JPH06176698A - Gas electric discharge tube - Google Patents

Gas electric discharge tube

Info

Publication number
JPH06176698A
JPH06176698A JP4322984A JP32298492A JPH06176698A JP H06176698 A JPH06176698 A JP H06176698A JP 4322984 A JP4322984 A JP 4322984A JP 32298492 A JP32298492 A JP 32298492A JP H06176698 A JPH06176698 A JP H06176698A
Authority
JP
Japan
Prior art keywords
cathode
anodes
glass plate
cathodes
discharge tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4322984A
Other languages
Japanese (ja)
Inventor
Yoshiki Hayashida
芳樹 林田
Hiroshi Sakurai
浩 櫻井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to JP4322984A priority Critical patent/JPH06176698A/en
Publication of JPH06176698A publication Critical patent/JPH06176698A/en
Pending legal-status Critical Current

Links

Landscapes

  • Gas-Filled Discharge Tubes (AREA)

Abstract

PURPOSE:To provide a matrix type gas electric discharge tube which operates at a relatively low discharge keeping voltage of 3OV or so by reducing the amount by which each insulating barrier is charged with positive ions generated inside a discharge space, and enhancing the ratio of charging of a cathode surface. CONSTITUTION:A number of band cathodes 19 are arranged in one direction on the inside surface of the back glass plate 18 of a gas-sealed flat envelope 17, and a number of band anodes 19 three-dimensionally intersecting the cathodes 19 are arranged on the inside surface of the front glass plate 20 of the flat envelope 17, and narrow insulating barriers 23 are provided among the anodes. The cathodes 19 are of tunnel effect type and their electron emission area 27 is provided in a position which should not be near the insulating barriers 23.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、トンネル効果型の電子
放射素子を陰極とするガス放電管に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas discharge tube having a tunnel effect type electron emitting element as a cathode.

【0002】[0002]

【従来の技術】トンネル効果型の電子放射素子を陰極と
するガス放電管は、図4に示すように構成される。すな
わち、ガラス平板1上に設けられた導電体基板2は、そ
の表面を覆う誘電体薄膜3とともにトンネル効果型の電
子放出素子たる陰極4を構成しており、陰極4は放電空
間5を挟んで陽極6と向き合い、これらはガスを満たし
たガラス外囲器7内に封入されている。8は直流電源を
示す。
2. Description of the Related Art A gas discharge tube having a tunnel effect type electron emitting element as a cathode is constructed as shown in FIG. That is, the conductor substrate 2 provided on the glass plate 1 constitutes the cathode 4 which is a tunnel effect type electron-emitting device together with the dielectric thin film 3 covering the surface thereof, and the cathode 4 sandwiches the discharge space 5 therebetween. It faces the anode 6, which is enclosed in a gas-filled glass envelope 7. Reference numeral 8 represents a DC power supply.

【0003】陰極4と陽極6との間に後者が正となる極
性に直流電圧が印加されることによって放電空間5にガ
スの陽イオン9が発生し、この陽イオン9は放電空間5
にかかるわずかな電位勾配によって低速で移動し、陰極
4の表面にチャージされる。これによって誘電体薄膜3
に厚み方向の強電界が生じ、トンネル効果によって電子
10が放出される。
A DC voltage is applied between the cathode 4 and the anode 6 so that the latter has a positive polarity, so that gas cations 9 are generated in the discharge space 5, and the cations 9 are generated.
It moves at a low speed due to a slight potential gradient applied to and is charged on the surface of the cathode 4. As a result, the dielectric thin film 3
A strong electric field in the direction of thickness is generated in the direction, and electrons 10 are emitted due to the tunnel effect.

【0004】電子10の一部は陽イオン9と中和される
が、残余は放電空間5でガスと衝突して新たな陽イオン
9を発生し、これら陽イオン9は陰極4の表面にチャー
ジされる。そして、イオン供給と電子放出とが平衡状態
を保つようになるので、前記直流電圧の大部分が誘電体
薄膜3に印加されることとなる。このため、放電維持電
圧は約30Vで足りるようになり、この値は通常の冷陰
極を用いたガス放電管における放電維持電圧の数分の1
である。
Some of the electrons 10 are neutralized with the cations 9, but the rest collide with the gas in the discharge space 5 to generate new cations 9, which are charged on the surface of the cathode 4. To be done. Then, since the ion supply and the electron emission are kept in equilibrium, most of the DC voltage is applied to the dielectric thin film 3. Therefore, the sustaining voltage of about 30 V is sufficient, which is a fraction of the sustaining voltage in a gas discharge tube using a normal cold cathode.
Is.

