JPH06176735A - Electrode for fluorescent lamp - Google Patents
Electrode for fluorescent lampInfo
- Publication number
- JPH06176735A JPH06176735A JP32215892A JP32215892A JPH06176735A JP H06176735 A JPH06176735 A JP H06176735A JP 32215892 A JP32215892 A JP 32215892A JP 32215892 A JP32215892 A JP 32215892A JP H06176735 A JPH06176735 A JP H06176735A
- Authority
- JP
- Japan
- Prior art keywords
- coil filament
- electrode
- filled
- fluorescent lamp
- powder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Discharge Lamp (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、蛍光ランプ用電極に関
するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fluorescent lamp electrode.
【0002】[0002]
【従来の技術】一般に蛍光ランプの寿命は、タングステ
ンの多重コイルフィラメントの一次コイル内に充填され
た電子放射性物質が、ランプ始動時および点灯時に飛
散、蒸発し、消耗することによって決定される。2. Description of the Related Art Generally, the life of a fluorescent lamp is determined by the fact that the electron emissive material filled in the primary coil of a tungsten multi-coil filament is scattered, evaporated and consumed at the time of starting and operating the lamp.
【0003】多重コイルフィラメントとしては、ダブル
コイルフィラメントもしくは前記ダブルコイルフィラメ
ントに細線をゆるく巻いた、いわゆるトリプルコイルフ
ィラメント、またはコイルを三重に巻回したブロックコ
イルフィラメントなどが実用化され用いられている。As the multi-coil filament, a double-coil filament, a so-called triple-coil filament in which a thin wire is loosely wound around the double-coil filament, or a block-coil filament in which a coil is triple-coiled, has been put into practical use.
【0004】従来、電子放射性物質としては、酸化ジル
コニウムを数wt%含むアルカリ土類金属(バリウム、ス
トロンチウム、カルシウム)の複合酸化物が用いられて
おり、近年数々の改良がなされた結果、例えば、FL1
0では平均寿命5,000 時間、FL20Sでは7,500 時
間、FL40S,FLR40Sでは10,000時間が得られ
ている。Conventionally, a complex oxide of an alkaline earth metal (barium, strontium, calcium) containing a few wt% of zirconium oxide has been used as an electron-emitting substance. As a result of various improvements in recent years, for example, FL1
The average life of 0 is 5,000 hours, the FL20S is 7,500 hours, and the FL40S and FLR40S are 10,000 hours.
【0005】[0005]
【発明が解決しようとする課題】しかし、地球環境問題
が顕在化しつつある昨今、省資源及び環境汚染(ランプ
管内に含まれる水銀の排出)の観点からすれば、上述の
蛍光ランプの平均寿命では、決して満足できるレベルに
達しているとは言えない。However, from the viewpoint of resource saving and environmental pollution (emission of mercury contained in the lamp tube) in recent years when global environmental problems are becoming apparent, the average life of the above fluorescent lamp is , I can't say that I have reached a satisfactory level.
【0006】蛍光ランプの平均寿命を延ばすための最も
簡潔な手段は、多重コイルフィラメントに被着する電子
放射性物質の塗布量を増してやることである。The simplest means for extending the average life of fluorescent lamps is to increase the amount of electron emissive material applied to the multi-coil filament.
【0007】しかし、従来の電子放射性物質は、固有抵
抗が大きく熱伝導も悪いため、多重コイルフィラメント
への被着量が増加すると、ランプ製造時の電子放射性物
質の通電による加熱分解(炭酸塩を酸化物に変える処
理)が不十分になりやすく、結果として未分解の電子放
射性物質が管内に残留し、電極の電子放射に悪影響を与
えて不純ガスを放出し、管壁黒化、光束低下などを引き
起こし、短寿命になり、蛍光ランプの品質が著しく低下
する。However, since the conventional electron emissive material has a large specific resistance and poor heat conduction, when the amount of deposition on the multi-coil filament is increased, thermal decomposition by heating the electron emissive material during production of the lamp (carbonate (The process of changing to oxide) tends to be inadequate, and as a result undecomposed electron emissive material remains in the tube, adversely affecting the electron emission of the electrode and releasing impure gas, blackening the tube wall, lowering the luminous flux, etc. Cause a short life, and the quality of the fluorescent lamp is significantly deteriorated.
