JPH0617790A - Non-contact type seal and manufacture of sealant thereof - Google Patents

Non-contact type seal and manufacture of sealant thereof

Info

Publication number
JPH0617790A
JPH0617790A JP17430692A JP17430692A JPH0617790A JP H0617790 A JPH0617790 A JP H0617790A JP 17430692 A JP17430692 A JP 17430692A JP 17430692 A JP17430692 A JP 17430692A JP H0617790 A JPH0617790 A JP H0617790A
Authority
JP
Japan
Prior art keywords
seal
water
zeta potential
contact type
type seal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP17430692A
Other languages
Japanese (ja)
Inventor
Masaru Ishibashi
勝 石橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP17430692A priority Critical patent/JPH0617790A/en
Publication of JPH0617790A publication Critical patent/JPH0617790A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

PURPOSE:To prevent sealing characteristics from changing owing to the change of a taper angle due to adhesion of microparticles on a seal surface, in a non- contact seal wherein tapered seal surfaces are positioned facing each other with a small gap therebetween. CONSTITUTION:An aluminum-coated layer 7 where a zeta potential in water is plus is formed on a seal surface of a sealant 2 made of ceramic where opposite seal surfaces are formed so that microparticles in water is prevented from adhesion on the seal surface of the sealant 2. To form the aluminum-coated layer where zeta potential is plus, after a seal surface is coated with aluminum hydroxide particles, burning is effected at 600-1200 deg.C.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は非接触型シールを使用し
ている原子力一次冷却材ポンプのような産業用ポンプの
非接触型シールに関する。
FIELD OF THE INVENTION This invention relates to non-contact seals for industrial pumps such as nuclear primary coolant pumps which use non-contact seals.

【0002】[0002]

【従来の技術】従来の非接触型シールを図5によって説
明する。図5において、1はポンプ回転軸、2はシール
(セラミックス)、3はシール2のテーパ、4はスリッ
パシール、5は水を示す。
2. Description of the Related Art A conventional non-contact type seal will be described with reference to FIG. In FIG. 5, 1 is a pump rotating shaft, 2 is a seal (ceramics), 3 is a taper of the seal 2, 4 is a slipper seal, and 5 is water.

【0003】水中で用いる非接触型シールは、図5に示
すようにシール2、2両面を接触させて水を完全に止め
るのではなく、シール2,2間に故意に小さい隙間をあ
けて流路に向って徐々に隙間を狭めることによって圧力
を徐々に減圧し、シール機構を得る方式である。
The non-contact type seal used in water does not completely stop the water by contacting both surfaces of the seals 2 and 2 as shown in FIG. 5, but flows by intentionally opening a small gap between the seals 2 and 2. This is a system in which the pressure is gradually reduced by gradually narrowing the gap toward the road to obtain a sealing mechanism.

【0004】[0004]

【発明が解決しようとする課題】上述したように、非接
触型シールは常に一定の圧力、一定のリーク量となるこ
とが重要であって、このためには、隙間のせばまる形、
すなわち流路方向の傾斜角(テーパー)が一定である必
要がある。
As described above, it is important for the non-contact type seal to always have a constant pressure and a constant leak amount. For this purpose, a shape in which the gap is narrowed,
That is, the inclination angle (taper) in the flow path direction needs to be constant.

【0005】しかしながら、実用機においては往々にし
て水中に懸濁する酸化鉄粒子などの微粒子6がシール表
面に付着し、さらにその付着の仕方が通常一様でないと
テーパー3のテーパー角10が正常状態を示す図6の状
態より異常状態を示す図7の状態に変化するため、上記
のリーク量が変化する不具合が生じている。すなわち、
水中の微粒子がシール面に付着するためテーパ角10が
変化し、シール特性が変化して流量が定格値よりずれる
欠点がある。
However, in a practical machine, fine particles 6 such as iron oxide particles, which are often suspended in water, adhere to the seal surface, and if the adhesion is not uniform, the taper angle 10 of the taper 3 is normal. Since the state shown in FIG. 6 changes from the state shown in FIG. 7 showing an abnormal state, the above-described problem of changing the leak amount occurs. That is,
Since fine particles in water adhere to the sealing surface, the taper angle 10 changes, and the sealing characteristics change, so that the flow rate deviates from the rated value.

