JPH06174818A - Image tracking device - Google Patents

Image tracking device

Info

Publication number
JPH06174818A
JPH06174818A JP4329439A JP32943992A JPH06174818A JP H06174818 A JPH06174818 A JP H06174818A JP 4329439 A JP4329439 A JP 4329439A JP 32943992 A JP32943992 A JP 32943992A JP H06174818 A JPH06174818 A JP H06174818A
Authority
JP
Japan
Prior art keywords
area
region
brightness
measuring
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4329439A
Other languages
Japanese (ja)
Inventor
Yoshinori Hirose
義則 広瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP4329439A priority Critical patent/JPH06174818A/en
Publication of JPH06174818A publication Critical patent/JPH06174818A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To discriminate a target from a dummy target by excluding an area, where the maximum brightness of an object image is larger than a reference value and a difference between the maximum brightness and an average brightness is smaller than a reference value, as the dummy target. CONSTITUTION:The gravity center position in every connection area containing significant picture elements of a concentration image, binarized 2, is measured, an average brightness and the maximum brightness in every connection area are measured 7, 8 and a difference between the average brightness and the maximum brightness is measured 9, so that the maximum brightness may be compared with a reference value and then output to a bright difference judging means 11. The judging means 11 judges an area to be an effective area when the brightness difference is smaller than a reference value and the maximum brightness is smaller than a reference value and to be a dummy target when the brightness difference is smaller than the reference value but the maximum brightness is larger than the reference value. A significant target selecting means 12 selects an area where an error between the gravity center position and the previous tracking position is minimum out of the areas, judge to be effective areas, to output the gravity center position of the area as a current tracking position.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、画像追尾装置の対妨
害性の改善に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to improving the anti-interference property of an image tracking device.

【0002】[0002]

【従来の技術】図10は従来の画像追尾装置の構成図、
図11は撮像機の与える濃淡画像を示す図であり、図1
0において、1は撮像機、2は二値化手段、3は領域毎
重心位置計測手段、4は重心誤差計測手段、5は最小値
による選択手段、6は追尾位置出力である。
2. Description of the Related Art FIG. 10 is a block diagram of a conventional image tracking device,
FIG. 11 is a diagram showing a grayscale image provided by the image pickup apparatus.
In 0, 1 is an image pickup device, 2 is a binarizing unit, 3 is a barycentric position measuring unit for each area, 4 is a barycentric error measuring unit, 5 is a selecting unit based on a minimum value, and 6 is a tracking position output.

【0003】従来の画像追尾装置は、撮像機1により図
11に示すような濃淡画像を得る。二値化手段2は前記
濃淡画像を二値化し、領域毎重心位置計測手段3は、前
記二値化手段2により得られた二値化画像の有意画素で
構成される連結領域毎の重心位置を計測する。重心誤差
計測手段4は、今回検出した領域の重心位置と前回の追
尾位置出力6の追尾位置との誤差を計測する。最小値に
よる選択手段5は、前記重心誤差計測手段4の出力する
誤差が最小となる領域の重心位置を選択する。このよう
にして選択された領域の重心位置を今回の追尾位置出力
6として出力する。
In the conventional image tracking device, the image pickup device 1 obtains a grayscale image as shown in FIG. The binarizing unit 2 binarizes the grayscale image, and the region-by-region centroid position measuring unit 3 determines the centroid position for each connected region composed of significant pixels of the binarized image obtained by the binarizing unit 2. To measure. The center-of-gravity error measuring means 4 measures the error between the center-of-gravity position of the area detected this time and the tracking position of the previous tracking position output 6. The selecting means 5 based on the minimum value selects the barycentric position of the area where the error output from the barycentric error measuring means 4 becomes the minimum. The center-of-gravity position of the area thus selected is output as the tracking position output 6 of this time.

【0004】図12は、従来の画像追尾装置が計測する
データを示す図であって、有意画素として検出された領
域の目標と疑似目標、目標重心位置(XT,YT)、疑
似目標重心位置(XD,YD)、及び目標と疑似目標そ
れぞれの重心誤差Tdif、Ddifを示している。
FIG. 12 is a diagram showing data measured by a conventional image tracking device. The target and the pseudo target of the area detected as a significant pixel, the target barycentric position (XT, YT), and the pseudo target barycentric position ( XD, YD), and the center-of-gravity errors Tdif and Ddif of the target and pseudo target, respectively.

【0005】[0005]

【発明が解決しようとする課題】従来の画像処理装置は
前記のように構成されているので、目標と疑似目標が近
接していて、両者の重心位置と前回の追尾位置出力6の
追尾位置との誤差が同じ場合、または疑似目標の領域の
誤差が目標領域の誤差より小さい場合、誤って疑似目標
を目標とみなす可能性があるという問題があった。
Since the conventional image processing apparatus is configured as described above, the target and the pseudo target are close to each other, and the center of gravity of both of them and the tracking position of the previous tracking position output 6 are set. There is a problem in that the pseudo target may be mistakenly regarded as the target when the error of 1 is the same or the error of the pseudo target region is smaller than the error of the target region.

【0006】この発明は、このような課題を解決するた
めになされたもので、疑似目標の領域が目標の領域と近
接していても両者を識別可能な画像追尾装置を得ること
を目的とする。
The present invention has been made in order to solve such a problem, and an object thereof is to obtain an image tracking device capable of discriminating both a pseudo target area and a target area even if they are close to each other. .

【0007】[0007]

【課題を解決するための手段】この発明にかかる画像追
尾装置は、目標と疑似目標を識別する手段として、二値
画像の各領域の最大輝度を計測する領域毎最大輝度計測
手段、二値画像の各領域の平均輝度を計測する領域毎平
均輝度計測手段、領域毎最大輝度計測手段の出力と領域
毎平均輝度計測手段の出力の2つの輝度差を計測する輝
度差計測手段、領域毎最大輝度計測手段の出力を受けて
最大輝度が基準値以上である領域と基準値未満の領域を
判定する最大輝度判定手段、輝度差計測手段の出力を受
けて輝度差が基準値以下である領域でかつ最大輝度判定
手段で最大輝度が基準値以上と判定された領域を疑似目
標であると判定し、疑似目標領域を無効、疑似目標以外
の領域を有効と判定する輝度差判定手段、輝度差判定手
段で有効と判定された領域の内で領域の重心位置と前回
の追尾位置の誤差が最小となる領域を目標として選択す
る有意目標選択手段を設けたものである。
An image tracking device according to the present invention, as means for discriminating between a target and a pseudo target, a maximum brightness measuring means for each area for measuring the maximum brightness of each area of a binary image, and a binary image. Area average brightness measuring means for measuring the average brightness of each area, a brightness difference measuring means for measuring two brightness differences of the output of the area maximum brightness measuring means and the area average brightness measuring means, and the area maximum brightness A maximum brightness determining unit that receives an output of the measuring unit and determines a region where the maximum brightness is greater than or equal to a reference value and a region that is less than the reference value; Brightness difference determining means and brightness difference determining means for determining an area for which the maximum brightness is determined to be a reference value or more by the maximum brightness determining means as a pseudo target, invalidating the pseudo target area, and valid for areas other than the pseudo target Is determined to be valid Error of the center of gravity position and the previous tracking position of the region within the region is provided with a significant target selection means for selecting a target area to be minimized.