【0008】また、電子放出に最も寄与する酸化バリウ
ムは、多重コイルフィラメントの基材であるタングステ
ンに還元されて遊離バリウムを生成し、仕事関数を下げ
るが、拡散により還元される電子放射性物質の厚みは最
大でも基材から数10μm程度といわれており、被着量
を増す目的で電子放射性物質の厚みを増しても大部分の
電子放射性物質は有効に利用されず、従って、寿命は長
くならない。Barium oxide, which contributes most to electron emission, is reduced to tungsten, which is the base material of the multi-coil filament, to form free barium, which lowers the work function, but the thickness of the electron emissive substance which is reduced by diffusion. It is said that the maximum is about several tens of μm from the base material, and even if the thickness of the electron emissive substance is increased for the purpose of increasing the deposition amount, most of the electron emissive substance is not effectively used, and therefore the life is not extended.
【0009】本発明は、上記問題点に鑑みなされたもの
で、その目的とするところは、簡単な構成で多量の有効
な電子放射性物質を保持できる寿命の長い蛍光ランプ用
電極を提供することにある。The present invention has been made in view of the above problems, and an object of the present invention is to provide a long-life fluorescent lamp electrode capable of holding a large amount of an effective electron-emitting substance with a simple structure. is there.
【0010】[0010]
【課題を解決するための手段】上記課題を解決するため
本発明は、従来の酸化ジルコニウムを数wt%含むアルカ
リ土類金属の複合炭酸塩に、熱伝導の向上を図るために
窒化硼素、ベリリア、アルミナなどの熱伝導性高融点磁
器粉末と、固有抵抗の低減と酸化バリウムの還元を促進
するためにタンタル、ニオブ、タングステン、モリブデ
ンなどの還元性高融点金属粉末の一種以上を混合してな
る電子放射性物質を、多重コイルフィラメントの最終巻
回部まで充填したことを特徴とするものである。In order to solve the above problems, the present invention provides a conventional alkaline earth metal complex carbonate containing several wt% of zirconium oxide, boron nitride and beryllia in order to improve heat conduction. , A mixture of thermally conductive refractory porcelain powder such as alumina and one or more reducing refractory metal powders such as tantalum, niobium, tungsten and molybdenum to reduce the resistivity and promote the reduction of barium oxide. It is characterized in that the electron emitting substance is filled up to the final winding portion of the multi-coil filament.
【0011】[0011]
【作用】本発明によれば、窒化硼素、ベリリア、アルミ
ナなどの磁器は、熱伝導率が高く、タンタル、ニオブ、
タングステン、モリブデンなどの金属は還元性が高く、
且つ電気抵抗率が低いので、従来の酸化ジルコニウムを
数wt%含むアルカリ土類金属の複合炭酸塩に混合するこ
とにより、電子放射性物質の特性を大幅に改善すること
ができる。According to the present invention, porcelains such as boron nitride, beryllia and alumina have high thermal conductivity, and tantalum, niobium,
Metals such as tungsten and molybdenum have high reducing properties,
In addition, since the electric resistivity is low, the characteristics of the electron-emitting substance can be greatly improved by mixing it with a conventional alkaline earth metal complex carbonate containing several wt% of zirconium oxide.
【0012】すなわち、多重コイルフィラメントの基材
であるタングステンより離れた位置に電子放射性物質が
充填されても、前記磁器粉末は熱伝導率が高く、金属粉
末は電気抵抗率が低いので、ランプ製造時の電子放射性
物質の通電による加熱分解は確実に行なわれ、所望のア
ルカリ土類金属の複合酸化物が得られる。That is, even if an electron emissive material is filled in a position apart from tungsten, which is a base material of the multi-coil filament, the porcelain powder has a high thermal conductivity and the metal powder has a low electric resistivity, so that the lamp can be manufactured. At that time, the thermal decomposition of the electron emissive substance by the energization is surely performed, and the desired alkaline earth metal composite oxide is obtained.
【0013】また、充填場所にかかわらず酸化バリウム
の周囲には良熱伝導状態で還元性金属が存在するので、
基材のタングステンフィラメントからの厚みの制約がな
く、常時良好な状態で遊離バリウムを生成する。さら
に、磁器粉末及び金属粉末はそれ自身高融点なので、ラ
ンプ点灯時のイオン衝撃によるスパッタにも強い。Further, regardless of the filling place, since the reducing metal exists in a good heat conducting state around barium oxide,
Free barium is always produced in good condition without any restriction on the thickness of the tungsten filament of the substrate. Further, since the porcelain powder and the metal powder have high melting points themselves, they are also resistant to sputtering due to ion bombardment when the lamp is turned on.
