JPH0617810B2 - Thermal air flow meter - Google Patents

Thermal air flow meter

Info

Publication number
JPH0617810B2
JPH0617810B2 JP63028678A JP2867888A JPH0617810B2 JP H0617810 B2 JPH0617810 B2 JP H0617810B2 JP 63028678 A JP63028678 A JP 63028678A JP 2867888 A JP2867888 A JP 2867888A JP H0617810 B2 JPH0617810 B2 JP H0617810B2
Authority
JP
Japan
Prior art keywords
air passage
bypass
passage
air flow
outlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63028678A
Other languages
Japanese (ja)
Other versions
JPH01206223A (en
Inventor
忠雄 鈴木
光圀 筒井
小林  実
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP63028678A priority Critical patent/JPH0617810B2/en
Publication of JPH01206223A publication Critical patent/JPH01206223A/en
Publication of JPH0617810B2 publication Critical patent/JPH0617810B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Measuring Volume Flow (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、例えば自動車用エンジン等の吸入空気量測定
に使用して好適な熱式空気流量計に関するものである。
TECHNICAL FIELD The present invention relates to a thermal air flow meter suitable for use in measuring the amount of intake air of, for example, an automobile engine.

〔従来の技術〕[Conventional technology]

エンジンの吸入空気量測定等に使用される従来の熱式空
気流量計には、例えば、吸気計の主空気通路にバイパス
空気通路を設け、このバイパス空気通路に空気量測定用
の発熱抵抗体と温度補償用の感温抵抗体を配したものが
ある。この種の流量計におけるバイパス通路は、主空気
通路の内壁に組込まれるものと(下流リング方式)、特
開昭61−65053 号公報等に開示されるように主空気通路
中に配されるもの(軸流方式)とがある。このうち、い
わゆる軸流方式のものは、バイパス通路を主空気通路の
内壁に組込まず主空気通路の空間を利用して設けること
ができるので、吸気系のボディが小形化できる。また、
バイパス通路自体が主空気通路の空気の流れによって冷
却されるので、エンジンルーム内の熱的影響をさ程受け
ることなく、流量測定を行ない得る等の種々の利点を有
する。
A conventional thermal air flow meter used for measuring the intake air amount of an engine, for example, is provided with a bypass air passage in the main air passage of an air intake meter, and a heating resistor for measuring the air amount is provided in the bypass air passage. There is a temperature-sensitive resistor for temperature compensation. The bypass passage in this type of flow meter is incorporated in the inner wall of the main air passage (downstream ring system), and is arranged in the main air passage as disclosed in JP-A-61-65053. (Axial flow method). Among them, in the so-called axial flow type, the bypass passage can be provided by utilizing the space of the main air passage without incorporating it into the inner wall of the main air passage, so that the body of the intake system can be downsized. Also,
Since the bypass passage itself is cooled by the flow of air in the main air passage, there are various advantages such that the flow rate can be measured without being affected by the thermal effect in the engine room.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

ところで、前述した如き軸流方式の熱式空気流量計のバ
イパス通路は、その通路のうちで発熱抵抗体の配置箇所
及び発熱抵抗体配置箇所上流側を主空気通路の空気流れ
方向に沿わせ、発熱抵抗体配置箇所下流側を主空気通路
の空気流れ方向と直交する方向に曲折させる構造を採用
するため、次のような改善すべき点があった。
By the way, the bypass passage of the axial flow type thermal air flow meter as described above has a location where the heating resistor is disposed and an upstream side of the location where the heating resistor is disposed along the passage in the air flow direction of the main air passage, Since the structure in which the downstream side of the heat generating resistor arrangement portion is bent in the direction orthogonal to the air flow direction of the main air passage is adopted, there are the following points to be improved.