【0008】また別の実施例では、二値画像の各領域の
輝度標準偏差を計測する領域毎輝度標準偏差計測手段、
各領域の面積を計測する領域毎面積値計測手段、領域毎
輝度標準偏差計測手段の出力と領域毎面積計測手段の出
力から疑似目標とそれ以外の領域を判定し、疑似目標領
域を無効、疑似目標以外の領域を有効と判定する疑似目
標判定手段、疑似目標判定手段で有効と判定された領域
の内で領域の重心位置と前回の追尾位置の誤差が最小と
なる領域を目標として選択する有意目標選択手段を設け
たものである。
In another embodiment, the brightness standard deviation measuring means for each area for measuring the brightness standard deviation of each area of the binary image,
A pseudo target and other areas are determined from the output of the area value measuring means for each area for measuring the area of each area, the output of the brightness standard deviation measuring means for each area, and the output of the area measuring means for each area, and the pseudo target area is invalidated or pseudo. Pseudo-target determination means that determines an area other than the target to be effective, and of the areas determined to be effective by the pseudo-target determination means, the area in which the error between the center of gravity of the area and the previous tracking position is the smallest is selected as the target. The target selecting means is provided.

【0009】さらに別の実施例では、二値画像の各領域
の最大輝度を与える位置を計測する領域毎最大輝度位置
計測手段、領域毎最大輝度位置計測手段の出力する各領
域の最大輝度位置と重心位置との距離を計測する距離計
測手段、各領域の面積を計測する領域毎面積値計測手
段、距離計測手段の出力と領域毎面積値計測手段の出力
から面積により正規化した距離を求めその値が基準値以
下の場合には疑似目標であると判定することで疑似目標
領域を無効、疑似目標以外の領域を有効と判定する正規
化距離判定手段、正規化距離判定手段で有効と判定され
た領域の内で領域の重心位置と前回の追尾位置の誤差が
最小となる領域を目標として選択する有意目標選択手段
を設けたものである。
In still another embodiment, the maximum brightness position measuring means for each area for measuring the position where the maximum brightness is given to each area of the binary image, and the maximum brightness position of each area outputted by the maximum brightness position measuring means for each area are set. Distance measuring means for measuring the distance to the position of the center of gravity, area-by-area area value measuring means for measuring the area of each area, and a distance normalized by the area is obtained from the output of the distance measuring means and the output of the area-by-area area value measuring means. If the value is less than or equal to the reference value, the pseudo target area is determined to be invalid by determining that it is a pseudo target, and the area other than the pseudo target is determined to be valid. The significant target selecting means is provided for selecting, as a target, a region in which the error between the barycentric position of the region and the previous tracking position is the smallest.

【0010】[0010]

【作用】航空機及び艦船は、疑似目標として、発炎弾を
投射しながら航行することが知られている。撮像機で撮
像された画像上において、発炎弾は輝度が高く、領域の
内部では輝度分布が一様に広がる。これに対し目標とす
る航空機及び艦船は、目標領域内部の部位それぞれで輝
度が異なり、複雑な輝度分布を示す。目標と複数の疑似
目標が撮像された場合、目標領域内部での最大輝度と平
均輝度の差は、疑似目標領域の内部での最大輝度と平均
輝度の差よりも大きいと言える。これより、撮像された
物体各々の最大輝度と平均輝度の差を求めて、最大輝度
がある基準値より大きく最大輝度と平均輝度の差がある
基準値より小さい領域を選び、その領域を疑似目標とみ
なして除外することで、目標と疑似目標を識別できるこ
とがわかる。
It is known that an aircraft and a ship sail as a pseudo target while projecting flaming bombs. On the image picked up by the image pickup device, the flaming bullet has high brightness, and the brightness distribution spreads uniformly inside the area. On the other hand, the target aircraft and ship have different brightness in each part inside the target area and show a complicated brightness distribution. When the target and a plurality of pseudo targets are imaged, it can be said that the difference between the maximum brightness and the average brightness inside the target region is larger than the difference between the maximum brightness and the average brightness inside the pseudo target region. From this, the difference between the maximum brightness and the average brightness of each imaged object is calculated, and the area where the maximum brightness is larger than a certain reference value and smaller than the reference value where the difference between the maximum brightness and the average brightness is smaller is selected as a pseudo target. It can be seen that the target and the pseudo-target can be discriminated by considering them and excluding them.

【0011】また、目標領域がある程度の面積値を有す
る場合においては、目標領域の内部では輝度分布が複雑
であるため、輝度標準偏差が大きいと言える。これに対
し、疑似目標領域の内部では、輝度分布が一様に広がる
ため、輝度標準偏差は目標領域の内部より小さい。これ
により、撮像された物体各々の面積値と輝度標準偏差を
求めて、面積値がある基準値より大きく輝度標準偏差が
ある基準値より小さい領域を選び、その領域を疑似目標
とみなして除外することで、目標と疑似目標を識別でき
ることがわかる。
When the target area has a certain area value, the brightness standard deviation is large because the brightness distribution is complicated inside the target area. On the other hand, in the pseudo target area, the brightness distribution spreads uniformly, so that the brightness standard deviation is smaller than that in the target area. With this, the area value and the brightness standard deviation of each imaged object are obtained, and a region whose area value is larger than a certain reference value and smaller than the brightness standard deviation is a standard value is selected and excluded as a pseudo target. Therefore, it can be seen that the target and the pseudo target can be distinguished.