【0014】[0014]
【実施例】以下、本発明を実施例に基づいて詳細に説明
する。EXAMPLES The present invention will be described in detail below based on examples.
【0015】図1は本発明に係る蛍光ランプ用電極の一
実施例を示すもので、図中、1はタングステン線を巻回
した多重コイルフィラメント、例えばダブルコイルフィ
ラメントであって、その両端は導入線2,2にピンチさ
れている。3は下記の組成を持つ電子放射性物質で、図
示の如く多重コイルフィラメント1の最終巻回部まで充
填されている。FIG. 1 shows an embodiment of an electrode for a fluorescent lamp according to the present invention. In the figure, 1 is a multiple coil filament wound with a tungsten wire, for example, a double coil filament, both ends of which are introduced. It is pinched to lines 2 and 2. 3 is an electron emissive material having the following composition, and is filled up to the final winding portion of the multi-coil filament 1 as shown in the drawing.
【0016】 炭酸バリウム ……… 29wt% 炭酸ストロンチウム ……… 27wt% 炭酸カルシウム ……… 15wt% 酸化ジルコニウム ……… 9wt% 窒化硼素粉末 ……… 5wt% 金属タンタル粉末 ……… 15wt% 上記3種の炭酸塩は単独ではなく、記載の重量比になる
ように合成された複合炭酸塩の形で使用している。Barium carbonate: 29 wt% Strontium carbonate: 27 wt% Calcium carbonate: 15 wt% Zirconium oxide: 9 wt% Boron nitride powder: 5 wt% Metal tantalum powder: 15 wt% Above 3 types The above-mentioned carbonates are not used alone, but are used in the form of complex carbonates synthesized so as to have the described weight ratio.
【0017】混合する窒化硼素粉末及び金属タンタル粉
末の粒径は、コイルフィラメントへの固着力を考慮すれ
ば、複合炭酸塩の平均粒径以下が望ましく、本実施例で
は、複合炭酸塩の平均粒径約5μmに対し2〜3μmと
した。The particle diameters of the boron nitride powder and the metal tantalum powder to be mixed are preferably equal to or smaller than the average particle diameter of the composite carbonate in consideration of the adhesion force to the coil filament. The diameter was set to 2 to 3 μm for the diameter of about 5 μm.
【0018】上記の混合物をニトロセルローズを5wt%
含む酢酸ブチル溶液に懸濁させて、多重コイルフィラメ
ント1の最終巻回部まで充填し、被着した。その後、従
来と同様の製造工程でランプ化処理を行なった。The above mixture was mixed with 5% by weight of nitrocellulose.
The multi-coil filament 1 was suspended in a butyl acetate solution containing the same and filled up to the final winding portion of the multi-coil filament 1 to be applied. After that, a ramping process was performed in the same manufacturing process as the conventional one.
【0019】本実施例によれば、電子放射性物質3の保
持量は、従来多重コイルフィラメントの一次コイルのみ
に充填していたときの約5倍の有効(炭酸バリウム、炭
酸ストロンチウム換算)被着量が得られた。また、電子
放射性物質3の熱伝導率は、窒化硼素を混合したことに
より4〜6倍大きくなり、ランプの先行予熱始動性能へ
の悪影響はなかった。さらに、窒化硼素粉末及び金属タ
ンタル粉末の平均粒径を小さくしたことにより、振動試
験の結果、電子放射性物質3の大きな脱落などもなく、
実用上問題のないことが確認できた。According to the present embodiment, the retained amount of the electron emissive substance 3 is about 5 times as effective (barium carbonate and strontium carbonate equivalent) as the amount of the conventional multi-coil filament filled with the primary coil. was gotten. Further, the thermal conductivity of the electron emissive material 3 was increased by 4 to 6 times by mixing with boron nitride, and there was no adverse effect on the pre-heat starting performance of the lamp. Furthermore, by reducing the average particle size of the boron nitride powder and the tantalum metal powder, the vibration test results showed that the electron emissive material 3 did not drop off significantly.
It was confirmed that there was no problem in practical use.
【0020】次に、本実施例に係る電極を具備した蛍光
ランプの寿命試験については、ワット数の異なる種々の
蛍光ランプを試作し試験した結果、従来の蛍光ランプと
比較して3倍以上の点灯寿命のランプが得られた。Next, regarding the life test of the fluorescent lamp provided with the electrode according to this embodiment, various fluorescent lamps having different wattages were experimentally manufactured and tested, and as a result, it was three times or more compared with the conventional fluorescent lamp. A lamp with a lighting life was obtained.
【0021】なお、窒化硼素の混合量に関しては、3〜
10wt%の範囲が熱伝導物質として良好な結果を示し
た。また、熱伝導性高融点磁器粉末として、ベリリア、
アルミナなどを混合した場合にも同等の効果が得られ
た。金属タンタル粉末の混合量に関しては、3wt%以下
では酸化バリウムの還元が不十分で、また、25wt%以
上では逆に酸化バリウムの還元が過剰になり、管壁黒化
が著しくなることがわかった。従って、金属タンタル粉
末の混合量は5〜20wt%が望ましい。The amount of boron nitride mixed is 3 to.
A range of 10 wt% showed good results as a heat conductive material. Further, as the heat conductive high melting point porcelain powder, beryllia,
The same effect was obtained when alumina or the like was mixed. Regarding the mixing amount of the metal tantalum powder, it was found that the reduction of barium oxide was insufficient when the content was 3 wt% or less, and the reduction of barium oxide was excessive when the content was 25 wt% or more, resulting in remarkable blackening of the tube wall. . Therefore, the amount of the metal tantalum powder mixed is preferably 5 to 20 wt%.
【0022】また、還元性高融点金属粉末として、ニオ
ブ、タングステン、モリブデンなどを混合した場合にも
金属タンタルと同等の良好な結果が得られた。さらに、
必要に応じて、2種以上の金属粉末を混合して用いても
良い。この場合、合計の混合量は5wt%以上、20wt%
以下が望ましい。Further, when the reducing refractory metal powder was mixed with niobium, tungsten, molybdenum, etc., good results equivalent to those of metal tantalum were obtained. further,
You may mix and use 2 or more types of metal powder as needed. In this case, the total mixing amount is 5 wt% or more, 20 wt%
The following is desirable.
【0023】[0023]
【発明の効果】本発明は上記のように、酸化ジルコニウ
ムを数wt%含むアルカリ土類金属の複合炭酸塩に、窒化
硼素、ベリリア、アルミナなどの熱伝導性高融点磁器粉
末と、タンタル、ニオブ、タングステン、モリブデンな
どの還元性高融点金属粉末の一種以上を混合してなる電
子放射性物質を、多重コイルフィラメントの最終巻回部
まで充填したことにより、フィラメント電極に多量の電
子放射性物質を保持でき、従来の3倍以上という極めて
寿命の長い蛍光ランプを得ることができる電極を提供す
ることができた。As described above, according to the present invention, a composite carbonate of an alkaline earth metal containing zirconium oxide of several wt% is added to a thermally conductive high melting point porcelain powder such as boron nitride, beryllia or alumina, and tantalum or niobium. By filling up the final winding part of the multi-coil filament with an electron emissive material that is a mixture of one or more reducing refractory metal powders such as tungsten, molybdenum, etc., the filament electrode can hold a large amount of electron emissive material. It has been possible to provide an electrode capable of obtaining a fluorescent lamp having an extremely long life, which is three times or more that of the conventional one.
【0024】また、従来の電子放射性物質に磁器粉末及
び金属粉末を混合し、多重コイルフィラメントの最終巻
回部まで充填するだけであるので、何ら特別な設備も必
要とせず既存の設備で製造できるため、量産が容易でコ
ストアップ要因はない。Further, since it is only necessary to mix the porcelain powder and the metal powder with the conventional electron emissive material and to fill up to the final winding portion of the multi-coil filament, it is possible to manufacture with existing equipment without any special equipment. Therefore, mass production is easy and there is no factor of cost increase.