【0006】シール面に微粒子が付着する原因としては
次のように考えられる。すなわち、水中にはヘマタイト
(Fe2O3) 、マグネタイト(Fe3O4) などの鉄系酸化物の微
粒子が帯電して存在している。他方、シール材料はアル
ミナ(Al2O3) 、炭化ケイ素(SiC) 、窒化ケイ素(Si3N4)
などのセラミックスである。両者はいずれも絶縁体であ
るため、シール水との摩擦現象のため静電気を帯電する
(これを、ゼータ電位という)。
The reason why the fine particles adhere to the sealing surface is considered as follows. That is, hematite in water
Fine particles of iron-based oxides such as (Fe 2 O 3 ) and magnetite (Fe 3 O 4 ) exist in a charged state. On the other hand, the sealing material is alumina (Al 2 O 3 ), silicon carbide (SiC), silicon nitride (Si 3 N 4 ).
And other ceramics. Since both are insulators, they are charged with static electricity due to the friction phenomenon with the sealing water (this is called zeta potential).

【0007】この帯電の電気符号がたまたまシール材料
と微粒子とで異なると、いわゆるクーロン引力のため微
粒子はシール表面に引き寄せられて付着する。なお、セ
ラミックスが水中で帯電するのはセラミックスの表面に
−OH基が存在し、これが水中で解離するためである。
If the electrical sign of this charging happens to be different between the seal material and the fine particles, the fine particles are attracted to and adhere to the seal surface due to the so-called Coulomb attractive force. It should be noted that the reason why the ceramic is charged in water is that —OH groups are present on the surface of the ceramic and dissociate in water.

【0008】本発明は上記技術水準に鑑み、水中の微粒
子がシール表面に付着せず、従来の技術におけるような
不具合の発生を防止し得る非接触型シールを提供するこ
とを課題としている。
In view of the above-mentioned state of the art, it is an object of the present invention to provide a non-contact type seal capable of preventing fine particles in water from adhering to the seal surface and preventing the occurrence of problems as in the prior art.

【0009】[0009]

【課題を解決するための手段】本発明は、水中の微粒子
がシール材のシール面に付着するのは、前述のとおりシ
ール面のゼータ電位によるクーロン力的引力であるとの
事実に基いている。すなわち、図4に示すように、シー
ル面への付着量は、ゼータ電位が負になる程多くなるの
である。
DISCLOSURE OF THE INVENTION The present invention is based on the fact that it is the Coulombic attractive force due to the zeta potential of the sealing surface that the particles in the water adhere to the sealing surface of the sealing material. . That is, as shown in FIG. 4, the amount of adhesion to the seal surface increases as the zeta potential becomes negative.

【0010】従って、本課題を解決するためには、粒子
のゼータ電位と同符号にシール面のゼータ電位を保てば
よいことがわかる。しかし、実際のシール材は、強度を
あげるため高温で焼成しているのでそのゼータ電位は図
3に示すようにマイナスになっている。また、実際のシ
ール表面の流速は数10m/sec と極めて速いので、被覆
したものが剥離する恐れがある。
Therefore, in order to solve this problem, it is understood that the zeta potential of the seal surface should be kept at the same sign as the zeta potential of the particles. However, since the actual sealing material is fired at a high temperature in order to increase the strength, its zeta potential is negative as shown in FIG. Further, since the actual flow velocity on the seal surface is as fast as several tens of m / sec, the coated product may be peeled off.

【0011】以上の点を総合すると本問題を解決するた
めの手段として用いる被覆材に要求される仕様は、 ゼータ電位が粒子と同符号であること 下地のセラミックスと強固な密着性を有すること 本発明で採用するシール材は、ゼータ電位がプラスのア
ルミナコーティング層をシール面に形成させて上記及
びの要件で満たす。また、本発明は、このようなアル
ミナコーティング層を処理温度を変えたアルミナのコー
ティング法で実現する。
In summary of the above points, the specifications required for the coating material used as a means for solving this problem are that the zeta potential has the same sign as that of the particles, and that it has a strong adhesion to the underlying ceramics. The sealing material used in the invention satisfies the above requirements by forming an alumina coating layer having a positive zeta potential on the sealing surface. Further, the present invention realizes such an alumina coating layer by an alumina coating method in which the treatment temperature is changed.

【0012】[0012]

【作用】本発明によるシール材は、そのシール面に水中
でのゼータ電位がプラスのアルミナコーティング層が形
成されているので、図3及び図4について説明した事項
からも明らかなように、シール面への水中微粒子の付着
は著じるしく減少する。また、セラミックス材へのアル
ミナコーティング層は、そのアンカー効果により強固に
付着する。以下、この2点について説明する。
In the sealing material according to the present invention, the alumina coating layer having a positive zeta potential in water is formed on the sealing surface. Therefore, as is apparent from the matters described with reference to FIGS. Adhesion of particulates in water to water is markedly reduced. Further, the alumina coating layer on the ceramic material adheres firmly due to its anchor effect. Hereinafter, these two points will be described.