すなわち、熱式空気流量計のバイパス通路の一部が主空
気通路の空気流れ方向と直交するので、主空気通路内に
おけるバイパス空気通路出口部付近にバイパス通路自身
の存在によって渦流等の乱流現象が発生し、この乱流が
バイパス通路内の空気の流れに悪影響を与えたり、ま
た、エンジン吹返し等のエンジン脈動流が主空気通路内
に発生すると、この脈動流がバイパス通路出口を介して
バイパス空気通路の空気の流れに悪影響を及ぼし、その
結果、スロットル開度に対応するバイパス通路内の空気
流量に変動をきたすことがあった。このような空気流量
変動は、熱式空気流量計の出力に変動をきたして、変動
に基づく2種の検出出力が生じたり(2値現象)、流量
計の出力が正規の値から外れて跳ね上ってしまう現象
(跳ね上り現象)が生じる原因となるものであった。
That is, since a part of the bypass passage of the thermal air flow meter is orthogonal to the air flow direction of the main air passage, the presence of the bypass passage itself near the outlet of the bypass air passage in the main air passage causes a turbulent flow phenomenon such as vortex flow. Occurs, and this turbulent flow adversely affects the air flow in the bypass passage, and when engine pulsating flow such as engine blowback occurs in the main air passage, this pulsating flow passes through the bypass passage outlet. The flow of air in the bypass air passage is adversely affected, and as a result, the flow rate of air in the bypass passage corresponding to the throttle opening may fluctuate. Such an air flow rate fluctuation causes a fluctuation in the output of the thermal air flow meter, and two kinds of detection outputs are generated based on the fluctuation (binary phenomenon), or the flow meter output deviates from the normal value and bounces. This was the cause of the phenomenon of rising (jumping up phenomenon).

本発明は以上の点に鑑みてなされたものであり、その目
的とするところは、主空気通路におけるバイパス空気通
路出口付近に発生する空気流の乱れを有効に防止し、且
つエンジン脈動による影響を極力低減化して、バイパス
空気通路の流れの正常化、ひいては熱式空気流量計の測
定精度の向上化を図ることにある。
The present invention has been made in view of the above points, and an object thereof is to effectively prevent turbulence of an air flow generated near the bypass air passage outlet in the main air passage, and to prevent the influence of engine pulsation. The aim is to reduce the flow rate as much as possible, to normalize the flow of the bypass air passage, and to improve the measurement accuracy of the thermal air flow meter.

〔課題を解決するための手段〕[Means for Solving the Problems]

上記目的は、吸気系の一部となるボディの主空気通路内
にバイパス空気通路を配置し、このバイパス空気通路内
に吸入空気量を検出するための発熱抵抗体及び温度補償
用の感温抵抗体とを設けてなる、いわゆる軸流形の熱式
空気流量計において、前記バイパス空気通路の出口を前
記主空気通路の吸入空気流方向に対し略直角方向に開口
すると共に、前記バイパス空気通路出口の上流側に前記
主空気通路の吸入空気流を整流するためのひさし部を配
設してなることで達成される。
The above object is to arrange a bypass air passage in the main air passage of the body that is a part of the intake system, and to generate a heating resistor for detecting the amount of intake air and a temperature sensing resistor for temperature compensation in the bypass air passage. In a so-called axial-flow type thermal air flow meter having a body, the outlet of the bypass air passage is opened in a direction substantially perpendicular to the intake air flow direction of the main air passage, and the bypass air passage outlet is provided. This is achieved by disposing an eaves portion for rectifying the intake air flow in the main air passage on the upstream side of.