【0025】さらに、本発明によれば、多重コイルフィ
ラメント(ダブルコイルフィラメント、トリプルコイル
フィラメント、ブロックコイルフィラメントなど)の仕
様は従来と全く同一のものが使用できるので、本発明に
係る電極を用いた蛍光ランプは、従来の蛍光ランプと完
全に互換性が保たれる。従って、既存の照明器具に本発
明に係る電極を用いた蛍光ランプを装着するだけで、長
寿命化が図れる。Further, according to the present invention, since the specifications of the multi-coil filament (double coil filament, triple coil filament, block coil filament, etc.) can be exactly the same as the conventional ones, the electrode according to the present invention is used. The fluorescent lamp remains fully compatible with conventional fluorescent lamps. Therefore, it is possible to extend the life of the existing lighting fixture simply by mounting the fluorescent lamp using the electrode according to the present invention.
【図1】本発明の一実施例を示す一部断面斜視図であ
る。FIG. 1 is a partial cross-sectional perspective view showing an embodiment of the present invention.
1 多重コイルフィラメント 2 導入線 3 電子放射性物質 1 multi-coil filament 2 lead-in wire 3 emissive material
Claims (1)
土類金属の複合炭酸塩に、窒化硼素、ベリリア、アルミ
ナなどの熱伝導性高融点磁器粉末を3〜10wt%と、タ
ンタル、ニオブ、タングステン、モリブデンなどの還元
性高融点金属粉末の一種以上を5〜20wt%混合してな
る電子放射性物質を、多重コイルフィラメントの最終巻
回部まで充填したことを特徴とする蛍光ランプ用電極。1. A composite carbonate of an alkaline earth metal containing several wt% of zirconium oxide, 3 to 10 wt% of thermally conductive high melting point porcelain powder such as boron nitride, beryllia, and alumina, tantalum, niobium, and tungsten. An electrode for a fluorescent lamp, characterized in that an electron emissive material obtained by mixing 5 to 20 wt% of one or more reducing refractory metal powders such as molybdenum is filled up to the final winding part of a multi-coil filament.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP32215892A JPH06176735A (en) | 1992-12-02 | 1992-12-02 | Electrode for fluorescent lamp |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP32215892A JPH06176735A (en) | 1992-12-02 | 1992-12-02 | Electrode for fluorescent lamp |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06176735A true JPH06176735A (en) | 1994-06-24 |
Family
ID=18140590
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP32215892A Pending JPH06176735A (en) | 1992-12-02 | 1992-12-02 | Electrode for fluorescent lamp |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06176735A (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4959482A (en) * | 1972-10-13 | 1974-06-10 | ||
JPS5159483A (en) * | 1974-11-22 | 1976-05-24 | Hitachi Ltd | KINZOKUJOKIHODENTO |
-
1992
- 1992-12-02 JP JP32215892A patent/JPH06176735A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4959482A (en) * | 1972-10-13 | 1974-06-10 | ||
JPS5159483A (en) * | 1974-11-22 | 1976-05-24 | Hitachi Ltd | KINZOKUJOKIHODENTO |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH103879A (en) | Ceramic cathode fluorescent lamp | |
US4136227A (en) | Electrode of discharge lamp | |
US6680574B1 (en) | Gas discharge lamp comprising an oxide emitter electrode | |
JP2003257362A (en) | Fluorescent lamp electrode for instant start circuit | |
US3563797A (en) | Method of making air stable cathode for discharge device | |
US5559392A (en) | Apparatus for securing an amalgam at the apex of an electrodeless fluorescent lamp | |
EP0157440B1 (en) | Low-pressure mercury vapour discharge lamp | |
EP0962026A1 (en) | High-pressure metal halide discharge lamp | |
US2686274A (en) | Thermionic cathode | |
JPH06223776A (en) | Electrode for fluorescent lamp | |
JP2773174B2 (en) | Electrode material | |
US6674240B1 (en) | Gas discharge lamp comprising an oxide emitter electrode | |
US2959702A (en) | Lamp and mount | |
JPH06176735A (en) | Electrode for fluorescent lamp | |
US4620128A (en) | Tungsten laden emission mix of improved stability | |
EP0193714A1 (en) | High pressure sodium lamp having improved pressure stability | |
US3249788A (en) | Electrode coating material and discharge device | |
US5982083A (en) | Cathode for electron tube | |
JP2628312B2 (en) | Discharge lamp device | |
US2740914A (en) | Thermionic cathodes | |
JPH10233188A (en) | Low pressure discharge lamp | |
JPH09129118A (en) | Cathode for electron tube | |
US2831137A (en) | Cathode coating | |
JP3074651B2 (en) | Fluorescent lamp | |
JP2599910B2 (en) | Linear oxide cathode for cathode ray tubes |