【0005】[0005]

【発明が解決しようとする課題】しかし、ドットマトリ
ックス形式の表示用ガス放電管における陰極にトンネル
効果型のものを用いると、下記のような問題が生じる。
すなわち、この場合は図5に示すように、多数の帯状陰
極11と帯状陽極12との立体交差部に放電空間13が
形成され、各陽極12を仕切る絶縁隔壁14が陰極11
を横切る部分において陰極11の表面に接する。このた
め、放電空間13で発生した陽イオン15の何割かは陰
極11の表面にチャージされることなく絶縁隔壁14の
側面にチャージされてしまい、陰極11の表面にチャー
ジされるべき陽イオン15の量が不足する。したがっ
て、放電電圧を高めて放電空間13にかかる電界強度を
増し、陽イオン15の発生量を増やさねばならないが、
そうすると放電維持電圧も高くなり、目的とする低電圧
動作が満足に得られなくなる。16は電子を示す。
However, when the tunnel effect type cathode is used for the cathode in the dot matrix type gas discharge tube for display, the following problems occur.
That is, in this case, as shown in FIG. 5, a discharge space 13 is formed at a three-dimensional intersection of a large number of strip-shaped cathodes 11 and strip-shaped anodes 12, and an insulating partition 14 for partitioning each anode 12 serves as a cathode 11.
The surface of the cathode 11 is in contact with the surface of the cathode 11. Therefore, some of the cations 15 generated in the discharge space 13 are not charged on the surface of the cathode 11 but are charged on the side surface of the insulating partition 14, and the cations 15 to be charged on the surface of the cathode 11 are charged. Insufficient amount. Therefore, it is necessary to increase the discharge voltage to increase the electric field strength applied to the discharge space 13 and increase the amount of cations 15 generated.
Then, the discharge sustaining voltage also becomes high, and the desired low voltage operation cannot be obtained satisfactorily. 16 is an electron.

【0006】[0006]

【課題を解決するための手段】本発明によると、ガスを
封入した偏平外囲器の背面ガラス板の内面上に多数の帯
状陰極が一方向に配列され、前記陰極に立体交差する多
数の帯状陽極が前記偏平外囲器の前面ガラス板の内面上
に配列され、各陽極が陽極間に設けられた細長い絶縁隔
壁によって他の陽極から隔離されてなるガス放電管にお
いて、前記陰極にトンネル効果型のものを用い、かつ、
その電子放出領域を前記絶縁隔壁の近傍を避けた位置に
設ける。
According to the present invention, a large number of strip-shaped cathodes are arranged in one direction on an inner surface of a rear glass plate of a gas-enclosed flat envelope, and a plurality of strip-shaped cathodes intersect three-dimensionally with the cathodes. In a gas discharge tube in which anodes are arranged on the inner surface of the front glass plate of the flat envelope, and each anode is separated from other anodes by elongated insulating barriers provided between the anodes, a tunnel effect type cathode is provided for the cathodes. And use
The electron emission region is provided at a position avoiding the vicinity of the insulating partition.

【0007】[0007]

【作用】このように構成すると、陰極の電子放出領域が
絶縁隔壁から離れて位置するので、絶縁隔壁の近傍にお
ける陽イオンの発生がなくなり、放電空間で発生した陽
イオンの陰極表面へのチャージ率を高めることができ
る。このため、電界強度をとくに高めることが必要でな
くなり、30V程度の比較的低い放電維持電圧で動作す
るマトリックス形式ガス放電管を得ることができる。
With this structure, since the electron emission region of the cathode is located away from the insulating partition, cations are not generated in the vicinity of the insulating partition, and the cations generated in the discharge space are charged to the cathode surface. Can be increased. Therefore, it is not necessary to particularly increase the electric field strength, and it is possible to obtain a matrix type gas discharge tube that operates at a relatively low discharge sustaining voltage of about 30V.