【0012】さらに、領域内部の最大輝度を与える位置
と重心位置を比較した場合、輝度分布が一様に広がる疑
似目標では、最大輝度を与える位置と重心位置が近接す
る。これに対し航空機又は艦船は、エンジンなどの部分
が最大輝度を与える位置となり、領域内の重心点とは近
接しないことが多い。また、これらの近接の度合いは撮
像された疑似目標及び目標の領域の面積に依存する。こ
こで、撮像された物体各々の最大輝度位置と重心位置の
距離を求めて、その値を物体各々の面積値で除算し、面
積に依存しない正規化した距離を求める。この正規化し
た距離をある基準値と比較して、基準値より小さい領域
を選び、その領域を疑似目標とみなして除外すること
で、目標と疑似目標を識別できることがわかる。
Further, when comparing the position giving the maximum brightness and the barycentric position inside the area, in the pseudo target in which the brightness distribution is uniformly spread, the position giving the maximum brightness and the barycentric position are close to each other. On the other hand, in an aircraft or a ship, a part such as an engine provides a maximum brightness and is often not close to the center of gravity in the area. Further, the degree of these proximity depends on the area of the imaged pseudo target and the target region. Here, the distance between the maximum brightness position and the barycentric position of each imaged object is obtained, and the value is divided by the area value of each object to obtain a normalized distance that does not depend on the area. It is understood that the target and the pseudo target can be distinguished by comparing the normalized distance with a certain reference value, selecting an area smaller than the reference value, and regarding that area as a pseudo target and excluding it.

【0013】この発明においては、撮像された物体各々
の領域内部での最大輝度と平均輝度の差を求め、最大輝
度が大きく、最大輝度と平均輝度の差が小さな領域を選
びその領域を疑似目標とみなして除外することで、目標
と疑似目標を識別できる。また、撮像された物体各々の
面積値と輝度標準偏差を求め、面積値が大きく、輝度標
準偏差が小さな領域を選びその領域を疑似目標とみなし
て除外することで、目標と疑似目標を識別できる。ま
た、撮像された物体各々の最大輝度を与える位置と重心
位置との距離と物体各々の面積値を求め、距離を面積値
で正規化した値が小さな領域を選びその領域を疑似目標
とみなして除外することで、目標と疑似目標を識別でき
る。
According to the present invention, the difference between the maximum brightness and the average brightness within the area of each imaged object is obtained, and the area having the maximum brightness is large and the difference between the maximum brightness and the average brightness is small is selected as a pseudo target. It is possible to distinguish the target from the pseudo-target by excluding it by considering it as. The target and the pseudo target can be distinguished by obtaining the area value and the brightness standard deviation of each imaged object, selecting a region having a large area value and a small brightness standard deviation, and excluding that region as a pseudo target. . In addition, the distance between the position giving the maximum brightness of each imaged object and the position of the center of gravity and the area value of each object are obtained, and the area in which the distance is normalized by the area value is selected as a pseudo target. By excluding it, the target and the pseudo target can be identified.

【0014】[0014]

【実施例】【Example】

実施例1.図1はこの発明による画像追尾装置の第1の
実施例を示す構成図である。図1において、7は領域毎
平均輝度計測手段、8は領域毎最大輝度計測手段、9は
輝度差計測手段、10は最大輝度判定手段、11は輝度
差判定手段、12は有意目標選択手段である。
Example 1. FIG. 1 is a block diagram showing a first embodiment of an image tracking device according to the present invention. In FIG. 1, 7 is an average brightness measuring means for each area, 8 is a maximum brightness measuring means for each area, 9 is a brightness difference measuring means, 10 is a maximum brightness determining means, 11 is a brightness difference determining means, and 12 is a significant target selecting means. is there.

【0015】この発明による画像追尾装置は、撮像機1
により濃淡画像を得る。二値化手段2は前記濃淡画像を
二値化し、領域毎重心位置計測手段3は、得られた二値
画像の有意画素で構成される連結領域毎の重心位置を計
測する。領域毎平均輝度計測手段7では、連結領域毎の
平均輝度を計測する。領域毎最大輝度計測手段8では、
連結領域毎の最大輝度を計測する。輝度差計測手段9で
は、“数1”により前記領域毎最大輝度計測手段8の出
力する最大輝度と前記領域毎平均輝度計測手段7の出力
する平均輝度の差を求める。“数1”においてBmax
(i)は領域毎最大輝度計測手段8の出力する領域iの
最大輝度、Bave(i)は領域毎平均輝度計測手段7
の出力する領域iの平均輝度、Bdif(i)は輝度差
計測手段9の出力する領域iの輝度差である。
The image tracking device according to the present invention is an image pickup device 1.
To obtain a grayscale image. The binarization unit 2 binarizes the grayscale image, and the region-by-region barycentric position measuring unit 3 measures the barycentric position for each connected region composed of significant pixels of the obtained binary image. The area-based average brightness measuring means 7 measures the average brightness of each connected area. In the maximum brightness measuring means 8 for each area,
Maximum brightness is measured for each connected region. The brightness difference measuring means 9 obtains the difference between the maximum brightness output from the maximum brightness measuring means 8 for each region and the average brightness output from the average brightness measuring means 7 for each region by "Equation 1". Bmax in "Equation 1"
(I) is the maximum brightness of the area i output by the maximum brightness measuring means 8 for each area, and Bave (i) is the average brightness measuring means 7 for each area.
Is the average luminance of the region i output by Bdif (i) is the luminance difference of the region i output by the luminance difference measuring means 9.