〔作用〕[Action]

このような構成よりなる本発明によれば、主空気通路に
流れる吸入空気がバイパス空気通路設置箇所を通過する
場合、その主空気通路の空気流はバイパス空気通路出口
の上流にてひさし部を介して整流されるので、バイパス
空気通路出口付近の主空気通路空気流の乱れを有効に防
止できる。また、エンジン側の吹返し等によるエンジン
脈動が主空気通路内に生じても、バイパス空気通路の出
口が主空気通路の吸入空気流方向に対し略直角方向に開
口するので、バイパス空気通路出口にエンジン脈動力が
直接加わらず、その影響を低減させることができる。そ
の結果、バイパス空気通路内の空気の流れは、正常に保
つことができ、発熱抵抗体による検出出力も安定した状
態となり得る。
According to the present invention having such a configuration, when the intake air flowing in the main air passage passes through the bypass air passage installation location, the air flow in the main air passage passes through the eaves upstream of the bypass air passage outlet. Since it is rectified as a result, it is possible to effectively prevent the turbulence of the main air passage air flow near the outlet of the bypass air passage. Further, even if engine pulsation due to blowback on the engine side occurs in the main air passage, the outlet of the bypass air passage opens in a direction substantially at right angles to the intake air flow direction of the main air passage. The engine pulsation power is not directly applied, and its influence can be reduced. As a result, the flow of air in the bypass air passage can be kept normal, and the detection output of the heating resistor can be in a stable state.

〔実施例〕〔Example〕

本発明の実施例を図面に基づき説明する。 An embodiment of the present invention will be described with reference to the drawings.

第1図は本発明の一実施例を示す縦断面図、第2図は上
記実施例に用いるバイパス空気通路の出口部付近を示す
部分斜視図である。
FIG. 1 is a vertical sectional view showing an embodiment of the present invention, and FIG. 2 is a partial perspective view showing the vicinity of an outlet portion of a bypass air passage used in the above embodiment.

第1図の熱線式空気流量計は、いわゆる軸流形のもの
で、図中1はアルミダイカスト製のボデイで、ボデイ1
は内径φ70の主空気通路9を有し、主空気通路9の中
に、ボデイ1と一体化されたバイパス空気通路5が配置
されている。バイパス空気通路5は、その入口から熱線
2、感温抵抗体3等の配置箇所までが主空気通路9の空
気流れ方向に向いて主空気通路9の中央に位置し、それ
よりも下流でバイパス空気通路出口6までが主空気通路
9の空気流れ方向と直交する方向に二股にわかれ、出口
6が主空気通路9の内壁近くにまで至つている。すなわ
ち、本例のバイパス空気通路5は、全体的には逆T字型
を呈している。また、バイパス空気通路5の各出口6
は、バイパス空気通路の両側壁5b(第2図に示す)に
配され、且つ、主空気通路9の空気流れ方向に対して略
直角となるように開口されている。更に、バイパス空気
通路5のうち、主空気通路9の空気流れ方向と直交する
部分は、その上部5aが断面半円形を呈し、且つ出口部
6はバイパス通路側壁5b及び上部5aよりも凹ませ
て、出口部6直上の上部5′aの一部がひさし状(符号
11で示す部分)に出口部6より突出するようにしてあ
る。5cはバイパス空気通路5の底部である。底部5c
の形状については、第4図及び第5図に示すいずれかの
形状を採用する。第4図はバイパス空気通路出口6の底
部5cの外形を断面半円形としたものである。また、第
5図はバイパス空気通路出口の底部5cの外形を山形と
したものである。
The hot-wire type air flow meter shown in FIG. 1 is of a so-called axial flow type. In the figure, reference numeral 1 is an aluminum die-cast body.
Has a main air passage 9 having an inner diameter φ70, and the bypass air passage 5 integrated with the body 1 is arranged in the main air passage 9. The bypass air passage 5 is located in the center of the main air passage 9 from the inlet to the location where the heat ray 2, the temperature sensitive resistor 3 and the like are arranged, and is bypassed downstream thereof. The air passage outlet 6 is bifurcated in a direction orthogonal to the air flow direction of the main air passage 9, and the outlet 6 reaches near the inner wall of the main air passage 9. That is, the bypass air passage 5 of this example has an inverted T shape as a whole. In addition, each outlet 6 of the bypass air passage 5
Are arranged on both side walls 5b (shown in FIG. 2) of the bypass air passage and are opened so as to be substantially perpendicular to the air flow direction of the main air passage 9. Further, in the portion of the bypass air passage 5 orthogonal to the air flow direction of the main air passage 9, the upper portion 5a has a semicircular cross section, and the outlet portion 6 is recessed from the bypass passage side wall 5b and the upper portion 5a. A part of the upper portion 5'a immediately above the outlet portion 6 projects from the outlet portion 6 in an eaves-like shape (a portion indicated by reference numeral 11). 5 c is the bottom of the bypass air passage 5. Bottom 5c
For the shape of, any one of the shapes shown in FIGS. 4 and 5 is adopted. In FIG. 4, the outer shape of the bottom portion 5c of the bypass air passage outlet 6 has a semicircular cross section. Further, in FIG. 5, the outer shape of the bottom portion 5c of the outlet of the bypass air passage has a chevron shape.

