyst was not observed. In Experimental Example 17 using nickel, the wax content increased and the oil amount decreased. In each case, the content of olefinic component was hardly reduced.

【0050】以上の結果から明らかなように、活性アル
ミナやゼオライトを触媒として装着することにより、生
成ガスの改質が可能であり、高品質の燃料油を回収する
ことができる。
As is clear from the above results, by mounting activated alumina or zeolite as a catalyst, the produced gas can be reformed and high quality fuel oil can be recovered.

【0051】2.アルカリ及び水の添加による効果 (実験例18)実験例1で用いた装置1から分離槽3、
ポンプ4、圧力制御弁6を取り外してガラス製分解層2
を圧力制御弁7に直接接続するようにした。圧力制御弁
7をゲージ圧0に設定した。分解槽2内に水酸化ナトリ
ウム(18g)を入れ、次に粒径1〜2mmの軟質PVC
ペレット(18g)を入れ、450℃で1時間の連続加
熱を行った。その結果、油回収容器8に燃料油が4ml回
収され、この量はPVC量に対し20wt%であった。得
られた燃料油は、ベンゼン、オクテン、2−エチルヘキ
サノールを主成分とする、沸点250℃以上の成分が3
0%以下の軽質油であり、ナトリウムおよび塩素は検出
感度1ppm のイオンクロマトグラフによっては検出され
なかった。
2. Effect of Addition of Alkali and Water (Experimental Example 18) From the apparatus 1 used in Experimental Example 1 to the separation tank 3,
Glass decomposition layer 2 with pump 4 and pressure control valve 6 removed
Was directly connected to the pressure control valve 7. The pressure control valve 7 was set to zero gauge pressure. Sodium hydroxide (18g) was put into the decomposition tank 2 and then soft PVC with a particle size of 1-2 mm
Pellets (18 g) were added and continuous heating was performed at 450 ° C. for 1 hour. As a result, 4 ml of fuel oil was recovered in the oil recovery container 8, and this amount was 20 wt% with respect to the amount of PVC. The obtained fuel oil contains benzene, octene, and 2-ethylhexanol as main components, and has 3 or more components having a boiling point of 250 ° C. or higher.
It was a light oil of 0% or less, and sodium and chlorine were not detected by an ion chromatograph with a detection sensitivity of 1 ppm.

【0052】(実験例19)水酸化ナトリウム(18
g)、PVCペレット(18g)及び水分(4g)を分
解槽2に入れて実験例13と同様の実験を行った。結果
を表3に示す。
Experimental Example 19 Sodium hydroxide (18
g), PVC pellets (18 g) and water (4 g) were placed in the decomposition tank 2 and the same experiment as in Experimental Example 13 was performed. The results are shown in Table 3.

【0053】(実験例20〜38)廃プラスチックの種
類、添加物の種類と量、水分の量を表3に記載のように
変えたことを除いては実験例19と同様に実験を行い、
油回収容器8にて回収された燃料油の量および性質を測
定した。その結果は表3に示す通りである。なお、表3
において、アルカリ、水分、生成油の量は廃プラスチッ
クの重量を1としたときのそれぞれの重量である。
(Experimental Examples 20 to 38) An experiment was conducted in the same manner as in Experimental Example 19 except that the types of waste plastics, the types and amounts of additives, and the amounts of water were changed as shown in Table 3.
The amount and properties of the fuel oil recovered in the oil recovery container 8 were measured. The results are shown in Table 3. Table 3
In, the amounts of alkali, water and produced oil are the respective weights when the weight of the waste plastic is 1.

【0054】 表3 アルカリ及び水の添加による効果 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− プラスチック 添加物 添加量 水 生成油 No 添加量 油質 収量 Na, Cl の (重量部)(重量部) (重量部) 検出 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 実験例18 PVC NaOH 1.0 0 軽質 0.2 − 実験例19 PVC NaOH 1.0 0.2 軽質 0.3 − 実験例20 PVC Ca(OH)2 1.0 0.2 軽質 0.2 − 実験例21 PVC Mg(OH)2 1.0 0.2 軽質 0.2 − 実験例22 PVC KOH 1.0 0.2 軽質 0.2 − 実験例23 PVC NaOH 0.2 0.2 軽質 0.2 − 実験例24 PVC NaOH 0.5 0.2 軽質 0.3 − 実験例25 PVC NaOH 2.0 0.2 軽質 0.3 − 実験例26 PVC NaOH 1.0 0.1 軽質 0.3 − 実験例27 PVC NaOH 1.0 0.5 軽質 0.3 − 実験例28 PVC NaOH 1.0 1.0 軽質 0.2 − 実験例29 PVC+PP(1:1) NaOH 1.0 0.2 軽質 0.6 − 実験例30 PVC+PS(1:1) NaOH 1.0 0.2 軽質 0.5 − 実験例31 PVC+PE(1:1) NaOH 1.0 0.2 軽質 0.5 − 実験例32 PVC NaOH 3.0 0.2 重質 0.3 Na 実験例33 PVC NaOH 5.0 0.2 重質 0.3 Na 実験例34 PVC NaOH 1.0 2.0 重質 0.2 − −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 実験例35 PVC − − − 重質 0.2 Cl 実験例36 PVC − − 0.2 重質 0.2 Cl 実験例37 PVC Al2 3 1.0 0.2 重質 0.2 Cl 実験例38 PVC Fe2 3 1.0 0.2 重質 0.1 Cl −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 実験例19では、燃料油は6mlと実験例18に比べて大
幅に増えた。燃料油成分では2−エチルヘキサノールの
増加率が著しいことから、水分の添加によりPVCに含
まれる可塑剤の分解率が向上し、従って燃料油収量が増
加したものと考えられる。
Table 3 Effect of Addition of Alkali and Water ------------------------------------------------------------------------- Plastic Additive Addition amount Water Produced oil No addition amount Oil quality Yield of Na and Cl (parts by weight) (parts by weight) (parts by weight) Detection −−−−−−−−−−−−−−−−−−−−−−− −−−−−−−−−−−−− Experimental Example 18 PVC NaOH 1.0 0 Light 0.2 − Experimental Example 19 PVC NaOH 1.0 0.2 Light 0.3 − Experimental Example 20 PVC Ca (OH) 2 1.0 0.2 Light 0.2 − Experimental Example 21 PVC Mg (OH) 2 1.0 0.2 Light 0.2 − Experimental Example 22 PVC KOH 1.0 0.2 Light 0.2 − Experimental Example 23 PVC NaOH 0.2 0.2 Light 0.2 − Experimental Example 24 PVC NaOH 0.5 0.2 Light 0.3 − Experimental Example 25 PVC NaOH 2.0 0.2 Light 0.3 − Experimental Example 26 PVC NaOH 1.0 0.1 Light 0.3 − Experimental Example 27 PVC NaOH 1.0 0.5 Light 0.3 − Experimental Example 28 PVC NaOH 1.0 1.0 Light 0.2 − Experimental Example 29 PVC + PP (1: 1) NaOH 1.0 0.2 Light 0. 6 − Experimental Example 30 PVC + PS (1: 1) NaOH 1.0 0.2 Light 0.5 − Experimental Example 31 PVC + PE (1: 1) NaOH 1.0 0.2 Light 0.5 − Experimental Example 32 PVC NaOH 3.0 0.2 Heavy 0.3 Na Experimental Example 33 PVC NaOH 5.0 0.2 Heavy 0.3 Na Experimental Example 34 PVC NaOH 1.0 2.0 Heavy 0.2 − −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− −−−−− Experimental Example 35 PVC − − − Heavy 0.2 Cl Experimental Example 36 PVC − − 0.2 Heavy 0.2 Cl Experimental Example 37 PVC Al 2 O 3 1.0 0.2 Heavy 0.2 Cl Experimental Example 38 PVC Fe 2 O 3 1.0 0.2 Heavy 0.1 Cl −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− In Experimental Example 19, 6 ml of fuel oil was used. And, compared with Experimental Example 18, the number is significantly increased. Since the increase rate of 2-ethylhexanol in the fuel oil component is remarkable, it is considered that the decomposition rate of the plasticizer contained in PVC was improved by the addition of water, and therefore the fuel oil yield was increased.

【0055】実験例18〜28の結果から明らかなよう
に、アルカリ材を用いることによって生成油への塩素化
合物の混入を防ぐことができる。又、実験例29〜31
の結果から、PVCと他の塩素を含まないプラスチック
とを問題なく同時に熱分解処理できることがわかる。し
かし、実験例32及び33のようにアルカリの添加量を
過剰にすると、塩素の混入を防止できる反面、生成油に
アルカリが混入し、且つ、生成油は重質になる。
As is clear from the results of Experimental Examples 18 to 28, it is possible to prevent the chlorine compound from being mixed into the produced oil by using the alkaline material. In addition, Experimental Examples 29 to 31
From the results, it can be seen that PVC and other chlorine-free plastics can be pyrolyzed simultaneously without any problems. However, if the amount of alkali added is excessive as in Experimental Examples 32 and 33, chlorine can be prevented from being mixed, but on the other hand, alkali is mixed into the produced oil and the produced oil becomes heavy.

【0056】実験例35の場合は分解開始直後から、実
験例36の場合は分解槽2内の水が蒸発し終わった後
に、それぞれフタル酸あるいは無水フタル酸などが回収
槽5の壁に晶析する様子が観察された。そして、表3に
示した通り、生成した油量は実験例19に比べて少な
く、このことから水酸化ナトリウム及び水がPVCの分
解を促進する効果があることがわかる。実験例36では
初期充填水量3gに対して4mlの水が得られたが、この
水は酸性を示しており、塩酸、フタル酸などが溶解した
ことが考えられる。またアルカリを加えないこれらの実
験例では、生成油にクロロオクタンなどの塩素化合物が
多く含まれてしまうので、燃料油とするには不適当であ
る。
In Experimental Example 35, phthalic acid or phthalic anhydride was crystallized on the wall of the recovery tank 5 immediately after the start of decomposition, and in Experimental Example 36, after the water in the decomposition tank 2 was completely evaporated. The behavior was observed. Then, as shown in Table 3, the amount of oil produced was smaller than that in Experimental Example 19, which indicates that sodium hydroxide and water have the effect of promoting the decomposition of PVC. In Experimental Example 36, 4 ml of water was obtained with respect to the initial filling water amount of 3 g, but this water shows acidity, and it is considered that hydrochloric acid, phthalic acid, etc. were dissolved. Further, in these experimental examples in which no alkali is added, the produced oil contains a large amount of chlorine compounds such as chlorooctane, and is therefore unsuitable as a fuel oil.

【0057】上記のように、塩化ビニル樹脂を含む廃プ
ラスチックを加熱分解する際にアルカリ及び水分を添加
すると、塩化水素ガスの発生を防止することができ、か
つ、装置の管の閉塞を防ぐことができる。さらに、塩素
化合物を含まない良質の燃料油を得ることができ、分解
率も向上する。
As described above, when alkali and water are added when the waste plastic containing vinyl chloride resin is thermally decomposed, generation of hydrogen chloride gas can be prevented, and the pipe of the device can be prevented from being blocked. You can Further, it is possible to obtain a high-quality fuel oil containing no chlorine compound, and the decomposition rate is improved.

【0058】加えて、塩化ビニル樹脂を含まない廃プラ
スチックも、アルカリ及び水分を添加する同一の加熱条
件下で燃料油を迅速に得ることができ、また、残渣の処
理が容易になる。
In addition, also for waste plastics containing no vinyl chloride resin, fuel oil can be rapidly obtained under the same heating condition in which alkali and water are added, and the treatment of the residue becomes easy.

【0059】3.加圧下でのアルカリ及び水の添加によ
る効果 (実験例39)密閉構造のSUS304(8%ニッケル
+18%クロム)製の分解槽2に圧力制御弁7、回収槽
5及び回収容器8を接続した。分解槽2ににあらかじめ
粒径約2mmのポリプロピレン・ペレット(20g)、水
酸化ナトリウム(1g)、水(2g)を入れて蓋をし、
420℃で1時間連続加熱を行った。温度が上昇すると
分解槽2内には水蒸気圧力が発生するので、ゲージ圧で
1気圧になるように圧力制御弁7を調整した。燃料油は
20ml得られ、この量はポリプロピレン量に対して70
重量%であった。さらにその燃料油は2−メチル−1−
ペンテン、2,4−ジメチル−1−ヘプテンを主成分と
する、炭素数11以下(沸点200℃以下)の成分が8
0%以上のガソリン質油であった。
3. Effect of addition of alkali and water under pressure (Experimental Example 39) The pressure control valve 7, the recovery tank 5 and the recovery container 8 were connected to the decomposition tank 2 made of SUS304 (8% nickel + 18% chromium) having a closed structure. Put polypropylene pellets (20g), sodium hydroxide (1g) and water (2g) in the decomposition tank 2 in advance and cover with
Continuous heating was carried out at 420 ° C. for 1 hour. Since steam pressure is generated in the decomposition tank 2 when the temperature rises, the pressure control valve 7 was adjusted so that the gauge pressure became 1 atm. 20 ml of fuel oil can be obtained, which is 70% based on the amount of polypropylene.
% By weight. Furthermore, the fuel oil is 2-methyl-1-
Pentene, 2,4-dimethyl-1-heptene as a main component, and having 8 or less carbon atoms (boiling point 200 ° C. or less)
It was a gasoline-based oil of 0% or more.

【0060】(実験例40〜52)廃プラスチックの種
類、NaOHの添加量、水の量、分解槽内のゲージ圧力
を表4に記載の値に変えたことを除いては実験例39と
同様に実験を行い、生成した燃料油の量および性質を測
定した。結果を表4に示す。表中、重油は炭素数17以
上(沸点300℃以上)の成分が20%以上であるもの
を意味する。
(Experimental Examples 40 to 52) The same as Experimental Example 39 except that the types of waste plastics, the amount of NaOH added, the amount of water, and the gauge pressure in the decomposition tank were changed to the values shown in Table 4. Experiments were conducted to measure the amount and properties of the produced fuel oil. The results are shown in Table 4. In the table, heavy oil means that 20% or more of components have 17 or more carbon atoms (boiling point of 300 ° C. or more).

【0061】(実験例53)マルテンサイト系ステンレ
ス鋼(0.14%ニッケル+12.95%クロム)製の
分解槽を使用したことを除いては実験例39と同様に実
験を行い、生成した燃料油の量および性質を測定した。
結果を表4に示す。
(Experimental Example 53) The fuel produced in the same manner as in Experimental Example 39 except that a decomposition tank made of martensitic stainless steel (0.14% nickel + 12.95% chromium) was used. The amount and nature of the oil was measured.
The results are shown in Table 4.

【0062】(実験例54)S35C機械構造用炭素鋼
(ニッケル、クロムとも0%)製の分解槽を使用したこ
とを除いては実験例39と同様に実験を行い、生成した
燃料油の量および性質を測定した。結果を表4に示す。
(Experimental Example 54) An experiment was conducted in the same manner as in Experimental Example 39 except that a cracking tank made of carbon steel for S35C mechanical structure (0% of both nickel and chromium) was used, and the amount of fuel oil produced. And the properties were measured. The results are shown in Table 4.

【0063】 表4 加圧下でのアルカリ及び水の添加による効果 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− No プラスチック NaOH 水 ゲージ圧 生成油 (wt%) (wt%) (atm) 油質 収量(%) −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 実験例39 PP 5 10 1 ガソリン 70 実験例40 PP 0 10 1 ガソリン 30 実験例41 PP 2 10 1 ガソリン 50 実験例42 PP 20 10 1 ガソリン 70 実験例43 PP 50 10 1 ガソリン 70 実験例44 PP 5 30 1 ガソリン 70 実験例45 PP 5 50 1 ガソリン 70 実験例46 PP 5 10 5 ガソリン 70 実験例47 PP 5 10 10 ガソリン 70 実験例48 PE 5 10 1 ガソリン 70 実験例49 PS 5 10 1 ガソリン 80 実験例50 PVC 5 10 1 ガソリン 30 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 実験例51 PP 5 0 1 重油 70 実験例52 PP 5 10 0 重油 80 実験例53 PP 5 10 1 ガソリン 60 実験例54 PP 5 10 1 ガソリン 60 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 表4において、水酸化ナトリウム(NaOH)、水、生成油
の量は廃プラスチックの重量を100としたときのそれ
ぞれの重量である。
Table 4 Effect of addition of alkali and water under pressure ------------------------------------------------------------------------------- −− No Plastic NaOH Water gauge pressure Produced oil (wt%) (wt%) (atm) Oil quality Yield (%) −−−−−−−−−−−−−−−−−−−−−−− −−−−−−−−−−−−− Experimental Example 39 PP 5 10 1 Gasoline 70 Experimental Example 40 PP 0 10 1 Gasoline 30 Experimental Example 41 PP 2 10 1 Gasoline 50 Experimental Example 42 PP 20 10 1 Gasoline 70 Experimental Example 43 PP 50 10 1 gasoline 70 Experimental example 44 PP 5 30 1 gasoline 70 Experimental example 45 PP 5 50 1 gasoline 70 Experimental example 46 PP 5 10 5 gasoline 70 Experimental example 47 PP 5 10 10 gasoline 70 Experimental example 48 PE 5 10 1 Gasoline 70 Experimental Example 49 S 5 10 1 gasoline 80 Experimental example 50 PVC 5 10 1 gasoline 30 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− -Experimental example 51 PP 5 0 1 heavy oil 70 Experimental example 52 PP 5 10 0 heavy oil 80 Experimental example 53 PP 5 10 1 Gasoline 60 Experimental example 54 PP 5 10 1 Gasoline 60 -------------------- In Table 4, the amounts of sodium hydroxide (NaOH), water, and produced oil are based on the weight of waste plastic as 100. Is the weight of each.

【0064】実験例40〜43から、水酸化ナトリウム
の量が5重量%よりも少なくなると廃プラスチックの分
解率が低下し得られる燃料油の量が減少することがわか
る。又、実験例44〜47及び実験例51、52では、
水の量が少なくなったり、あるいは操作圧力が低くなる
と燃料油は重油質となることが示されている。上記の実
験条件においては、水10wt%以上、ゲージ圧1atm 以
上が好ましいことが示される。
From Experimental Examples 40 to 43, it can be seen that when the amount of sodium hydroxide is less than 5% by weight, the decomposition rate of waste plastic is lowered and the amount of fuel oil obtained is reduced. In addition, in Experimental Examples 44 to 47 and Experimental Examples 51 and 52,
It has been shown that fuel oil becomes heavy oil quality when the amount of water decreases or the operating pressure decreases. Under the above experimental conditions, water of 10 wt% or more and a gauge pressure of 1 atm or more are preferable.

【0065】実験例48〜50から、プラスチックの種
類により得られる燃料油の量は変化するが、いずれもガ
ソリン質の油が得られることが示されている。従って、
水酸化ナトリウム及び水を添加して加圧下で熱分解する
ことにより廃プラスチックから軽質の油を回収すること
ができる。但し、実際に廃プラスチックを熱分解する場
合には、種々のプラスチックの混合物を分解するため分
解生成ガス中の重質成分の増加が予想される。そのよう
な場合においても、実験例1で示されるように重質成分
の分離/還流工程を採用することにより、容易に軽質の
油を得ることができることは明白である。
From Experimental Examples 48 to 50, it is shown that, although the amount of fuel oil obtained varies depending on the type of plastic, gasoline-quality oil can be obtained in all cases. Therefore,
Light oil can be recovered from waste plastics by adding sodium hydroxide and water and thermally decomposing under pressure. However, in the case of actually thermally decomposing waste plastic, it is expected that the amount of heavy components in the decomposition product gas will increase because it decomposes a mixture of various plastics. Even in such a case, it is obvious that a light oil can be easily obtained by adopting the step of separating / refluxing the heavy component as shown in Experimental Example 1.

【0066】実験例53及び54は使用する分解槽の材
質を変えた例である。これらにおいては、生成した燃料
油の量および質は良好なものとなったが、分解槽の腐食
が激しく、実用に耐えないものとなった。又、実験例3
9とこれらの結果を比較すると、8%ニッケル、18%
クロムを含むステンレス鋼に触媒的作用があることが示
唆される。従って、このステンレス鋼を分解槽に適用す
ることによって、腐食に耐え、油を効率よく回収するこ
とが可能になる。
Experimental examples 53 and 54 are examples in which the material of the decomposition tank used is changed. In these cases, the amount and quality of the produced fuel oil were good, but the decomposition tank was severely corroded and could not be put to practical use. Experimental example 3
9 and these results, 8% nickel, 18%
It is suggested that chromium-containing stainless steel has a catalytic effect. Therefore, by applying this stainless steel to the decomposition tank, it becomes possible to endure the corrosion and efficiently recover the oil.

【0067】4.熱硬化性樹脂共存下でのプラスチック
の熱分解 (実験例55)ポリプロピレンの廃プラスチック粉砕品
100重量部と半導体封止樹脂のトランスファー成型に
より発生した廃プラスチック粉砕品10重量部とをあら
かじめ混合し、この混合品を、実験例18と同様の装置
の分解槽2に入れた。ゲージ圧を0に設定し、500℃
で2時間加熱した。その結果、生成した燃料油は80重
量部で、仕込んだポリプロピレン廃プラスチック量(1
00重量部)と半導体封止樹脂廃プラスチック中のエポ
キシ樹脂等の有機化合物(3重量部)との合計に対する
生成燃料油の回収率は78%であった。
4. Pyrolysis of plastic in the presence of thermosetting resin (Experimental Example 55) 100 parts by weight of a crushed waste plastic product of polypropylene and 10 parts by weight of a crushed waste plastic product generated by transfer molding of a semiconductor encapsulating resin are mixed in advance, This mixed product was placed in the decomposition tank 2 having the same apparatus as in Experimental Example 18. Set the gauge pressure to 0, 500 ℃
Heated for 2 hours. As a result, the produced fuel oil was 80 parts by weight, and the amount of polypropylene waste plastic charged (1
(00 parts by weight) and the organic compound (3 parts by weight) such as epoxy resin in the semiconductor encapsulating resin waste plastic (78 parts by weight), the recovery rate of the produced fuel oil was 78%.

【0068】(実験例56〜58、61、62)プラス
チックの種類、半導体封止樹脂の添加量を表5の記載の
ように変えた点を除いては実験例55と同様に熱分解試
験を行い、生成した燃料油の量を測定し回収率を求め
た。その結果を表5に示す。
(Experimental Examples 56 to 58, 61, 62) A thermal decomposition test was conducted in the same manner as in Experimental Example 55 except that the kinds of plastics and the amount of the semiconductor sealing resin added were changed as shown in Table 5. Then, the amount of the produced fuel oil was measured and the recovery rate was obtained. The results are shown in Table 5.

【0069】(実験例59、60、63、64)圧力制
御弁7のゲージ圧を3kg/cm2 に変えた点を除いては実
験例55、57、61、62と同様に熱分解試験を行
い、生成した燃料油の量を測定し回収率を求めた。その
結果を表5に示す。
(Experimental Examples 59, 60, 63, 64) A thermal decomposition test was conducted in the same manner as in Experimental Examples 55, 57, 61, 62 except that the gauge pressure of the pressure control valve 7 was changed to 3 kg / cm 2. Then, the amount of the produced fuel oil was measured and the recovery rate was obtained. The results are shown in Table 5.

【0070】 表5 熱硬化性樹脂共存下での結果 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− プラスチック(重量部) 生成油 PP PS 半導体封止樹脂 収量(重量部) 回収率(wt%) −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 実験例55 100 − 10 80 78 実験例56 100 − 20 85 80 実験例57 − 100 10 75 73 実験例58 − 100 20 80 75 実験例59 100 − 10 85 83 実験例60 − 100 10 80 78 実験例61 100 − − 70 70 実験例62 − 100 − 65 65 実験例63 100 − − 83 83 実験例64 − 100 − 78 78 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 表5から明らかなように、ポリプロピレンの廃プラスチ
ック粉砕品に半導体封止樹脂の廃プラスチック粉砕品を
混合した場合の方が生成される燃料油は多く、回収効率
を向上し得ることがわかる。
Table 5 Results in the Coexistence of Thermosetting Resins -------------------------- Plastic plastics (Parts by weight) Produced oil PP PS Semiconductor encapsulating resin Yield (parts by weight) Recovery rate (wt%) ------------------------------- --------------- Experimental example 55 100-1080 78 Experimental example 56 100-20 85 80 Experimental example 57-100 100 75 73 Experimental example 58-100 20 20 80 75 Experimental example 59 100-10 85 83 Experimental example 60-100 10080 78 Experimental Example 61 100-70 70 Experimental Example 62-100-65 65 Experimental Example 63 100-83 83 83 Experimental Example 64-100-78 78 -------------- −−−−−−−−−−−−−−−−−−−−−− - As apparent from Table 5, fuel oil towards the case of mixing the waste plastic pulverized product of the semiconductor sealing resin Polypropylene waste plastic ground product is generated much, it can be seen that can improve the collection efficiency.

【0071】実験例55〜60で得られた油は留出点5
0〜350℃程度の成分であった。この結果より、実験
例1と同様の分離/還流工程を備えた熱分解方法を用い
ることにより効率よく軽質の油が得られることが容易に
理解される。
The oils obtained in Experimental Examples 55 to 60 had a distillation point of 5
It was a component of about 0 to 350 ° C. From this result, it is easily understood that a light oil can be efficiently obtained by using the thermal cracking method including the same separation / reflux step as in Experimental Example 1.

【0072】従って、ポリプロピレン等の熱可塑性の廃
プラスチックに半導体封止樹脂等の酸化珪素を含む熱硬
化性の廃プラスチックを加えても加熱分解には何等支障
はなく、逆に、燃料油の回収効率を向上させることが可
能である。
Therefore, even if the thermosetting waste plastic containing silicon oxide such as the semiconductor sealing resin is added to the thermoplastic waste plastic such as polypropylene, there is no problem in the thermal decomposition, and conversely, the recovery of the fuel oil is performed. It is possible to improve efficiency.

【0073】5.加熱媒体、分解触媒及び水の添加によ
る効果 (実験例65)実験例13と同様の装置の圧力制御弁7
をゲージ圧0に設定し、分解槽2内に加熱媒体としてシ
リコンオイルを2リットル入れ、径2cm程度に粉砕し
たポリプロピレンを材質とする廃プラスチック1kg、水
1kg、触媒として酸化ニッケル100gを入れて蓋をし
た。そして、少量の廃プラスチックを燃焼して分解槽内
のエアの酸素濃度を15%にした後、500℃で2時間
加熱した。その結果、生成された燃料油は、1.0リッ
トルのJIS規格A重油相当品であり、また、同時に生
成されたガス量は100cc、タール分は100ccであっ
た。
5. Effect of Addition of Heating Medium, Decomposition Catalyst and Water (Experimental Example 65) Pressure control valve 7 of the same device as in Experimental Example 13
Is set to a gauge pressure of 0, 2 liters of silicon oil is put into the decomposition tank 2 as a heating medium, 1 kg of waste plastic made of polypropylene crushed to a diameter of about 2 cm, 1 kg of water, and 100 g of nickel oxide as a catalyst are placed in the lid. Did. Then, after burning a small amount of waste plastic to make the oxygen concentration of the air in the decomposition tank 15%, it was heated at 500 ° C. for 2 hours. As a result, the fuel oil produced was 1.0 liter of JIS standard A heavy oil equivalent product, and the amount of gas produced at the same time was 100 cc and the tar content was 100 cc.

【0074】(実験例66〜84、89〜92)加熱媒
体の種類、分解触媒の種類、水分添加量、及び、廃プラ
スチック材料の種類を変更した点を除いては実験例65
と同様に加熱分解試験を行ない、生成した燃料油の性状
と量を測定したところ、表6に示す如くの結果が得られ
た。
(Experimental Examples 66 to 84, 89 to 92) Experimental Example 65 except that the type of heating medium, the type of decomposition catalyst, the amount of water added, and the type of waste plastic material were changed.
A thermal decomposition test was carried out in the same manner as described above, and the properties and amount of the produced fuel oil were measured. The results shown in Table 6 were obtained.

【0075】(実験例85〜88、93〜96)圧力制
御弁7のゲージ圧設定を3kg/cm2 に変更した点を除い
ては、実験例65、82〜84、93〜96と同様に加
熱分解試験を行い、生成した燃料油の性状と量を測定し
たところ、表6に示す如くの結果が得られた。
(Experimental Examples 85-88, 93-96) Similar to Experimental Examples 65, 82-84, 93-96, except that the gauge pressure setting of the pressure control valve 7 was changed to 3 kg / cm 2. A thermal decomposition test was conducted and the properties and amount of the produced fuel oil were measured, and the results shown in Table 6 were obtained.

【0076】 表6 加熱媒体、分解触媒及び水の添加による効果 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− No プラスチック 媒体 触媒 水 生成油 (kg) 油質 収量(l) −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 実験例65 PP シリコーン NiO 1.0 A重油 1.0 実験例66 PP シリコーン − − A重油 0.7 実験例67 PP − NiO − A重油 0.8 実験例68 PP − − 1.0 A重油 0.8 実験例69 PP シリコーン NiO − A重油 0.9 実験例70 PP シリコーン − 1.0 A重油 0.9 実験例71 PP 溶融塩 NiO 1.0 A重油 1.0 実験例72 PP 溶融塩 Fe2 3 1.0 A重油 1.0 実験例73 PP 溶融塩 Co2 3 1.0 A重油 1.0 実験例74 PP シリコーン CuO 1.0 A重油 1.0 実験例75 PP シリコーン MnO2 1.0 A重油 1.0 実験例76 PP シリコーン SiO2 1.0 A重油 1.0 実験例77 PP シリコーン ZrO2 1.0 A重油 1.0 実験例78 PP シリコーン TiO2 1.0 A重油 1.0 実験例79 PP シリコーン NiO 0.5 A重油 0.9 実験例80 PP シリコーン NiO 1.5 A重油 1.0 実験例81 PP シリコーン NiO 2.0 A重油 0.9 実験例82 PE シリコーン NiO 1.0 A重油 0.3 実験例83 PS シリコーン NiO 1.0 A重油 0.9 実験例84 PVC シリコーン NiO 1.0 A重油 0.2 実験例85 PP シリコーン NiO 1.0 灯油 1.0 実験例86 PE シリコーン NiO 1.0 灯油 1.0 実験例87 PS シリコーン NiO 1.0 灯油 1.0 実験例88 PVC シリコーン NiO 1.0 灯油 0.2 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 実験例89 PP − − − C重油 0.7 実験例90 PE − − − C重油 0.3 実験例91 PS − − − C重油 0.6 実験例92 PVC − − − C重油 0.2 実験例93 PP − − − 軽油 1.0 実験例94 PE − − − 軽油 0.9 実験例95 PS − − − 軽油 1.0 実験例96 PVC − − − 軽油 0.1 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 表中、溶融塩としては、7mol %NaNO3 −44mol
%KNO3 −49mol%NaNO2 の3元系硝酸塩を用
いている。
Table 6 Effect of Addition of Heating Medium, Decomposition Catalyst, and Water --------------------------------------------------------------- − No Plastic medium Catalyst water Produced oil (kg) Oil quality Yield (l) −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− --- Experimental example 65 PP silicone NiO 1.0 A heavy oil 1.0 Experimental example 66 PP silicone --- A heavy oil 0.7 Experimental example 67 PP-NiO-A heavy oil 0.8 Experimental example 68 PP --- 1.0 A Heavy Oil 0.8 Experimental Example 69 PP Silicone NiO-A Heavy Oil 0.9 Experimental Example 70 PP Silicone-1.0 A Heavy Oil 0.9 Experimental Example 71 PP Molten Salt NiO 1.0 A Heavy Oil 1.0 Experimental Example 72 PP Melted salts Fe 2 O 3 1.0 A heavy oil 1.0 experiment 73 PP molten salt Co 2 O 3 1.0 A heavy oil 1.0 experimental example 7 PP silicone CuO 1.0 A heavy oil 1.0 Experiment 75 PP silicone MnO 2 1.0 A heavy oil 1.0 Experiment 76 PP silicone SiO 2 1.0 A heavy oil 1.0 Experiment 77 PP Silicone ZrO 2 1. 0 A heavy oil 1.0 Experimental example 78 PP silicone TiO 2 1.0 A heavy oil 1.0 Experimental example 79 PP silicone NiO 0.5 A heavy oil 0.9 Experimental example 80 PP silicone NiO 1.5 A heavy oil 1.0 Experimental Example 81 PP Silicone NiO 2.0 A Heavy Oil 0.9 Experimental Example 82 PE Silicone NiO 1.0 A Heavy Oil 0.3 Experimental Example 83 PS Silicone NiO 1.0 A Heavy Oil 0.9 Experimental Example 84 PVC Silicone NiO 1.0 A heavy oil 0.2 Experimental example 85 PP Silicone NiO 1.0 Kerosene 1.0 Experimental example 86 PE Silicone NiO 1.0 Kerosene 1.0 Experimental example 87 PS Silicone NiO 1.0 Kerosene 1.0 Experimental Example 88 PVC Silicone NiO 1.0 Kerosene 0.2 ---------------------------------------------------------------------------------------------------------------------------- -Experimental Example 89 PP --- C Heavy Oil 0.7 Experimental Example 90 PE ---- C Heavy Oil 0.3 Experimental Example 91 PS ---- C Heavy Oil 0.6 Experimental Example 92 PVC ---- C Heavy Oil 0.2 Experiment Example 93 PP --- gas oil 1.0 Experimental example 94 PE --- Gas oil 0.9 Experimental example 95 PS --- Gas oil 1.0 Experimental example 96 PVC --- Gas oil 0.1 ---------- In the table, as the molten salt, 7 mol% NaNO 3 -44 mol
% KNO 3 −49 mol% NaNO 2 ternary nitrate is used.

【0077】加熱媒体、触媒及び水のいずれも使用しな
い実験例89〜92と実験例65〜84を比べると、明
らかに油質が軽質化し、収量にも増加がみられる。ガス
分やタール分も少なくなる。実験例93〜96と実験例
85〜88との比較においても同様の結果が得られ、圧
力下の反応においても同様に油質及び収率の改善が可能
である。従って、これらの添加物を必要に応じて実験例
1で行われる熱分解工程に導入することによって、より
高品質の油をより高収率で得ることができることは明か
である。
Comparing Experimental Examples 89 to 92 and Experimental Examples 65 to 84 in which neither heating medium, catalyst nor water is used, it is apparent that the oil quality is lighter and the yield is also increased. The amount of gas and tar is also reduced. Similar results are obtained in the comparison between Experimental Examples 93 to 96 and Experimental Examples 85 to 88, and the oil quality and the yield can be similarly improved even in the reaction under pressure. Therefore, it is obvious that higher quality oil can be obtained in higher yield by introducing these additives into the thermal cracking step performed in Experimental Example 1 as needed.

【0078】(実験例97)実験例1と同様の装置を用
いて、ポリプロピレン破砕品100gを分解槽2に入
れ、圧力制御弁のゲージ圧設定を各4kg/cm2 にし、温
度420℃の条件で熱分解を行った。分解槽2の熱源に
は灯油バーナーを使用した。加熱後約30分で軽質油が
生成し始めたところで、バーナーの燃料を灯油から前記
軽質油に切り替えて、加熱を継続した。その結果、2時
間で分解は終了し、総量80kgの軽質油が得られ、燃料
切り替え後に使用した軽質油は80kgのうちの30kgで
あった。又、燃料切り替えまでに使用した灯油の量は1
0kgであった。
(Experimental Example 97) Using the same apparatus as in Experimental Example 1, 100 g of polypropylene crushed product was placed in the decomposition tank 2, the gauge pressure of the pressure control valve was set to 4 kg / cm 2 , and the temperature was 420 ° C. Was pyrolyzed. A kerosene burner was used as the heat source of the decomposition tank 2. About 30 minutes after heating, when light oil started to be generated, the fuel of the burner was switched from kerosene to the light oil, and heating was continued. As a result, the decomposition was completed in 2 hours, and a total amount of light oil of 80 kg was obtained, and the light oil used after the fuel switching was 30 kg of 80 kg. Also, the amount of kerosene used before switching fuel is 1
It was 0 kg.

【0079】上記の結果から明らかなように、熱分解で
得られた軽質油を自己燃焼に使用することにより、プラ
スチックの分解に必要なエネルギーを賄うことができ
る。
As is clear from the above results, by using the light oil obtained by thermal decomposition for self-combustion, it is possible to cover the energy required for the decomposition of plastic.

【0080】[0080]

【発明の効果】以上説明したように、本発明によれば、
廃プラスチックの分解効率が向上し、燃料油の回収率が
従来に比べて著しく向上する。また、良質の燃料油を回
収することができるようになる。
As described above, according to the present invention,
The efficiency of decomposing waste plastics is improved, and the recovery rate of fuel oil is significantly improved compared to the past. Further, it becomes possible to recover good quality fuel oil.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のプラスチックの熱分解装置の第1実施
例の構成を示すフロー図である。
FIG. 1 is a flow chart showing the configuration of a first embodiment of a plastic thermal decomposition apparatus of the present invention.

【図2】本発明のプラスチックの熱分解装置の第2実施
例の構成を示すフロー図である。
FIG. 2 is a flow chart showing the configuration of a second embodiment of the plastic thermal decomposition apparatus of the present invention.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 C08L 77:06 9286−4J (31)優先権主張番号 特願平4−275763 (32)優先日 平4(1992)10月14日 (33)優先権主張国 日本(JP) (72)発明者 島田 秀樹 神奈川県川崎市幸区小向東芝町1 株式会 社東芝研究開発センター内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification number Reference number within the agency FI technical display location C08L 77:06 9286-4J (31) Priority claim number Japanese Patent Application No. 4-275763 (32) Priority date Hei 4 (1992) October 14 (33) Priority claiming country Japan (JP) (72) Inventor Hideki Shimada 1 Komukai Toshiba-cho, Komachi, Kawasaki-shi, Kanagawa Toshiba Research & Development Center

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 下記の工程を具備したプラスチックの熱
分解方法:プラスチックを加圧雰囲気下で加熱分解して
加熱分解物を得る、加熱分解工程;前記加熱分解工程に
よる分解物を比較的重質な油成分と比較的軽質な油性分
とに分離する分離工程;前記分離工程で分離された比較
的重質な油成分を熱分解するために前記加熱分解工程に
還流する還流工程;及び前記分離工程で分離された比較
的軽質な油成分を回収する回収工程。
1. A method for thermally decomposing a plastic comprising the following steps: a thermal decomposition step of thermally decomposing a plastic under a pressure atmosphere to obtain a thermally decomposed material; Separation step for separating a relatively heavy oil component and a relatively light oil component; a reflux step for refluxing the relatively heavy oil component separated in the separation step to the thermal decomposition step for thermal decomposition; and the separation A recovery process that recovers relatively light oil components separated in the process.
【請求項2】 下記の手段を具備したプラスチックの熱
分解装置:プラスチックを加圧雰囲気下で加熱分解する
ための、加熱分解手段;前記加熱分解手段で得られる分
解物を比較的重質な油成分と比較的軽質な油性分とに分
離するための分離手段;前記分離手段により分離された
比較的重質な油成分を熱分解するために前記加熱分解手
段に還流する還流手段;及び前記分離手段により分離さ
れた比較的軽質な油成分を回収するための回収手段。
2. A thermal decomposition apparatus for plastics comprising the following means: thermal decomposition means for thermally decomposing plastics under a pressurized atmosphere; decomposition products obtained by the thermal decomposition means are relatively heavy oils. Separating means for separating components and relatively light oily components; reflux means for returning to the thermal cracking means to thermally decompose the relatively heavy oil components separated by the separating means; and the separating Recovery means for recovering a relatively light oil component separated by the means.
JP32187092A 1991-12-20 1992-12-01 Method and apparatus for thermal decomposition of waste plastics Pending JPH06179877A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32187092A JPH06179877A (en) 1991-12-20 1992-12-01 Method and apparatus for thermal decomposition of waste plastics

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
JP33818391 1991-12-20
JP3-338183 1991-12-20
JP3381492 1992-02-21
JP3533492 1992-02-21
JP4-275763 1992-10-14
JP27576392 1992-10-14
JP4-35334 1992-10-14
JP4-33814 1992-10-14
JP32187092A JPH06179877A (en) 1991-12-20 1992-12-01 Method and apparatus for thermal decomposition of waste plastics

Publications (1)

Publication Number Publication Date
JPH06179877A true JPH06179877A (en) 1994-06-28

Family

ID=27521559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32187092A Pending JPH06179877A (en) 1991-12-20 1992-12-01 Method and apparatus for thermal decomposition of waste plastics

Country Status (1)

Country Link
JP (1) JPH06179877A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997031990A1 (en) * 1996-02-27 1997-09-04 Mitsubishi Heavy Industries, Ltd. Method and apparatus for recovering oil from waste plastic
CN1095687C (en) * 1997-02-24 2002-12-11 株式会社明电舍 Noxious component removal process and noxious component removal agent therefor
JP2008031247A (en) * 2006-07-27 2008-02-14 T Rad Co Ltd Method for pyrolyzing polystyrene
JP2008539285A (en) * 2005-04-29 2008-11-13 エスセーエフ テクノロジーズ アクティーゼルスカブ Method and apparatus for conversion of organic substances
JP2011213962A (en) * 2010-04-02 2011-10-27 San Life Kk Method and apparatus for recovering decomposition oil of waste plastic
JP2013539476A (en) * 2010-07-15 2013-10-24 グリーンマントラ リサイクリング テクノロジーズ リミテッド Method for producing wax and grease base oil raw material by catalytic depolymerization of waste plastic
US10000715B2 (en) 2013-01-17 2018-06-19 Greenmantra Recycling Technologies Ltd. Catalytic depolymerisation of polymeric materials
US10472487B2 (en) 2015-12-30 2019-11-12 Greenmantra Recycling Technologies Ltd. Reactor for continuously treating polymeric material
US10597507B2 (en) 2016-02-13 2020-03-24 Greenmantra Recycling Technologies Ltd. Polymer-modified asphalt with wax additive
US10723858B2 (en) 2018-09-18 2020-07-28 Greenmantra Recycling Technologies Ltd. Method for purification of depolymerized polymers using supercritical fluid extraction
US10870739B2 (en) 2016-03-24 2020-12-22 Greenmantra Recycling Technologies Ltd. Wax as a melt flow modifier and processing aid for polymers
US11072676B2 (en) 2016-09-29 2021-07-27 Greenmantra Recycling Technologies Ltd. Reactor for treating polystyrene material
CN113687056A (en) * 2021-07-28 2021-11-23 清华大学深圳国际研究生院 Device and method for simulating release and real-time collection of harmful substances in plastic product

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997031990A1 (en) * 1996-02-27 1997-09-04 Mitsubishi Heavy Industries, Ltd. Method and apparatus for recovering oil from waste plastic
CN1095687C (en) * 1997-02-24 2002-12-11 株式会社明电舍 Noxious component removal process and noxious component removal agent therefor
JP2008539285A (en) * 2005-04-29 2008-11-13 エスセーエフ テクノロジーズ アクティーゼルスカブ Method and apparatus for conversion of organic substances
US8299315B2 (en) 2005-04-29 2012-10-30 Altaca Insaat Ve Dis Ticaret A.S. Method and apparatus for converting organic material
US8771601B2 (en) 2005-04-29 2014-07-08 Altaca Insaat Ve Dis Ticaret A.S. Method and apparatus for converting organic material
JP2008031247A (en) * 2006-07-27 2008-02-14 T Rad Co Ltd Method for pyrolyzing polystyrene
JP2011213962A (en) * 2010-04-02 2011-10-27 San Life Kk Method and apparatus for recovering decomposition oil of waste plastic
JP2013539476A (en) * 2010-07-15 2013-10-24 グリーンマントラ リサイクリング テクノロジーズ リミテッド Method for producing wax and grease base oil raw material by catalytic depolymerization of waste plastic
US10000715B2 (en) 2013-01-17 2018-06-19 Greenmantra Recycling Technologies Ltd. Catalytic depolymerisation of polymeric materials
US10457886B2 (en) 2013-01-17 2019-10-29 Greenmantra Recycling Technologies Ltd. Catalytic depolymerisation of polymeric materials
US10472487B2 (en) 2015-12-30 2019-11-12 Greenmantra Recycling Technologies Ltd. Reactor for continuously treating polymeric material
US11072693B2 (en) 2015-12-30 2021-07-27 Greenmantra Recycling Technologies Ltd. Reactor for continuously treating polymeric material
US11739191B2 (en) 2015-12-30 2023-08-29 Greenmantra Recycling Technologies Ltd. Reactor for continuously treating polymeric material
US10597507B2 (en) 2016-02-13 2020-03-24 Greenmantra Recycling Technologies Ltd. Polymer-modified asphalt with wax additive
US11279811B2 (en) 2016-02-13 2022-03-22 Greenmantra Recycling Technologies Ltd. Polymer-modified asphalt with wax additive
US10870739B2 (en) 2016-03-24 2020-12-22 Greenmantra Recycling Technologies Ltd. Wax as a melt flow modifier and processing aid for polymers
US11987672B2 (en) 2016-03-24 2024-05-21 Greenmantra Recycling Technologies Ltd. Wax as a melt flow modifier and processing aid for polymers
US11072676B2 (en) 2016-09-29 2021-07-27 Greenmantra Recycling Technologies Ltd. Reactor for treating polystyrene material
US11859036B2 (en) 2016-09-29 2024-01-02 Greenmantra Recycling Technologies Ltd. Reactor for treating polystyrene material
US10723858B2 (en) 2018-09-18 2020-07-28 Greenmantra Recycling Technologies Ltd. Method for purification of depolymerized polymers using supercritical fluid extraction
CN113687056A (en) * 2021-07-28 2021-11-23 清华大学深圳国际研究生院 Device and method for simulating release and real-time collection of harmful substances in plastic product

Similar Documents

Publication Publication Date Title
EP0775738B1 (en) Process for producing low-boiling oil from waste plastics containing phthalic polyester and/or polyvinyl chloride
US5608136A (en) Method and apparatus for pyrolytically decomposing waste plastic
US6172275B1 (en) Method and apparatus for pyrolytically decomposing waste plastic
US5640707A (en) Method of organic homologation employing organic-containing feeds
JPH06179877A (en) Method and apparatus for thermal decomposition of waste plastics
US7425315B2 (en) Method to recapture energy from organic waste
US5629464A (en) Method for forming unsaturated organics from organic-containing feed by employing a Bronsted acid
EP0735994A1 (en) Method for producing unsaturated organics from organic-containing feeds
JPH06500592A (en) Monomer recovery from polymers
JPH04320490A (en) Polymer cracking
CA2130019C (en) Process for the preparation of synthesis gas
US5904879A (en) Partial oxidation of waste plastic material
EP2609146B1 (en) Process for termical degradation of pvc and other wastes containing halogen-containing polymer waste
SK285553B6 (en) Method of treatment of halogenous, organic waste material
EP0946468B1 (en) Partial oxidation of waste plastic material
WO1995017362A1 (en) Method for reforming organics into shorter-chain unsaturated organic compounds
JP3218961B2 (en) Treatment of chlorine-containing plastic waste
KR960013605B1 (en) Hydrocarbon oil production method from waste plastics by pyrolysis
US7163647B2 (en) Process for the production of synthesis gas from heavy charges such as heavy crude oils and distillation residues by means of partial oxidation
TW445273B (en) Partial oxidation of waste plastic material
JPH11140460A (en) Thermal decomposition of plastics, and device and dechlorinating agent used therefor
KR20230101077A (en) Method for producing waste plastic pyrolysis oil with reduced chlorine
TWI305787B (en) Device and process for plastic pyrolysis
JP2002069459A (en) Method for recovering decomposed oil from waste plastics
MXPA99000648A (en) Partial oxidation of desec plastic material