【0013】(1)ゼータ電位を粒子と同符号にさせる
点。
(1) The zeta potential is made to have the same sign as that of the particles.

【0014】セラミックス、例えば工業的に用いられて
いる Al2O3,Si3N4 ,SiC 等は材料強度を高くするため
焼結温度が例えば1700℃以上である。この様に高温
で焼結したセラミックスは、例えば図3について前述し
た様にその表面にコーティングされたアルミナは水中で
はマイナスのゼータ電位を有する。一方、シールに付着
する水中の微粒子はプラスに帯電しているためマイナス
に帯電したシールにクーロン力により付着する。
Ceramics such as Al 2 O 3 , Si 3 N 4 and SiC used industrially have a sintering temperature of, for example, 1700 ° C. or higher in order to increase the material strength. The ceramics thus sintered at a high temperature have a negative zeta potential in water, for example, the alumina coated on the surface thereof as described above with reference to FIG. On the other hand, since the fine particles in the water that adhere to the seal are positively charged, they adhere to the negatively charged seal by Coulomb force.

【0015】ゼータ電位をプラスにするための手段とし
て、処理温度を下げたアルミナコーティングをする。ア
ルミナを600℃〜1200℃で合成したものは、シー
ル水として使用している中性の水の中ではゼータ電位は
図3に示すようにプラス〔等電点(ゼータ電位が0にな
るpH)は9〜10〕になる。これにより粒子とのクーロ
ン力による反発力が生じ、シールには粒子が付着しなく
なる。
As a means for making the zeta potential positive, an alumina coating whose treatment temperature is lowered is applied. Alumina synthesized at 600 ° C to 1200 ° C has a zeta potential of plus [isoelectric point (pH at which the zeta potential becomes zero) as shown in Fig. 3 in neutral water used as seal water. 9-10]. This causes a repulsive force due to the Coulomb force with the particles, and the particles do not adhere to the seal.

【0016】(2)強固な密着性を得る点 セラミックスの表面はその製造に粉体の焼結作用を利用
するため、無数のミクロな隙間(クレパス)を有してい
る。そこで、図1の様にクレパスにアルミナのコーティ
ング膜を浸入させて、丁度いかりが海底の岩に引っかか
って船を止めている様にアンカ効果で密着性を得る。
(2) Point to obtain strong adhesion The surface of ceramics has innumerable microscopic crevices (crepes) because the sintering action of powder is used for its production. Therefore, as shown in FIG. 1, a coating film of alumina is infiltrated into the crepes to obtain the adhesion by the anchor effect just as if the anchor were caught on the rocks on the seabed and stopped the ship.

【0017】クレパスにアルミナのコーティング膜を浸
入させる手段としては、ゾルゲル法等で得た微小な水酸
化アルミニウム粒子を含浸させて、クレパス内に浸入さ
せた後、600〜1200℃と言う比較的低温で焼結さ
せる。この原理を用いればクレパスのどんな奥でもアル
ミナのコーティング膜を形成させることができる。
As means for infiltrating the coating film of alumina into the crepes, fine aluminum hydroxide particles obtained by a sol-gel method or the like are impregnated and allowed to infiltrate into the crepes, and then at a relatively low temperature of 600 to 1200 ° C. Sinter with. Using this principle, a coating film of alumina can be formed at any depth inside the crepe.

【0018】[0018]

【実施例】本発明によるシール材の実効性を確認するた
め次の試験をおこなった。まず、本発明によるシール材
を製造するため、Al2O3 セラミックス材を水酸化アルミ
ニウムの粒子を分散させた液中に浸して前記セラミック
ス材に水酸化アルミニウムのコーティング層を施した。
EXAMPLES The following tests were conducted to confirm the effectiveness of the sealing material according to the present invention. First, in order to manufacture the sealing material according to the present invention, an Al 2 O 3 ceramic material was dipped in a liquid in which particles of aluminum hydroxide were dispersed to apply a coating layer of aluminum hydroxide to the ceramic material.

【0019】水酸化アルミニウムのコーティングを施し
たAl2O3 セラミックス材を600℃で焼成してコーティ
ング層を形成させた。このコーティング層形成のステッ
プを図2に示してある。このようにして製造したセラミ
ックスシール材のゼータ電位を測定した結果を図3に示
している。こうしてセラミックス材の上に形成した水酸
化アルミニウムのコーティング層の密着性を次ように試
験した。酸化鉄合成層,ヒータ,限外フィルタ,ポンプ
(20リットル/Hr)等からなる水循環ループにより、水質
をpH=6.4、導電率4μs/cm ,温度65℃,鉄濃度
2ppm として流速15m/sec で200Hrの粒子付着試験
を行った。
An Al 2 O 3 ceramic material coated with aluminum hydroxide was fired at 600 ° C. to form a coating layer. The steps of forming this coating layer are shown in FIG. FIG. 3 shows the result of measuring the zeta potential of the ceramic sealing material manufactured in this way. The adhesion of the aluminum hydroxide coating layer thus formed on the ceramic material was tested as follows. A water circulation loop consisting of an iron oxide composite layer, a heater, an ultrafilter, a pump (20 liters / hr), etc., with a water quality of pH = 6.4, conductivity of 4 μs / cm, temperature of 65 ° C., iron concentration of 2 ppm, flow rate of 15 m / A 200 Hr particle adhesion test was conducted at sec.

【0020】結果は表1に示す通りで、ゼータ電位がマ
イナスであるものに比べて付着量は1/3 以下になり付着
抑制の効果が認められた。また、試験後のコーティング
膜も全く健全であった。
The results are shown in Table 1, and the adhesion amount was 1/3 or less as compared with the case where the zeta potential was negative, and the effect of suppressing the adhesion was recognized. Also, the coating film after the test was completely sound.

【0021】[0021]

【表1】 [Table 1]

【0022】[0022]

【発明の効果】本発明により、セラミックスの表面のゼ
ータ電位をプラスであるアルミナのコーティング膜で被
膜することにより水中の微粒子はシール表面への付着力
を失い付着することはなくなった。シール表面の水の流
速は通常10m/sec 以上と大きいのでシール材表面の受
ける剥離力は大きいが下地処理として行うアルミナコー
ティング材のアンカ効果により剥離は起こさなかった。
以上の様にセラミックス材料を用いたシール表面への水
中の微粒子の付着はゼータ電位をプラスに反転するアル
ミナコーティング膜を被覆することにより防止できた。
According to the present invention, by coating the surface of ceramics with a coating film of alumina having a positive zeta potential, fine particles in water lose their adhesive force to the seal surface and no longer adhere. Since the flow velocity of water on the seal surface is usually as high as 10 m / sec or more, the peeling force received by the seal material surface is large, but the peeling did not occur due to the anchor effect of the alumina coating material used as the base treatment.
As described above, adhesion of fine particles in water to the surface of a seal made of a ceramic material could be prevented by coating with an alumina coating film that positively reverses the zeta potential.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例に係るシール材の要部を示
す断面図。
FIG. 1 is a sectional view showing a main part of a sealing material according to a first embodiment of the present invention.

【図2】本発明によるシール材の製造方法の実施の態様
を示す説明図。
FIG. 2 is an explanatory view showing an embodiment of a method for manufacturing a sealing material according to the present invention.

【図3】アルミナセラミックスとアルミナコーティング
膜のゼータ電位測定結果を示すグラフ。
FIG. 3 is a graph showing the zeta potential measurement results of alumina ceramics and an alumina coating film.

【図4】付着量とゼータ電位の関係を示すグラフ。FIG. 4 is a graph showing the relationship between the adhesion amount and the zeta potential.

【図5】従来の非接触型シールの説明図。FIG. 5 is an explanatory diagram of a conventional non-contact type seal.

【図6】従来の非接触型シールの正常状態のシールのテ
ーパー角の説明図。
FIG. 6 is an explanatory view of a taper angle of a conventional non-contact type seal in a normal state.

【図7】従来の非接触型シールの微粒子付着による異常
状態のシールのテーパ角の説明図。
FIG. 7 is an explanatory diagram of a taper angle of a seal in an abnormal state due to adhesion of fine particles of a conventional non-contact type seal.