7は熱線支持体12の嵌装部で、嵌装部7は主空気通路
9の内壁からバイパス空気通路5の一部(主空気通路9
の空気流れ方向に向いた方向)にかけて架設され、この
嵌装部7内に熱線支持体12が嵌装されている。8はバ
イパス空気通路5内を通る吸入空気である。
Reference numeral 7 denotes a fitting portion of the heat ray support body 12, and the fitting portion 7 extends from the inner wall of the main air passage 9 to a part of the bypass air passage 5 (main air passage 9
The heat wire support body 12 is fitted in the fitting portion 7. Reference numeral 8 is intake air passing through the bypass air passage 5.

熱線支持体12は、バイパス空気通路5内に面する一端
が段差面となり、各段差面から突出して空気流量測定用
の熱線2及び温度補償用の感温抵抗体3が配されてい
る。4は熱線支持体12と結合された制御回路である。
One end of the heat wire support 12 facing the inside of the bypass air passage 5 is a step surface, and the heat wire 2 for measuring the air flow rate and the temperature sensitive resistor 3 for temperature compensation are arranged so as to project from each step surface. Reference numeral 4 is a control circuit connected to the heat ray support 12.

しかして、本実施例では、バイパス空気通路5に流入し
た空気8aは、熱線2及び感温抵抗体3の配置箇所を通
過後に2方向に別れ、それぞれバイパス空気通路出口6
から主空気通路9の空気流れ方向に対して直角に吹出さ
れる。この空気の流れ過程において熱線2が空気流量を
検出する。
Therefore, in the present embodiment, the air 8a flowing into the bypass air passage 5 is divided into two directions after passing through the location where the heat wire 2 and the temperature sensitive resistor 3 are arranged, and the bypass air passage outlet 6 is provided.
Is blown out at right angles to the air flow direction of the main air passage 9. In this air flow process, the heating wire 2 detects the air flow rate.

また、本実施例では、次のようにしてバイパス空気通路
出口6付近に生じる空気流の乱れやエンジン側からの吸
返し等のエンジン脈動により影響を低減させる。
Further, in the present embodiment, the influence is reduced by the turbulence of the air flow generated near the bypass air passage outlet 6 and engine pulsation such as sucking back from the engine side as follows.