【0008】[0008]

【実施例】つぎに本発明を図示した実施例とともに説明
する。図1に示す偏平外囲器17は主としてネオンから
なるガスを約60Torr.のガス圧で封入してなり、
その背面ガラス板18の内面上に多数の帯状陰極19を
配列している。陰極19は外囲器17の前面ガラス板2
0の内面上に配列されている多数の帯状陽極21と立体
交差し、多数の立体交差部のそれぞれに放電空間22が
設定されている。各陽極21は薄膜0.2μmのITO
膜(透明導電膜)からなり、その相互間に設けられた細
長い絶縁隔壁23によって他の陽極21から仕切られて
いる。絶縁隔壁23は前面ガラス板20にエッチング加
工を施すことによって得ることができるが、SiO2
の絶縁膜でもって形成してもよい。
The present invention will be described below with reference to the illustrated embodiments. The flat envelope 17 shown in FIG. 1 contains a gas consisting mainly of neon at about 60 Torr. It is sealed with the gas pressure of
A large number of strip cathodes 19 are arranged on the inner surface of the rear glass plate 18. The cathode 19 is the front glass plate 2 of the envelope 17.
A plurality of strip-shaped anodes 21 arrayed on the inner surface of 0 intersect with each other, and a discharge space 22 is set in each of the many intersections. Each anode 21 is a thin 0.2 μm ITO film.
It is made of a film (transparent conductive film) and is separated from other anodes 21 by elongated insulating partition walls 23 provided between them. The insulating partition 23 can be obtained by subjecting the front glass plate 20 to etching, but it may be formed of an insulating film such as SiO 2 .

【0009】各陰極19は膜厚5μmのアルミニウムか
らなる導電体基板24と、その表面を覆う膜厚500A
のMgOからなる誘電体薄膜25とによって構成された
トンネル効果型のもので、絶縁隔壁23の下面から両側
方へ各1mmを越えない寸度幅で突出した絶縁膜26によ
って部分的に覆われている。絶縁膜26は膜厚0.2μ
mのSiO2からなり、陰極19の表面のうち絶縁隔壁
23の近傍を覆っている。このため、陰極19の実質的
な電子放出領域27は絶縁隔壁23の近傍になく、絶縁
隔壁23から離れた位置、つまり、陽極21に対向した
位置にのみ存在する。
Each cathode 19 has a conductor substrate 24 made of aluminum and having a film thickness of 5 μm, and a film thickness of 500 A covering the surface thereof.
Of the dielectric thin film 25 made of MgO, which is partially covered by an insulating film 26 protruding from the lower surface of the insulating partition wall 23 to both sides with a width not exceeding 1 mm. There is. The insulating film 26 has a film thickness of 0.2 μ
m of SiO 2 and covers the vicinity of the insulating partition 23 on the surface of the cathode 19. Therefore, the substantial electron emission region 27 of the cathode 19 does not exist in the vicinity of the insulating partition 23, but exists only at a position apart from the insulating partition 23, that is, at a position facing the anode 21.

【0010】このように構成されたドットマトリックス
形式のガス放電管にあっては、放電空間22で発生した
ガスの陽イオンは、絶縁隔壁23にほとんどチャージさ
れることなく電子放出領域27にチャージされる。すな
わち、陽イオンの陰極表面へのチャージ率が高められる
ので、低い放電維持電圧で動作するマトリックス形式ガ
ス放電管を得ることができる。
In the dot-matrix type gas discharge tube constructed as described above, the cations of the gas generated in the discharge space 22 are charged in the electron emission region 27 while being hardly charged in the insulating partition wall 23. It That is, since the charge rate of cations on the cathode surface is increased, it is possible to obtain a matrix type gas discharge tube that operates at a low discharge sustaining voltage.

【0011】本発明の他の実施例を図2に示す。この場
合、図1に示した構成と異なるところは、陰極19の誘
電体薄膜25が断続的に設けられている点と、絶縁膜2
6を有していない点とであり、その他の構成に変わりは
ない。誘電体薄膜25は絶縁隔壁23から1mmを越えた
部分にのみ設けられている。つまり、絶縁隔壁23を避
けた位置に誘電体薄膜25が設けられており、絶縁隔壁
23の近傍における導電体基板24は放電空間22に露
出している。
Another embodiment of the present invention is shown in FIG. In this case, the difference from the configuration shown in FIG. 1 is that the dielectric thin film 25 of the cathode 19 is provided intermittently, and the insulating film 2
6 is not provided, and other configurations are the same. The dielectric thin film 25 is provided only in a portion exceeding 1 mm from the insulating partition 23. That is, the dielectric thin film 25 is provided at a position avoiding the insulating partition 23, and the conductive substrate 24 near the insulating partition 23 is exposed to the discharge space 22.

【0012】トンネル効果型電子放射素子の電子放射
は、誘電体薄膜25が存在しなければ生じない。このた
め、前記実施例におけるような絶縁膜を用いることな
く、陰極表面への陽イオンのチャージ率を高めることが
でき、この場合も放電維持電圧を30V程度となすこと
ができる。
The electron emission of the tunnel effect type electron-emitting device does not occur unless the dielectric thin film 25 is present. Therefore, the charge rate of cations on the cathode surface can be increased without using the insulating film as in the above-mentioned embodiment, and in this case also, the discharge sustaining voltage can be set to about 30V.

【0013】前記実施例において、絶縁隔壁22から電
子放出部までの距離を1mmとした理由は、それを越えて
もメリットがないからである。実験によると図3に示す
ように、前記距離が1mmよりも小さくなるのに伴い放電
維持電圧は徐々に高くなる。電子放出領域27が絶縁隔
壁23に隣接して設けられているときの放電維持電圧は
70V程度になる。
In the above-mentioned embodiment, the reason why the distance from the insulating partition 22 to the electron emitting portion is set to 1 mm is that there is no merit even if the distance is exceeded. According to the experiment, as shown in FIG. 3, the discharge sustaining voltage gradually increases as the distance becomes smaller than 1 mm. The discharge sustaining voltage when the electron emission region 27 is provided adjacent to the insulating partition 23 is about 70V.

【0014】[0014]

【発明の効果】本発明は上述のように構成されるので、
放電空間で発生した陽イオンの絶縁隔壁へのチャージ量
を軽減でき、陰極表面へのチャージ率を高め得ることか
ら、30V程度の比較的低い放電維持電圧で動作するマ
トリックス形式ガス放電管を得ることができる。
Since the present invention is constructed as described above,
Since the amount of cations generated in the discharge space to the insulating partition can be reduced and the charge rate to the cathode surface can be increased, a matrix type gas discharge tube that operates at a relatively low discharge sustaining voltage of about 30 V can be obtained. You can

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を実施したガス放電管の要部の斜視図FIG. 1 is a perspective view of a main part of a gas discharge tube embodying the present invention.

【図2】本発明の他の実施例の要部の斜視図FIG. 2 is a perspective view of an essential part of another embodiment of the present invention.

【図3】トンネル効果型電子放射素子の電子放出領域と
絶縁隔壁との間隔を横軸にとり放電維持電圧を縦軸にと
った特性図
FIG. 3 is a characteristic diagram in which the horizontal axis represents the distance between the electron emission region and the insulating partition of the tunnel effect type electron-emitting device and the vertical axis represents the discharge sustaining voltage.

【図4】トンネル効果型電子放射素子を用いた従来のガ
ス放電管の側断面図
FIG. 4 is a side sectional view of a conventional gas discharge tube using a tunnel effect type electron-emitting device.

【図5】トンネル効果型電子放射素子を用いた従来のマ
トリックス形式ガス放電管の側断面図
FIG. 5 is a side sectional view of a conventional matrix-type gas discharge tube using a tunnel effect type electron-emitting device.

【符号の説明】[Explanation of symbols]

17 偏平外囲器 18 背面ガラス板 19 陰極 20 前面ガラス板 21 陽極 22 放電空間 23 絶縁隔壁 24 導電体基板 25 誘電体薄膜 26 絶縁膜 27 電子放出領域 17 Flat Envelope 18 Rear Glass Plate 19 Cathode 20 Front Glass Plate 21 Anode 22 Discharge Space 23 Insulating Partition 24 Conductor Substrate 25 Dielectric Thin Film 26 Insulating Film 27 Electron Emitting Area

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】ガスを封入した偏平外囲器の背面ガラス板
の内面上に多数の帯状陰極が一方向に配列され、前記陰
極に立体交差した多数の帯状陽極が前記偏平外囲器の前
面ガラス板の内面上に配列され、各陽極が陽極間に設け
られた細長い絶縁隔壁によって他の陽極から隔離され、
前記陰極が導電体基板とその表面を覆う誘電体薄膜とに
よって構成されたトンネル効果型のものからなり、その
電子放出領域が前記絶縁隔壁の近傍を避けた位置に設け
られていることを特徴とするガス放電管。
1. A flat envelope in which gas is enclosed, wherein a large number of strip-shaped cathodes are arranged in one direction on an inner surface of a rear glass plate, and a large number of strip-shaped anodes intersecting with the cathode are provided in front of the flat envelope. Arranged on the inner surface of the glass plate, each anode is separated from other anodes by an elongated insulating partition provided between the anodes,
The cathode is made of a tunnel effect type composed of a conductive substrate and a dielectric thin film covering the surface of the conductive substrate, and its electron emission region is provided at a position avoiding the vicinity of the insulating partition. A gas discharge tube.
JP4322984A 1992-12-02 1992-12-02 Gas electric discharge tube Pending JPH06176698A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4322984A JPH06176698A (en) 1992-12-02 1992-12-02 Gas electric discharge tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4322984A JPH06176698A (en) 1992-12-02 1992-12-02 Gas electric discharge tube

Publications (1)

Publication Number Publication Date
JPH06176698A true JPH06176698A (en) 1994-06-24

Family

ID=18149848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4322984A Pending JPH06176698A (en) 1992-12-02 1992-12-02 Gas electric discharge tube

Country Status (1)

Country Link
JP (1) JPH06176698A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030023403A (en) * 2001-09-13 2003-03-19 엘지전자 주식회사 Plasma display panel
JP2006004954A (en) * 2005-09-12 2006-01-05 Matsushita Electric Works Ltd Light emitting device with electron emitter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030023403A (en) * 2001-09-13 2003-03-19 엘지전자 주식회사 Plasma display panel
JP2006004954A (en) * 2005-09-12 2006-01-05 Matsushita Electric Works Ltd Light emitting device with electron emitter

Similar Documents

Publication Publication Date Title
KR100339196B1 (en) Discharge tube for display device and its driving method
JP2002279906A (en) Plasma display panel
US20050285525A1 (en) Display panel
US6229582B1 (en) Display device with secondary electron emitting layer
US6459201B1 (en) Flat-panel display with controlled sustaining electrodes
JP2001176400A (en) Plasma display panel
US3903445A (en) Display/memory panel having increased memory margin
JPH06176698A (en) Gas electric discharge tube
US3942161A (en) Selective control of discharge position in gas discharge display/memory device
US3976823A (en) Stress-balanced coating composite for dielectric surface of gas discharge device
JP3580461B2 (en) AC type plasma display panel
US7486023B2 (en) Single layer discharge electrode configuration for a plasma display panel
US4517492A (en) Selective control of discharge position in gas discharge display/memory device
JPH02223133A (en) Dc type discharge display device
KR940003764B1 (en) Plasma display panel
US3852607A (en) Multiple gaseous discharge display/memory panel having thin film dielectric charge storage member
JPH05121001A (en) Surface discharge display board
JPH10312755A (en) Structure for pdp with auxiliary discharge cell and its driving method
JP2943210B2 (en) Surface discharge type plasma display panel
JPH052992A (en) Plasma display device
JPH0521242Y2 (en)
JPS6310434A (en) Plane type display device
US3903446A (en) Conditioning of gas discharge display device
KR100741083B1 (en) Display device
KR100768045B1 (en) Plasma Display Panel Using a High Frequency