【0016】[0016]

【数1】 [Equation 1]

【0017】図4(a)は、撮像機1で目標を撮像した
場合の目標領域内部の輝度ヒストグラムを示す図であ
る。Tは二値化処理のしきい値、BTaveは目標領域
内部の平均輝度、BTmaxは目標領域内部の最大輝
度、BTdifは目標領域内部の最大輝度と平均輝度の
差を示す。図4(b)は、撮像機1で疑似目標を撮像し
た場合の疑似目標領域内部の輝度ヒストグラムを示す図
である。Tは二値化処理のしきい値、BDaveは疑似
目標領域内部の平均輝度、BDmaxは疑似目標領域内
部の最大輝度、BDdifは疑似目標領域内部の最大輝
度と平均輝度の差を示す。図4に示すように、目標領域
内部の輝度ヒストグラムは最大輝度と平均輝度の差が大
きいのに対して、疑似目標領域内部の輝度ヒストグラム
は、最大輝度と平均輝度の差が小さく、かつ輝度最大値
が大きくなる。
FIG. 4A is a diagram showing a luminance histogram inside the target area when the image of the target is picked up by the image pickup device 1. T is the threshold value of the binarization process, BTave is the average brightness inside the target area, BTmax is the maximum brightness inside the target area, and BTdif is the difference between the maximum brightness and the average brightness inside the target area. FIG. 4B is a diagram showing a luminance histogram inside the pseudo target area when the pseudo target is imaged by the imaging device 1. T is the threshold value of the binarization process, BDave is the average luminance inside the pseudo target area, BDmax is the maximum luminance inside the pseudo target area, and BDdif is the difference between the maximum luminance and the average luminance inside the pseudo target area. As shown in FIG. 4, the brightness histogram inside the target area has a large difference between the maximum brightness and the average brightness, whereas the brightness histogram inside the pseudo target area has a small difference between the maximum brightness and the average brightness and the maximum brightness. The value increases.

【0018】図5は最大輝度判定手段10の流れ図であ
る。図5において、BMrefは最大輝度判定の基準
値、L(i)は領域iにおける最大輝度判定手段10の
判定値である。図4のステップ13では、領域毎最大輝
度計測手段8の出力値Bmax(i)と基準値BMre
fとを比較する。最大輝度出力値Bmax(i)が基準
値BMref以上である場合には、領域iの最大輝度が
基準値以上であると判断してステップ14を実行し、判
定値L(i)を1に設定する。最大輝度出力値BMma
x(i)がBMref未満である場合には、領域iの最
大輝度が基準値未満であると判断してステップ15を実
行し、判定値L(i)を0に設定する。
FIG. 5 is a flow chart of the maximum brightness determining means 10. In FIG. 5, BMref is a reference value for maximum brightness determination, and L (i) is a determination value of the maximum brightness determination means 10 in the area i. In step 13 of FIG. 4, the output value Bmax (i) of the maximum luminance measuring means 8 for each area and the reference value BMre.
Compare with f. If the maximum luminance output value Bmax (i) is equal to or greater than the reference value BMref, it is determined that the maximum luminance of the region i is equal to or greater than the reference value, step 14 is executed, and the determination value L (i) is set to 1. To do. Maximum brightness output value BMma
If x (i) is less than BMref, it is determined that the maximum brightness of the region i is less than the reference value, step 15 is executed, and the determination value L (i) is set to 0.

【0019】図6は輝度差判定手段11の流れ図であ
る。図6において、BDrefは輝度差判定の基準値、
F(i)は領域iにおける輝度差判定手段11の判定値
である。ステップ16では、輝度差計測手段9の出力値
Bdif(i)と基準都BDrefを比較する。輝度差
出力値Bdif(i)が基準値BDrefより大きい場
合には、領域iを有効領域と判定としてステップ17を
実行し、判定値F(i)を1に設定する。輝度差出力値
Bdif(i)が基準値BDref以下の場合には、ス
テップ18を実行する。ステップ18では最大輝度判定
手段10の判定値L(i)を受けて、判定値L(i)が
0である場合には、領域iの輝度差は基準値より小さい
が最大輝度も基準値より小さいので、領域iは有効領域
と判定してステップ17を実行し、判定値F(i)を1
に設定する。判定値L(i)が1である場合には、領域
iの輝度差は基準値より小さく最大輝度が基準値より大
きいので、疑似目標とみなして、領域iを疑似目標と判
定してステップ19を実行し、判定値F(i)を0に設
定する。
FIG. 6 is a flow chart of the brightness difference determining means 11. In FIG. 6, BDref is a reference value for brightness difference determination,
F (i) is a judgment value of the brightness difference judgment means 11 in the area i. In step 16, the output value Bdif (i) of the brightness difference measuring means 9 is compared with the reference value BDref. When the brightness difference output value Bdif (i) is larger than the reference value BDref, the region i is determined to be the valid region, step 17 is executed, and the determination value F (i) is set to 1. When the brightness difference output value Bdif (i) is less than or equal to the reference value BDref, step 18 is executed. In step 18, when the judgment value L (i) of the maximum brightness judgment means 10 is received and the judgment value L (i) is 0, the brightness difference of the region i is smaller than the reference value, but the maximum brightness is also smaller than the reference value. Since it is small, the region i is determined to be a valid region, step 17 is executed, and the determination value F (i) is set to 1
Set to. If the determination value L (i) is 1, the brightness difference in the area i is smaller than the reference value and the maximum brightness is larger than the reference value. Therefore, the area i is regarded as a pseudo target, and the area i is determined as a pseudo target. Is executed and the judgment value F (i) is set to 0.

【0020】有意目標選択手段12は、前記の輝度差判
定手段11で有効領域であると判定された領域の内で、
重心誤差計測手段4の出力する誤差が最小となる領域を
選択し、選択した領域の重心位置を今回の追尾位置とし
て出力する。
Significant target selecting means 12 selects, from the areas determined to be effective areas by the brightness difference determining means 11,
The area where the error output from the center-of-gravity error measuring means 4 is minimized is selected, and the center-of-gravity position of the selected area is output as the current tracking position.

【0021】実施例2.図2はこの発明による画像追尾
装置の第2の実施例を示す構成図である。図2におい
て、20は領域毎面積値計測手段、21は領域毎輝度標
準偏差計測手段、22は疑似目標判定手段である。
Example 2. FIG. 2 is a block diagram showing a second embodiment of the image tracking device according to the present invention. In FIG. 2, 20 is an area value measuring means for each area, 21 is a brightness standard deviation measuring means for each area, and 22 is a pseudo target determining means.