すなわち、主空気通路9中の空気の流れは、特にスロツ
トル弁の全開域において流勢が増し、バイパス通路5設
置部付近で渦流等の乱流が生じ易いが、本実施例では、
バイパス空気通路出口6の直ぐ上流で、ひさし11が整
流作用をなし、通路出口6付近の乱流を防止する。ま
た、主空気通路9中にエンジンの吹返し等がある場合で
も、バイパス空気通路出口6は主空気通路9の空気流れ
に対し直角方向に開口してあるので、バイパス空気通路
5がエンジン吹返し等によるエンジン脈動力の影響から
逃れることができる。更に、本実施例では、これらと作
用に加えて、バイパス空気通路5の底部5cを断面半円
形又は、山形の外形にしてあるので、エンジンからの空
気脈動流は、第4図及び第5図の矢印10に示すように
底部5cにて整流される。第4図、第5図の矢印8b
は、主空気通路9の吸入空気流で、バイパス通路の半円
形上部5a及びひさし11により整流された状態を示し
ている。このようにして、バイパス空気通路5中空気の
流れは、主空気通路9中の空気の流れ状態、エンジン脈
動等の影響をほ〃受けずに正常状態を保ち、ひいては、
熱線による空気流量測定精度を高めることができる。
That is, the flow of air in the main air passage 9 increases in flow especially in the fully open region of the throttle valve, and turbulent flow such as vortex is likely to occur near the installation portion of the bypass passage 5, but in the present embodiment,
Immediately upstream of the bypass air passage outlet 6, the eaves 11 has a rectifying function to prevent turbulent flow near the passage outlet 6. Further, even when there is engine backflow etc. in the main air passage 9, the bypass air passage outlet 6 is opened in a direction perpendicular to the air flow in the main air passage 9, so that the bypass air passage 5 will be backfired. It is possible to avoid the influence of engine pulsation power due to the above. Further, in this embodiment, in addition to these and the action, since the bottom portion 5c of the bypass air passage 5 has a semicircular cross section or a mountain-shaped outer shape, the air pulsating flow from the engine is shown in FIG. 4 and FIG. It is rectified at the bottom portion 5c as shown by the arrow 10. Arrow 8b in FIGS. 4 and 5
Shows the intake air flow of the main air passage 9, which is rectified by the semicircular upper portion 5 a of the bypass passage and the eaves 11. In this way, the flow of air in the bypass air passage 5 maintains a normal state without being affected by the flow state of the air in the main air passage 9, engine pulsation, etc.
It is possible to improve the accuracy of measuring the air flow rate by the hot wire.

第6図は、本実施例の熱線式空気流量計と従来の軸流方
式の熱線式空気流量計との、ブースト負圧−出力電圧特
性図をエンジン回転数Nをパラメータとして表わす実験
データであり、横軸がブースト負圧P、縦軸が熱線式空
気流量計出力電圧(V)を表わし、実線が本実施例、破
線が従来例の特性を示すものである。
FIG. 6 is experimental data showing a boost negative pressure-output voltage characteristic diagram of the hot-wire air flow meter of the present embodiment and a conventional axial-flow hot-wire air flow meter using the engine speed N as a parameter. The horizontal axis represents the boost negative pressure P, the vertical axis represents the output voltage (V) of the hot wire air flow meter, the solid line represents the characteristics of this embodiment, and the broken line represents the characteristics of the conventional example.

しかして、従来例では、〔発明が解決しようとする課
題〕の項でも述べたように、バイパス空気通路が主空気
通路中のエンジン脈動の影響や空気の乱れの影響を受
け、その結果、特にスロツトル全開域で、符号13に示
すように空気流量計出力電圧Vの出力(検出値)が落ち
込んだり元に戻たりする、いわゆる2値現象が生じた
り、出力電圧Vが符号14に示すように適正値から外れ
て跳ね上つてしまう現象が生じることもあつた。
However, in the conventional example, as described in the section of [Problems to be Solved by the Invention], the bypass air passage is affected by engine pulsation and air turbulence in the main air passage, and as a result, in particular, When the throttle is fully open, a so-called binary phenomenon occurs, in which the output (detection value) of the air flow meter output voltage V drops or returns as shown by reference numeral 13, or the output voltage V changes as shown by reference numeral 14. There was also a phenomenon in which it jumped up and out of the proper value.

これに対して、本実施例の実験データでは、前述したひ
さし11等の整流作用や、エンジン脈動の影響をほゞな
くすことにより、2値現象や跳ね上がり現象等がみられ
なかつた。
On the other hand, in the experimental data of the present embodiment, the binary phenomenon and the jumping phenomenon were not observed due to the fact that the rectifying action of the eaves 11 and the like and the influence of engine pulsation were almost eliminated.