【符号の説明】[Explanation of symbols]

1 ポンプ回転軸 2 シール(セラミックス) 3 テーパー 4 スリッパシール 5 水 6 酸化微粒子 7 アルミナコーティング層 1 Pump Rotating Shaft 2 Seal (Ceramics) 3 Taper 4 Slipper Seal 5 Water 6 Oxide Fine Particles 7 Alumina Coating Layer

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 シール面の少くともいづれか一方をテー
パー面として少隙を保って対向させたセラミックス製の
シール材を有する非接触型シールにおいて、前記シール
材のシール面に水中でのゼータ電位がプラスのアルミナ
コーティング層を有することを特徴とする非接触型シー
ル。
1. A non-contact type seal having a ceramic sealing material, wherein at least one of the sealing surfaces is a taper surface and faces each other with a small gap therebetween, wherein the sealing surface of the sealing material has a zeta potential in water. A non-contact type seal having a positive alumina coating layer.
【請求項2】 シール面の少くともいづれか一方をテー
パー面として少隙を保ってセラミックス製のシール材を
対向させた非接触型シールにおける前記シール材の製造
方法において、前記セラミックス製のシール材のシール
面に水酸化アルミニウム粒子をコーティングしたのち、
600℃〜1200℃で焼成することを特徴とする非接
触型シールにおけるシール材の製造方法。
2. A method for producing a sealing material in a non-contact type seal, wherein at least one of the sealing surfaces is a taper surface and a ceramic sealing material faces each other with a small gap kept therebetween. After coating aluminum hydroxide particles on the sealing surface,
A method for producing a sealing material in a non-contact type seal, which comprises firing at 600 ° C to 1200 ° C.
JP17430692A 1992-07-01 1992-07-01 Non-contact type seal and manufacture of sealant thereof Withdrawn JPH0617790A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17430692A JPH0617790A (en) 1992-07-01 1992-07-01 Non-contact type seal and manufacture of sealant thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17430692A JPH0617790A (en) 1992-07-01 1992-07-01 Non-contact type seal and manufacture of sealant thereof

Publications (1)

Publication Number Publication Date
JPH0617790A true JPH0617790A (en) 1994-01-25

Family

ID=15976357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17430692A Withdrawn JPH0617790A (en) 1992-07-01 1992-07-01 Non-contact type seal and manufacture of sealant thereof

Country Status (1)

Country Link
JP (1) JPH0617790A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5458460A (en) * 1993-03-18 1995-10-17 Hitachi, Ltd. Drainage pump and a hydraulic turbine incorporating a bearing member, and a method of manufacturing the bearing member
JP2012066963A (en) * 2010-09-22 2012-04-05 Noritake Co Ltd Method for producing porous ceramic base material and multistage filter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5458460A (en) * 1993-03-18 1995-10-17 Hitachi, Ltd. Drainage pump and a hydraulic turbine incorporating a bearing member, and a method of manufacturing the bearing member
JP2012066963A (en) * 2010-09-22 2012-04-05 Noritake Co Ltd Method for producing porous ceramic base material and multistage filter

Similar Documents

Publication Publication Date Title
JP4149374B2 (en) Abradable seal system
Usmani et al. Effect of carbide grain size on the sliding and abrasive wear behavior of thermally sprayed WC-Co coatings
US7780832B2 (en) Methods for applying mitigation coatings, and related articles
Hashish Turning with abrasive-waterjets—a first investigation
EP0187612B1 (en) Abradable seal having particulate erosion resistance
US20130108421A1 (en) Abradable ceramic coatings and coating systems
JP3258599B2 (en) Insulation barrier coating system
US4659613A (en) Parts coated with thick coating compositions of uni- and polymodal types
PT86367B (en) ABRASIVE PARTICLES OF SILICON CARBONET WITH MULTICAMPED COATING
Busnaina et al. Measurement of the adhesion and removal forces of submicrometer particles on silicon substrates
US20030017355A1 (en) Compositions and methods for producing coatings with improved surface smoothness and articles having such coatings
JPH0617790A (en) Non-contact type seal and manufacture of sealant thereof
KR960035456A (en) Magnetic recording medium
CN104507602A (en) Abradable coating made of a material having a low surface roughness
EP0105079A1 (en) A method of producing a magnetic coating composition
GB2130244A (en) Forming coatings by hot isostatic compaction
JPH07269342A (en) Seal assembly for mechanical seal of internal combustion engine coolant pump and manufacture thereof
US4482418A (en) Bonding method for producing very thin bond lines
GB1265140A (en)
KR102183146B1 (en) Method for manufacturing organic/inorganic hybrid ceramic coating agent for forming coating layer having excellent abrasion resistance and electrical insulation
JPH05302592A (en) Noncontact seal
RU2413321C2 (en) Procedure for increasing resource and reliability of magnet-liquid devices
JP2021109425A (en) Metal ceramic laminate
Armini et al. Interaction forces between a glass surface and ceria-modified PMMA-based abrasives for CMP measured by colloidal probe AFM
CN109866115B (en) Method for preparing diamond grinding material by adopting electrostatic sand planting process

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19991005