【0022】この発明による画像追尾装置は、撮像機1
により濃淡画像を得る。二値化手段2は前記濃淡画像を
二値化し、領域毎重心位置計測手段3は、得られた二値
画像の有意画素で構成される連結領域毎の重心ベクトル
を計測する。領域毎平均輝度計測手段7では、連結領域
毎の平均輝度を計測する。領域毎面積値計測手段20で
は、連結領域毎の面積値を計測する。領域毎輝度標準偏
差計測手段21では、領域毎平均輝度計測手段7の出力
と領域毎面積値計測手段20の出力を受けて、“数2”
により連結領域毎の輝度標準偏差を計測する。“数2”
において、B(p,q)は領域内部の点(p,q)での
輝度、S(i)は領域毎面積値計測手段20の出力値、
Bsd(i)は輝度標準偏差計測手段21の出力値であ
る。
The image tracking device according to the present invention comprises an image pickup device 1.
To obtain a grayscale image. The binarizing unit 2 binarizes the grayscale image, and the region-by-region centroid position measuring unit 3 measures the centroid vector for each connected region formed by the significant pixels of the obtained binary image. The area-based average brightness measuring means 7 measures the average brightness of each connected area. The area value measuring means 20 for each area measures the area value for each connected area. The brightness standard deviation measuring means for each area 21 receives the output of the average brightness measuring means for each area 7 and the output of the area value for each area measuring means 20, and calculates "Equation 2".
The luminance standard deviation of each connected area is measured by. "Number 2"
, B (p, q) is the brightness at the point (p, q) inside the region, S (i) is the output value of the area value measuring means 20 for each region,
Bsd (i) is an output value of the brightness standard deviation measuring means 21.

【0023】[0023]

【数2】 [Equation 2]

【0024】疑似目標判定手段22は、領域毎輝度標準
偏差計測手段21の出力と領域毎面積値計測手段20の
出力を判定することにより疑似目標である領域を無効、
それ以外の領域を有効と判定する。
The pseudo target judging means 22 invalidates the area which is the pseudo target by judging the output of the brightness standard deviation measuring means 21 for each area and the output of the area value measuring means 20 for each area.
Other areas are determined to be valid.

【0025】図7は疑似目標判定手段22の流れ図であ
る。図7において、BSrefは輝度標準偏差判定の基
準値、Srefは面積値判定の基準値、FD(i)は領
域iにおける疑似目標判定手段22の判定値である。ス
テップ23では、輝度標準偏差計測手段21の出力値B
sd(i)と基準値BSrefを比較する。輝度標準偏
差出力値Bsd(i)が基準値BSrefより大きい場
合には、領域iは有効領域と判断してステップ24を実
行し、判定値FD(i)を1に設定する。輝度標準偏差
出力値Bsd(i)が基準値BSref以下の場合に
は、ステップ25を実行する。ステップ25では領域毎
面積値計測手段の出力値S(i)と基準値Srefを比
較する。面積S(i)が基準値Sref未満の場合に
は、面積が小さい目標である可能性があるのでステップ
24を実行し、判定値FD(i)を1に設定する。面積
値S(i)が基準値Sref以上の場合には、面積値が
大きいにもかかわらず、標準偏差が小さい領域であるの
で疑似目標とみなして、領域iを疑似目標と判定してス
テップ26を実行し、判定値FD(i)を0に設定す
る。
FIG. 7 is a flow chart of the pseudo target judging means 22. In FIG. 7, BSref is a reference value for brightness standard deviation determination, Sref is a reference value for area value determination, and FD (i) is a determination value of the pseudo target determination means 22 in the region i. In step 23, the output value B of the brightness standard deviation measuring means 21
The sd (i) is compared with the reference value BSref. When the brightness standard deviation output value Bsd (i) is larger than the reference value BSref, the region i is determined to be a valid region, step 24 is executed, and the determination value FD (i) is set to 1. When the brightness standard deviation output value Bsd (i) is less than or equal to the reference value BSref, step 25 is executed. In step 25, the output value S (i) of the area value measuring means for each area is compared with the reference value Sref. If the area S (i) is less than the reference value Sref, the area may be a small target, so step 24 is executed and the determination value FD (i) is set to 1. If the area value S (i) is greater than or equal to the reference value Sref, the area value is large, but the standard deviation is small. Therefore, the area i is regarded as a pseudo target and the area i is determined as a pseudo target. And sets the determination value FD (i) to 0.

【0026】有意目標選択手段12は、前記の疑似目標
判定手段22で有効領域であると判定された領域の内
で、重心誤差計測手段4の出力する誤差が最小となる領
域を選択し、選択した領域の重心位置を今回の追尾位置
として出力する。
The significant target selecting means 12 selects and selects the area in which the error outputted by the center-of-gravity error measuring means 4 is the smallest, from the areas judged to be the effective areas by the pseudo target judging means 22. The center-of-gravity position of the selected region is output as the tracking position this time.

【0027】実施例3.図3はこの発明による画像追尾
装置の第3の実施例を示す構成図である。図3におい
て、27は領域毎最大輝度位置計測手段、28は距離計
測手段、29は正規化距離判定手段である。
Example 3. FIG. 3 is a block diagram showing a third embodiment of the image tracking device according to the present invention. In FIG. 3, 27 is a maximum brightness position measuring unit for each area, 28 is a distance measuring unit, and 29 is a normalized distance determining unit.

【0028】この発明による画像追尾装置は、撮像機1
により濃淡画像を得る。二値化手段2は前記濃淡画像を
二値化し、領域毎重心位置計測手段3は、得られた二値
画像の有意画素で構成される連結領域毎の重心ベクトル
を計測する。領域毎最大輝度位置計測手段27では、連
結領域毎の最大輝度を与える点の位置を計測する。領域
毎面積値計測手段20では、連結領域毎の面積値を計測
する。距離計測手段28では、領域毎最大輝度位置計測
手段27の出力と領域毎重心位置計測手段3の出力を受
けて、“数3”により連結領域毎の最大輝度位置と重心
位置の距離を計測する。“数3”において、(BMx
(i),BMy(i))は領域毎最大輝度位置計測手段
27の出力する領域iの最大輝度位置、(Gx(i),
Gy(i))は領域毎重心位置計測手段3の出力する領
域iの重心位置、A(i)は距離計測手段28の出力す
る領域iの距離である。
The image tracking device according to the present invention comprises an image pickup device 1.
To obtain a grayscale image. The binarizing unit 2 binarizes the grayscale image, and the region-by-region centroid position measuring unit 3 measures the centroid vector for each connected region formed by the significant pixels of the obtained binary image. The maximum brightness position measuring means 27 for each area measures the position of the point giving the maximum brightness for each connected area. The area value measuring means 20 for each area measures the area value for each connected area. The distance measuring means 28 receives the output of the maximum brightness position measuring means 27 for each area and the output of the center of gravity position measuring means 3 for each area, and measures the distance between the maximum brightness position and the center of gravity position for each connected area by "Equation 3". . In “Equation 3”, (BMx
(I), BMy (i) is the maximum brightness position of the area i output by the maximum brightness position measuring means 27 for each area, (Gx (i),
Gy (i) is the barycentric position of the region i output by the barycentric position measuring unit 3 for each region, and A (i) is the distance of the region i output by the distance measuring unit 28.