第3図は本発明の第2実施例を示す縦断面図であり、図
中、第1実施例と同一符号は同一或いは共通する要素を
示すものである。
FIG. 3 is a longitudinal sectional view showing a second embodiment of the present invention, in which the same reference numerals as those in the first embodiment show the same or common elements.

本実施例は、バイパス通路5ろエルボ形とした点が第1
実施例と異なる点で、その他、バイパス通路5における
出口部6については、第1実施例同様にひさし11を付
加し、且つ出口方向は主空気通路9の空気流れ方向と直
交する方向に向けてあるため、第1実施例同様の効果を
奏し得る。
In this embodiment, the first point is that the bypass passage 5 has an elbow shape.
In addition to the above, the eaves 11 is added to the outlet 6 in the bypass passage 5 as in the first embodiment, and the outlet is directed in a direction orthogonal to the air flow direction of the main air passage 9 in the point different from the embodiment. Therefore, the same effect as the first embodiment can be obtained.

また、第2実施例では、熱線支持体12の長さを短かく
でき、低コスト化を図り得る。
In addition, in the second embodiment, the length of the heat ray support 12 can be shortened, and the cost can be reduced.

〔発明の効果〕〔The invention's effect〕

以上のように本発明によれば、主空気通路におけるバイ
パス空気通路出口付近に発生する空気流の乱れを有効に
防止し、且つエンジン脈動による影響を極力なくして、
バイパス空気通路の流れの正常化、ひいては熱線式空気
流量計の測定精度を高めることができる。
As described above, according to the present invention, the turbulence of the air flow generated near the bypass air passage outlet in the main air passage is effectively prevented, and the influence of engine pulsation is minimized,
It is possible to normalize the flow of the bypass air passage and improve the measurement accuracy of the hot wire air flow meter.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の第1実施例を示す縦断面図、第2図は
第1実施例に用いるバイパス空気通路の出口部付近を表
わす斜視図、第3図は本発明の第2実施例を示す縦断面
図、第4図及び第5図は上記第1,第2実施例のバイパ
ス空気通路出口部の具体的態様を表わす断面図、第6図
は第1実施例の熱線式空気流量計と従来の熱線式空気流
量計との出力特性を比較した線図である。 1……ボデイ、2……熱線、3……感温抵抗体、5……
バイパス空気通路、5c……バイパス通路底部、6……
バイパス出口、10……主空気通路、11……ひさし
部。
FIG. 1 is a longitudinal sectional view showing a first embodiment of the present invention, FIG. 2 is a perspective view showing the vicinity of an outlet of a bypass air passage used in the first embodiment, and FIG. 3 is a second embodiment of the present invention. And FIG. 4 and FIG. 5 are sectional views showing a concrete mode of the bypass air passage outlet of the first and second embodiments, and FIG. 6 is a hot wire air flow rate of the first embodiment. It is the diagram which compared the output characteristic of the meter and the conventional hot wire type air flow meter. 1 ... Body, 2 ... Heat wire, 3 ... Temperature-sensitive resistor, 5 ...
Bypass air passage, 5c ... Bypass passage bottom, 6 ...
Bypass outlet, 10 ... Main air passage, 11 ... Eaves.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】吸気系の一部となるボディの主空気通路内
にバイパス空気通路を配置し、このバイパス空気通路内
に吸入空気量を検出するための発熱抵抗体及び温度補償
用の感温抵抗体とを設けてなる熱線式空気流量計におい
て、前記バイパス空気通路の出口を前記主空気通路の吸
入空気流方向に対し略直角方向に開口すると共に、前記
バイパス空気通路出口の上流側にひさし部を配設してな
ることを特徴とする熱式空気流量計。
1. A bypass air passage is arranged in a main air passage of a body which is a part of an intake system, a heating resistor for detecting an intake air amount in the bypass air passage, and a temperature sensing temperature compensation. In a hot-wire type air flow meter provided with a resistor, the outlet of the bypass air passage is opened in a direction substantially perpendicular to the intake air flow direction of the main air passage, and an eave is provided on the upstream side of the bypass air passage outlet. A thermal air flow meter, characterized in that it is provided with a section.
【請求項2】特許請求の範囲第1項において、前記バイ
パス空気通路は、その通路出口の底部外形が断面略半円
形又は山形を呈してなる熱式空気流量計。
2. The thermal air flow meter according to claim 1, wherein the bypass air passage has a bottom outer shape of a passage outlet which is substantially semicircular or mountain-shaped in cross section.
JP63028678A 1988-02-12 1988-02-12 Thermal air flow meter Expired - Fee Related JPH0617810B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63028678A JPH0617810B2 (en) 1988-02-12 1988-02-12 Thermal air flow meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63028678A JPH0617810B2 (en) 1988-02-12 1988-02-12 Thermal air flow meter