【0029】[0029]

【数3】 [Equation 3]

【0030】正規化距離判定手段29は、距離計測手段
28の出力と領域毎面積値計測手段20の出力を受けて
面積により正規化した距離を求め、その値を判定するこ
とにより疑似目標である領域を無効、それ以外の領域を
有効と判定する。
The normalized distance determining means 29 receives the output of the distance measuring means 28 and the output of the area-by-area area value measuring means 20, obtains the distance normalized by the area, and determines the value to be a pseudo target. It is determined that the area is invalid and the other areas are valid.

【0031】図8は正規化距離判定手段29の流れ図で
ある。図8において、P(i)は領域iにおける正規化
した距離の値、Prefは正規化距離を判定する基準
値、FA(i)は領域iにおける正規化距離判定手段2
9の判定値である。ステップ30では、“数4”により
面積値により正規化した距離の値P(i)を求める。
FIG. 8 is a flow chart of the normalized distance judging means 29. In FIG. 8, P (i) is a normalized distance value in the area i, Pref is a reference value for determining the normalized distance, and FA (i) is a normalized distance determining means 2 in the area i.
It is a judgment value of 9. In step 30, the distance value P (i) normalized by the area value is obtained from "Equation 4".

【0032】[0032]

【数4】 [Equation 4]

【0033】図9(a)は、目標を撮像した場合の重心
位置と輝度最大値を与える位置の関係を示した図であ
る。図9(a)において、TBは輝度最大値を与える位
置、TGは重心位置である。図9(b)は、疑似目標を
撮像した場合の重心位置と輝度最大値を与える位置の関
係を示した図である。図9(b)において、DBは輝度
最大値を与える位置、DGは重心位置である。図のよう
に、目標を撮像した場合には、最大輝度を与える位置T
Bと重心位置TGは離れており、距離が大きい。一方、
疑似目標を撮像した場合には、領域が重心点を中心に円
形に広がり、最大輝度を与える位置DBと重心位置DG
は近接する。
FIG. 9A is a diagram showing the relationship between the position of the center of gravity and the position at which the maximum luminance value is given when the target is imaged. In FIG. 9A, TB is a position where the maximum brightness is given, and TG is a center of gravity position. FIG. 9B is a diagram showing the relationship between the position of the center of gravity and the position at which the maximum brightness value is given when the pseudo target is imaged. In FIG. 9B, DB is a position where the maximum brightness is given, and DG is a barycentric position. As shown in the figure, when the target is imaged, the position T that gives the maximum brightness
B is separated from the center of gravity position TG, and the distance is large. on the other hand,
When the pseudo target is imaged, the area spreads out in a circle centering on the center of gravity point, and the position DB and the center of gravity position DG that give the maximum brightness are obtained.
Are close.

【0034】最大輝度を与える位置と重心位置の距離
は、領域の面積が大きいほど距離も大きくなり面積に依
存する。疑似目標のように領域が円形に広がる場合、面
積値の平方根は円の半径に比例する。最大輝度を与える
位置と重心位置の距離を面積値の平方根で除算すること
により、面積に依存せず正規化した距離を比較すること
ができる。
The distance between the position of maximum brightness and the position of the center of gravity depends on the area as the area of the area increases. When the area spreads in a circle like a pseudo target, the square root of the area value is proportional to the radius of the circle. By dividing the distance between the position giving the maximum brightness and the position of the center of gravity by the square root of the area value, the normalized distance can be compared without depending on the area.

【0035】ステップ31では、ステップ30で計算し
た正規化した距離P(i)の値を、基準値Prefと比
較する。正規化した距離P(i)が基準値Prefより
大きい場合には、有効領域であると判定して、ステップ
32を実行し、判定値FA(i)を1に設定する。正規
化した距離P(i)が基準値Pref以下の場合には、
疑似目標であると判定して、ステップ33を実行し、判
定値FA(i)を0に設定する。
In step 31, the value of the normalized distance P (i) calculated in step 30 is compared with the reference value Pref. When the normalized distance P (i) is larger than the reference value Pref, it is determined to be the effective area, step 32 is executed, and the determination value FA (i) is set to 1. When the normalized distance P (i) is less than or equal to the reference value Pref,
It is determined to be a pseudo target, step 33 is executed, and the determination value FA (i) is set to 0.

【0036】有意目標選択手段12は、正規化距離判定
手段29で有効領域であると判定された領域の内で、重
心誤差計測手段4の出力する誤差が最小となる領域を選
択し、選択した領域の重心位置を今回の追尾位置として
出力する。
The significant target selecting means 12 selects and selects the area in which the error outputted by the center-of-gravity error measuring means 4 is the smallest, out of the areas judged by the normalized distance judging means 29 to be the effective areas. The center of gravity of the area is output as the tracking position for this time.

【0037】[0037]

【発明の効果】以上のようにこの発明によれば、二値画
像の各領域の最大輝度を計測するとともに、最大輝度と
平均輝度の輝度差を計測し、輝度差が基準値以下であ
り、かつ最大輝度が基準値以上である領域を疑似目標と
して無効と判定する輝度差判定手段を設け、輝度差判定
手段で有効と判定された領域の内で領域の重心位置と前
回の追尾位置の誤差が最小となる領域を目標として選択
する有意目標選択手段を備えたことにより、目標と疑似
目標が近接して撮像された場合においても目標を追尾す
ることができる。
As described above, according to the present invention, the maximum brightness of each region of the binary image is measured, and the brightness difference between the maximum brightness and the average brightness is measured, and the brightness difference is equal to or less than the reference value. And the difference between the center of gravity of the area and the previous tracking position within the area determined to be valid by the brightness difference determination means is provided by providing a brightness difference determination means that determines that the area whose maximum brightness is greater than or equal to the reference value is a pseudo target. By including the significant target selecting unit that selects the region in which the target is the minimum, the target can be tracked even when the target and the pseudo target are imaged in close proximity.

【0038】また別の実施例によれば、二値画像の各領
域の輝度標準偏差と面積値を計測し、面積値が大きいに
もかかわらず輝度標準偏差が小さい領域を疑似目標とみ
なして無効と判定する疑似目標判定手段を設け、疑似目
標判定手段で有効と判定された領域の内で領域の重心位
置と前回の追尾位置の誤差が最小となる領域を目標とし
て選択する有意目標選択手段を備えたことにより、目標
と疑似目標が近接して撮像された場合においても目標を
追尾することができる。
According to another embodiment, the brightness standard deviation and the area value of each area of the binary image are measured, and an area having a small brightness standard deviation despite a large area value is regarded as a pseudo target and is invalid. And a significant target selecting means for selecting, as a target, an area in which the error between the center of gravity of the area and the previous tracking position is the smallest among the areas determined to be effective by the pseudo target determining means. With the provision, the target can be tracked even when the target and the pseudo target are imaged close to each other.

【0039】さらに別の実施例によれば、二値画像の各
領域の最大輝度を与える位置と重心位置との距離を計測
するとともに、各領域の面積値を計測し、前記の距離を
面積値で除算した正規化した距離を求め、正規化した距
離が小さい領域を疑似目標とみなして無効と判定する正
規化距離判定手段を設け、正規化距離判定手段で有効と
判定された領域の内で領域の重心位置と前回の追尾位置
の誤差が最小となる領域を目標として選択する有意目標
選択手段を備えたことにより、目標と疑似目標が近接し
て撮像された場合においても目標を追尾することができ
る。
According to still another embodiment, the distance between the position giving the maximum brightness and the position of the center of gravity of each region of the binary image is measured, the area value of each region is measured, and the distance is calculated as the area value. The normalized distance obtained by dividing by, the normalized distance determining means that regards the area with a small normalized distance as a pseudo target and determines that it is invalid is provided, and within the area determined to be valid by the normalized distance determining means. Tracking the target even when the target and the pseudo target are imaged close to each other by providing the significant target selection means for selecting the region where the error between the center of gravity of the region and the previous tracking position is the minimum as the target. You can

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明による画像追尾装置の第1の実施例を
示す構成図である。
FIG. 1 is a configuration diagram showing a first embodiment of an image tracking device according to the present invention.

【図2】この発明による画像追尾装置の第2の実施例を
示す構成図である。
FIG. 2 is a configuration diagram showing a second embodiment of the image tracking device according to the present invention.

【図3】この発明による画像追尾装置の第3の実施例を
示す構成図である。
FIG. 3 is a configuration diagram showing a third embodiment of an image tracking device according to the present invention.

【図4】目標と疑似目標の輝度ヒストグラムを示す構成
図である。
FIG. 4 is a configuration diagram showing a luminance histogram of a target and a pseudo target.

【図5】最大輝度判定手段の動作の説明を示す流れ図で
ある。
FIG. 5 is a flowchart showing an explanation of the operation of the maximum brightness determining means.

【図6】輝度差判定手段の動作の説明を示す流れ図であ
る。
FIG. 6 is a flowchart showing the operation of the brightness difference determination means.

【図7】疑似目標判定手段の動作の説明を示す流れ図で
ある。
FIG. 7 is a flowchart showing the operation of the pseudo target determination means.

【図8】正規化距離判定手段の動作の説明を示す流れ図
である。
FIG. 8 is a flowchart showing the operation of the normalized distance determination means.

【図9】目標と疑似目標の輝度の分布を説明するための
図である。
FIG. 9 is a diagram for explaining a distribution of luminance of a target and a pseudo target.

【図10】従来の画像追尾装置を示す構成図である。FIG. 10 is a configuration diagram showing a conventional image tracking device.

【図11】撮像機の与える濃淡画像を示す図である。FIG. 11 is a diagram showing a grayscale image provided by the image pickup device.

【図12】従来の画像追尾装置の動作説明するための図
である。
FIG. 12 is a diagram for explaining the operation of a conventional image tracking device.

【符号の説明】[Explanation of symbols]

7 領域毎平均輝度計測手段 8 領域毎最大輝度計測手段 9 輝度差計測手段 10 最大輝度判定手段 11 輝度差判定手段 12 有意目標選択手段 20 領域毎面積値計測手段 21 領域毎輝度標準偏差計測手段 22 疑似目標判定手段 27 領域毎最大輝度位置計測手段 28 距離計測手段 29 正規化距離判定手段 7 Average brightness measurement means for each area 8 Maximum brightness measurement means for each area 9 Brightness difference measurement means 10 Maximum brightness determination means 11 Brightness difference determination means 12 Significant target selection means 20 Area value measurement means for each area 21 Brightness standard deviation measurement means for each area 22 Pseudo target determining means 27 Maximum brightness position measuring means for each area 28 Distance measuring means 29 Normalized distance determining means

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 撮像機から画像信号を得て、画像信号を
二値化処理することによって得られた画面中の領域から
有意な領域を目標として選択してその領域の重心位置を
追尾位置として出力し追尾する画像追尾装置において、
画像信号を二値化する二値化手段と、前記の二値化手段
によって得られた領域毎の重心位置を計測する領域毎重
心位置計測手段と、前記の領域毎重心位置計測手段の出
力する重心位置と前回の追尾位置との誤差を計測する重
心誤差計測手段と、領域毎の平均輝度を計測する領域毎
平均輝度計測手段と、領域毎の最大輝度を計測する領域
毎最大輝度計測手段と、前記の領域毎平均輝度計測手段
の出力と前記の領域毎最大輝度計測手段の出力との輝度
差を計測する輝度差計測手段と、前記の領域毎最大輝度
計測手段の出力を受けて最大輝度が基準値以上の領域と
基準値未満の領域とを判定する最大輝度判定手段と、前
記の最大輝度判定手段で最大輝度が基準値以上と判定さ
れた領域の内で前記の輝度差計測手段の輝度差出力が基
準値未満である領域を疑似目標であると判定する輝度差
判定手段と、前記の重心誤差計測手段の出力と前記の輝
度差判定手段の出力を判定し最も有意な領域を目標とし
て選択する有意目標選択手段を備えたことを特徴とする
画像追尾装置。
1. A significant region is selected as a target from a region in a screen obtained by obtaining an image signal from an image pickup device and binarizing the image signal, and a barycentric position of the region is set as a tracking position. In the image tracking device that outputs and tracks,
The binarizing means for binarizing the image signal, the region-by-region centroid position measuring means for measuring the region-by-region centroid position obtained by the binarizing means, and the region-by-region centroid position measuring means output. A center-of-gravity error measuring unit that measures the error between the center-of-gravity position and the previous tracking position, an average brightness measuring unit for each region that measures the average brightness of each region, and a maximum brightness measuring unit that measures the maximum brightness of each region. A brightness difference measuring means for measuring a brightness difference between the output of the area average brightness measuring means and the area maximum brightness measuring means, and the maximum brightness by receiving the area maximum brightness measuring means output. Is a maximum brightness determining means for determining an area having a reference value or more and an area less than the reference value, and the brightness difference measuring means of the area having the maximum brightness determined by the maximum brightness determining means as a reference value or more. If the brightness difference output is less than the reference value And a significant target selecting unit that determines the output of the center-of-gravity error measuring unit and the output of the luminance difference determining unit and selects the most significant region as a target. An image tracking device characterized by the above.
【請求項2】 画像信号を二値化する二値化手段と、前
記の二値化手段によって得られた領域毎の重心位置を計
測する領域毎重心位置計測手段と、前記の領域毎重心位
置計測手段の出力する重心位置と前回の追尾位置との誤
差を計測する重心誤差計測手段と、領域毎の輝度標準偏
差を計測する領域毎輝度標準偏差計測手段と、領域毎の
面積値を計測する領域毎面積値計測手段と、前記の領域
毎輝度標準偏差計測手段の出力と前記の領域毎面積値計
測手段の出力から疑似目標である領域を判定する疑似目
標判定手段と、前記の重心誤差計測手段の出力と前記疑
似目標判定手段の出力とから判定し最も有意な領域を目
標として選択する有意目標選択手段を備えたことを特徴
とする請求項1記載の画像追尾装置。
2. A binarizing unit for binarizing an image signal, a region-by-region centroid position measuring unit for measuring the region-by-region centroid position obtained by the binarizing unit, and the region-by-region centroid position. A center-of-gravity error measuring unit that measures an error between the center-of-gravity position output by the measuring unit and the previous tracking position, a region-standard luminance standard deviation measuring unit that measures the luminance standard deviation of each region, and an area value of each region are measured. Area-by-area area value measuring means, pseudo-target determining means for determining an area that is a pseudo-target from the output of the area-by-area luminance standard deviation measuring means, and the output of the area-by-area area value measuring means, and the centroid error measurement 2. The image tracking apparatus according to claim 1, further comprising a significant target selecting unit that determines the most significant region as a target by judging from the output of the unit and the output of the pseudo target determining unit.
【請求項3】 画像信号を二値化する二値化手段と、前
記の二値化手段によって得られた領域毎の重心位置を計
測する領域毎重心位置計測手段と、前記の領域毎重心位
置計測手段の出力する重心位置と前回の追尾位置との誤
差を計測する重心誤差計測手段と、領域毎の最大輝度を
与える位置を計測する領域毎最大輝度位置計測手段と、
領域毎の面積値を計測する領域毎面積値計測手段と、前
記の領域毎最大輝度位置計測手段の出力する最大輝度位
置と領域毎の重心位置との距離を計測する距離計測手段
と、前記の領域毎面積値計測手段と前記の距離計測手段
の出力とから面積値を基に正規化した距離を求めてその
値により疑似目標である領域を判定する正規化距離判定
手段と、前記の重心誤差計測手段の出力と前記の正規化
距離判定手段の出力とから判定し最も有意な領域を目標
として選択する有意目標選択手段を備えたことを特徴と
する請求項1記載の画像追尾装置。
3. A binarizing unit for binarizing an image signal, a region-by-region centroid position measuring unit for measuring the region-by-region centroid position obtained by the binarizing unit, and the region-by-region centroid position. A center-of-gravity error measuring means for measuring an error between the center-of-gravity position output by the measuring means and a previous tracking position, and a maximum-brightness position measuring means for each area for measuring a position providing maximum brightness for each area,
An area value measuring means for each area for measuring an area value for each area, a distance measuring means for measuring the distance between the maximum brightness position output by the maximum brightness position measuring means for each area and the barycentric position for each area, Normalized distance determining means for determining a normalized distance based on the area value from the area value measuring means for each area and the output of the distance measuring means, and the center of gravity error 2. The image tracking device according to claim 1, further comprising a significant target selecting unit that determines from the output of the measuring unit and the output of the normalized distance determining unit to select the most significant region as a target.
JP4329439A 1992-12-09 1992-12-09 Image tracking device Pending JPH06174818A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4329439A JPH06174818A (en) 1992-12-09 1992-12-09 Image tracking device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4329439A JPH06174818A (en) 1992-12-09 1992-12-09 Image tracking device

Publications (1)

Publication Number Publication Date
JPH06174818A true JPH06174818A (en) 1994-06-24

Family

ID=18221388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4329439A Pending JPH06174818A (en) 1992-12-09 1992-12-09 Image tracking device

Country Status (1)

Country Link
JP (1) JPH06174818A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008267872A (en) * 2007-04-17 2008-11-06 Toshiba Corp Image guide device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008267872A (en) * 2007-04-17 2008-11-06 Toshiba Corp Image guide device

Similar Documents

Publication Publication Date Title
JP4933689B2 (en) Measurement mark evaluation method, object surveying method, and measurement mark
JP2003500780A (en) Pixel Classification Based on Accuracy in Object Inspection
JP3409538B2 (en) Human body detection device
JPH11278182A (en) Fog status detection device for vehicle
JPH06174818A (en) Image tracking device
JP3216385B2 (en) Target detection and tracking device
JP2693586B2 (en) Image identification / tracking device
JP3957495B2 (en) Image sensor
JPH08159712A (en) Pattern recognition method
JPH09178427A (en) Image position measuring method
JP3755319B2 (en) Main subject detection device and apparatus using the same
JPH10213639A (en) Target tracking device
JPH05298594A (en) Image type vehicle sensoring method
JPH11183621A (en) Detecting apparatus for image target
JP3915753B2 (en) Image detection device
JP4194718B2 (en) Spot light position detection system, simulator, and information storage medium
JP2000222588A (en) Image target detecting device
JP2000341704A (en) Device for detecting target position of color image
JPH08189894A (en) Road surface state sensing device
JPH06121317A (en) Picture target detector
JPH0559547U (en) Image target detection device
JPH0980142A (en) Image tracking apparatus
CN114088000A (en) Molten steel liquid level distance determining method, system, equipment and medium
JPH09271014A (en) Moving object recognizing device
CN116664473A (en) Screw hole detection method, device, equipment and storage medium