Publications (2)

Publication Number Publication Date
JPH01206223A JPH01206223A (en) 1989-08-18
JPH0617810B2 true JPH0617810B2 (en) 1994-03-09

Family

ID=12255155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63028678A Expired - Fee Related JPH0617810B2 (en) 1988-02-12 1988-02-12 Thermal air flow meter

Country Status (1)

Country Link
JP (1) JPH0617810B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0940657A2 (en) 1998-03-06 1999-09-08 Denso Corporation Air flow meter

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2776946B2 (en) * 1990-03-12 1998-07-16 株式会社日立製作所 Manufacturing method of thermal air flow meter
JP2997529B2 (en) * 1990-10-19 2000-01-11 株式会社日立製作所 Thermal air flow meter
EP0785417A3 (en) 1996-01-17 1998-04-15 Hitachi, Ltd. Heating resistor type air flow rate measuring apparatus
JP4957081B2 (en) * 2005-09-15 2012-06-20 株式会社デンソー Flow measuring device
JP4979262B2 (en) * 2006-05-08 2012-07-18 日立オートモティブシステムズ株式会社 Flow measuring device
JP5348196B2 (en) * 2011-07-27 2013-11-20 株式会社デンソー Air flow measurement device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0940657A2 (en) 1998-03-06 1999-09-08 Denso Corporation Air flow meter

Also Published As

Publication number Publication date
JPH01206223A (en) 1989-08-18

Similar Documents

Publication Publication Date Title
JP3783896B2 (en) Air flow measurement device
JP3285513B2 (en) Thermal flow sensor and intake device for internal combustion engine
JP3292817B2 (en) Thermal flow sensor
JPH085430A (en) Thermal type flow meter
CN1137313A (en) Device for measuring mass of flowing medium
JPH0617810B2 (en) Thermal air flow meter
JPH07103797A (en) Heat ray type measuring instrument for air flow rate
JPH10331732A (en) Air cleaner
JPH0672793B2 (en) Flow rate detector
US6973825B2 (en) Hot-wire mass flow sensor with low-loss bypass passage
JPS5861411A (en) Measuring device for flow rate of gas
JPH06288805A (en) Air flowmeter
JPS6126822A (en) Thermal type air flow rate detecting device
JP3070642B2 (en) Flowmeter
JPH085428A (en) Air flow rate measuring apparatus
JPH11229979A (en) Air cleaner
JPS6131923A (en) Thermal detecting device for gas flow rate
JP3070641B2 (en) Flowmeter
JPH0455516U (en)
JPH04318425A (en) Hot wire type air flowmeter
JP3975556B2 (en) Air cleaner
JP3070710B2 (en) Flowmeter
JPH0151131B2 (en)
JPH07209053A (en) Thermal type air flowmeter
JP3014888B2 (en) Flowmeter

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees