JPH06174689A - Method of extracting characteristic of taste - Google Patents

Method of extracting characteristic of taste

Info

Publication number
JPH06174689A
JPH06174689A JP4350498A JP35049892A JPH06174689A JP H06174689 A JPH06174689 A JP H06174689A JP 4350498 A JP4350498 A JP 4350498A JP 35049892 A JP35049892 A JP 35049892A JP H06174689 A JPH06174689 A JP H06174689A
Authority
JP
Japan
Prior art keywords
measured
principal component
taste
component analysis
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4350498A
Other languages
Japanese (ja)
Other versions
JP3390194B2 (en
Inventor
Shigechika Kawarai
茂義 河原井
Naohiro Otsuka
尚宏 大塚
Hidekazu Ikezaki
秀和 池崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anritsu Corp
Original Assignee
Anritsu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anritsu Corp filed Critical Anritsu Corp
Priority to JP35049892A priority Critical patent/JP3390194B2/en
Publication of JPH06174689A publication Critical patent/JPH06174689A/en
Application granted granted Critical
Publication of JP3390194B2 publication Critical patent/JP3390194B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To easily grasp the difference of tastes by performing a principal component analysis of much data which is obtained by measuring a plurality of solutions to be measured by means of a taste sensor having a plurality of fat membranes. CONSTITUTION:Substantial tastes contributing to the difference of tastes among identical foods are two or three. Data related to tastes of a plurality of solutions to be measured 11- are measured by utilizing a multichannel type taste sensor having a plurality of fat membranes (14-1)-(14-8) by each channel. An electric signal from each fat membrane 14 is operated by a microcomputer 22. The microcomputer performs a principal component analysis of the data, that is, many values of related variables are indicated with a few synthetic variables to determine components which form first, second and third axes. On a plane determined by the first, second and third axes, solutions 11- are defined on the basis of the data converted in the principal component analysis process. Thereby, it is possible to easily grasp the difference of tastes of each solution.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、人間の五感の一つで
ある味覚を代行できるようにしたセンサを利用して、こ
れまで人工のセンサによる測定が困難であった飲食物の
味の違いを検出し、測定できるようにする技術に関す
る。食品例えば飲食に供する飲料水、酒類などの味の違
い、味の差とでもいうべきものを検出する技術を提供す
るものであるから、飲料水や酒類の生産工場において、
その品質管理を、人手によらず機械装置によって行うこ
とができるようにする技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention utilizes a sensor capable of substituting one of the five senses of human beings, the difference in taste of food and drink, which has been difficult to measure with an artificial sensor. The present invention relates to a technology that enables detection and measurement of. Food such as drinking water to be eaten and drink, the difference in taste such as alcoholic beverages, because it is to provide a technique for detecting what should be said the difference in taste, in the production plant of drinking water and liquor,
The present invention relates to a technology that enables quality control to be performed by a mechanical device without manual labor.

【0002】[0002]

【用語の意味】味の基本要素として、塩味、甘味、苦
味、酸味、うま味があると言われていて、それぞれに程
度の大小があるものとされている。人間の感覚で評価で
きるこれらの味の違いは、あるいは、塩味なら塩味につ
いての(同種の)味の違いは、物理的に計測可能な量と
して把握できるものとし、計測可能な味または味の違い
(比較又は対比的な味)をここでは「アジ」と称するこ
ととする。
[Meaning of terms] It is said that there are salt, sweetness, bitterness, sourness, and umami as basic elements of taste, and it is said that each has a different degree. These taste differences that can be evaluated by the human sense, or saltiness (similar kind) differences in saltiness, can be grasped as a physically measurable amount, and the measurable taste or taste difference. (Comparative or contrasting taste) is referred to herein as "horse mackerel".

【0003】[0003]

【従来の技術】従来は、例えば特開昭62−187252号公報
にあるように複数の味覚センサの出力値から測定対象物
における各原味(基本味)成分すなわち選択された呈味
物質の濃度を算出し、各濃度値を人の味覚に合った各原
味の強さを表す値に補正することでアジを測定してい
た。しかし、前記公報にいう味覚センサとは各基本味を
呈する物質を選択的に検出する化学センサまたは物理セ
ンサであり、具体的には塩味は食塩濃度計で、酸味は水
素イオン指数計で、甘味は測定対象物の液体の屈折率を
利用した糖度計であった。これらのセンサは選択的であ
るから例えば塩味の強さを測定しようとしている食塩濃
度計は食塩の濃度の測定はできるが、塩味を呈する他の
物質の濃度は測定できず、人の味覚に合うように補正す
るといっても限界があった。色に例えてこれをいえば、
単一の色しか検知しないセンサを用いてカラーの結果を
得ようとするようなものであった。
2. Description of the Related Art Conventionally, for example, as disclosed in Japanese Unexamined Patent Publication No. 62-187252, the original taste (basic taste) component in a measurement object, that is, the concentration of a selected taste substance is determined from the output values of a plurality of taste sensors. The horse mackerel was measured by calculating and correcting each concentration value to a value representing the strength of each original taste that matches the taste of a person. However, the taste sensor referred to in the above publication is a chemical sensor or a physical sensor that selectively detects a substance exhibiting each basic taste. Specifically, saltiness is a salt concentration meter, acidity is a hydrogen ion index meter, and sweetness is sweetness. Was a sugar meter utilizing the refractive index of the liquid to be measured. Since these sensors are selective, for example, a salt concentration meter that is trying to measure the strength of saltiness can measure the concentration of salt, but it cannot measure the concentration of other substances that have a salty taste and is suitable for human taste. There was a limit to how to correct it. If you compare this to color,
It was like trying to obtain color results using a sensor that only detects a single color.

【0004】本願出願人は共同出願人と共に、さきに
「味覚センサ及びその製造方法」について特許出願をす
ませた(特願平1−190819号)。この出願の明細書及び
図面には、疎水性の部分と、親水性の部分とをもつ分子
で成る脂質性物質を、高分子のマトリックス内に定着さ
せ、その表面に脂質性分子の親水性部分が整列するよう
な構造をもつ脂質性分子膜が、アジのセンサすなわち、
人間の味覚に代わりうる味覚センサとなることを示し
た。
The applicant of the present application, together with the joint applicant, has already filed a patent application for "taste sensor and its manufacturing method" (Japanese Patent Application No. 1-190819). In the specification and drawings of this application, a lipid substance composed of a molecule having a hydrophobic portion and a hydrophilic portion is fixed in a polymer matrix, and the hydrophilic portion of the lipid molecule is attached to the surface of the substance. The lipidic molecular film with a structure that aligns the
It has been shown that it can serve as a taste sensor that can replace the human taste.

【0005】前記脂質性分子膜の膜式図を、化学物の設
計法で使われている表現方法で表わしたものが図4であ
る。脂質性分子のうち円で示した球状部は親水基aすな
わち親水性部位aであり、それから原子配列が長く延び
る炭化水素の鎖構造b(例えばアルキル基)がある。図
ではいずれの場合も2本の鎖が延びて一つの分子を表わ
しており、全体で分子群を構成している。この炭化水素
の鎖の部分は、疎水性部位bである。このような脂質性
分子群31が、膜部材32の表面のマトリックス33(表面の
構造、平面的なひろがりをもったミクロな構造)の中
に、一部はマトリックス内部に溶け込ませた形(例えば
図4の31′)で収容されている。その収容のされ方は、
親水性部位が表面に配列するようなものとなっている。
FIG. 4 is a diagram showing the membrane formula of the lipidic molecular membrane by the expression method used in the method of designing chemical substances. The spherical portion indicated by a circle in the lipidic molecule is a hydrophilic group a, that is, a hydrophilic portion a, and has a hydrocarbon chain structure b (for example, an alkyl group) from which the atomic arrangement extends long. In each figure, two chains extend in each case to represent one molecule, and the whole constitutes a molecule group. The portion of this hydrocarbon chain is the hydrophobic site b. Such a lipid molecule group 31 is partly dissolved in the matrix 33 (surface structure, microscopic structure having a planar spread) on the surface of the membrane member 32 (eg It is accommodated at 31 ') in FIG. The way it is stored is
The hydrophilic parts are arranged on the surface.

【0006】この脂質性分子膜を用いて、マルチチャン
ネルの味覚センサとしたものが図5(a),(b) である。本
図ではマルチチャンネルのアレイ電極のうち三つの感応
部が示されている。図示の例では、基材に 0.5mmφの孔
を貫通して、それに銀の丸棒を差し込み電極とした。脂
質性分子膜は緩衝層を介して電極に接触するように基材
に張りつけている。
FIGS. 5 (a) and 5 (b) show a multi-channel taste sensor using this lipidic molecular film. In this figure, three sensitive parts of the multi-channel array electrode are shown. In the illustrated example, a 0.5 mmφ hole was penetrated through the base material, and a silver rod was inserted into the hole to form an electrode. The lipidic molecular film is attached to the substrate so as to contact the electrode via the buffer layer.

【0007】前記マルチチャンネルの味覚センサを用い
たアジの測定系を図6に示す。呈味物質の水溶液を作
り、それを被測定溶液11とし、ビーカーのような容器12
に入れる。被測定溶液中に、前に述べたような、アクリ
ル板(基材)上に脂質膜と電極とを配置して作った味覚
センサアレイ13を入れた。使用前に、塩化カリウム 1m
mole/l 水溶液で電極電位を安定化した。図中、14−
1,……14−8は各々の脂質膜を黒点で示したものであ
る。測定の基準となる電位を発生する電極として参照電
極15を用意し、それを被測定溶液に入れる。味覚センサ
アレイ13と参照電極15とは所定の距離を隔てて設置す
る。参照電極15の表面には、緩衝層16として、塩化カリ
ウム 100m mole/l を寒天で固化したもので覆ってある
から、結局、電極系は銀2|塩化銀4|脂質膜3(14)|
被測定溶液12|緩衝層(塩化カリウム 100m mole/l )
16|塩化銀4|銀2という構成となっている。
FIG. 6 shows a horse mackerel measuring system using the multi-channel taste sensor. Make an aqueous solution of the taste substance, use it as the solution to be measured 11, and put it in a container 12 such as a beaker.
Put in. The taste sensor array 13 prepared by arranging the lipid film and the electrode on the acrylic plate (base material) as described above was put in the solution to be measured. 1m potassium chloride before use
The electrode potential was stabilized with a mole / l aqueous solution. 14- in the figure
1, ... 14-8 are the lipid membranes shown by black dots. A reference electrode 15 is prepared as an electrode that generates an electric potential that serves as a reference for measurement, and the reference electrode 15 is placed in the solution to be measured. The taste sensor array 13 and the reference electrode 15 are installed at a predetermined distance. The surface of the reference electrode 15 is covered with 100 m mole / l of potassium chloride solidified with agar as the buffer layer 16, so that the electrode system is eventually silver 2 | silver chloride 4 | lipid membrane 3 (14) |
Solution to be measured 12 | Buffer layer (potassium chloride 100m mole / l)
16 | Silver chloride 4 | Silver 2

【0008】脂質膜からの電気信号は、図では8チャン
ネルの信号となり、リード線17−1,……,17−8によ
ってそれぞれバッファ増幅器19−1,……,19−8に導
かれる。バッファ増幅器19の各出力は、アナログスイッ
チ(8チャンネル)20で選択されてA/D変換器21に加
えられる。参照電極15からの電気信号もリード線18を介
してA/D変換器21に加えられ、膜からの電位との差を
ディジタル信号に変換する。このディジタル信号はマイ
クロコンピュータ22で適当に処理され、またX−Yレコ
ーダ23で表示される。この例では、8チャンネルの味覚
センサが用いられ、各チャンネルは、人間の味覚を再現
できるような多くの味覚情報を得るために、それぞれ味
に対して異なる応答特性を持つ表1に示す脂質性分子膜
で構成されている。
The electric signal from the lipid membrane becomes a signal of 8 channels in the figure and is led to the buffer amplifiers 19-1, ..., 19-8 by the lead wires 17-1 ,. Each output of the buffer amplifier 19 is selected by the analog switch (8 channels) 20 and added to the A / D converter 21. The electric signal from the reference electrode 15 is also applied to the A / D converter 21 via the lead wire 18, and the difference from the potential from the membrane is converted into a digital signal. This digital signal is appropriately processed by the microcomputer 22 and displayed by the XY recorder 23. In this example, an 8-channel taste sensor is used, and each channel has different response characteristics to taste in order to obtain a large amount of taste information capable of reproducing the taste of human being. It is composed of a molecular film.

【0009】[0009]

【表1】 [Table 1]

【0010】また、本願出願人は共同出願人と共に、
「味覚センサおよびその製造方法」の特許出願もすませ
た(特願平3−020450号)。この出願の明細書及び図面
で先の出願(特願平1−190819号)よりさらに人の味覚
器官に近い分子膜を示した。そして、この分子膜の材料
として親水基と疎水基とを有する両親媒性物質(脂質も
含まれる)と呼ばれるものあるいはアルカロイド等の苦
味物質を利用可能な分子膜の構造を示した。この構造
は、図7に示すように基板1に設けられたベース膜7に
両親媒性分子群36あるいは苦味物質の分子群36が円で示
される親水性の部位を外に向けて整列し、単分子膜を構
成している。
The applicant of the present application, together with the joint applicant,
We also filed a patent application for "Taste sensor and its manufacturing method" (Japanese Patent Application No. 3-020450). In the specification and drawings of this application, a molecular film closer to the human taste organ than the previous application (Japanese Patent Application No. 1-190819) is shown. Then, the structure of a molecular film in which a substance called an amphipathic substance having a hydrophilic group and a hydrophobic group (including a lipid) or a bitter substance such as an alkaloid is used as a material of the molecular film is shown. As shown in FIG. 7, the structure is such that the amphipathic molecule group 36 or the bitter substance molecule group 36 is aligned on the base film 7 provided on the substrate 1 with the hydrophilic portions indicated by circles facing outward, It constitutes a monolayer.

【0011】前記明細書にいう味覚センサは正に味覚セ
ンサであって、人の味覚器官である舌に近い物理化学的
性質を持ち、呈味物質が異なっても同様な味であれば同
様な出力が得られるし、異なる味に対してもなんらかの
出力がえられる。色に例えてこれをいえば、カラーで検
出できるセンサである。
The taste sensor referred to in the above specification is just a taste sensor, has physicochemical properties close to those of the tongue, which is the taste organ of humans, and has similar tastes even if the taste substances are different. You can get output, and you can get some output for different tastes. For example, this is a sensor that can detect color.

【0012】そして、これらの味覚センサによって得ら
れたデータから各被測定溶液のアジの違いを把握する場
合、例えば8チャンネルの味覚センサによって得られた
各被測定溶液のアジに関するデータは図3に示すように
チャンネルを横軸にとり、各チャンネルの各被測定溶液
に対する出力値を縦軸にとってプロットし、各被測定溶
液毎にプロットした点を結んで得られるパターンの形状
から、各被測定溶液間のアジの違いを把握するか、また
は、図8に示すようなレーダーチャートに表し、各被測
定溶液毎にプロットした点を結んで得られるパターンの
形状から、各被測定溶液間のアジの違いを把握するよう
にしていた。
When the difference in the horse mackerel of each solution to be measured is grasped from the data obtained by these taste sensors, the data relating to the horse mackerel of each solution to be measured obtained by, for example, an 8-channel taste sensor is shown in FIG. As shown in the figure, the horizontal axis is the channel, the output value for each measured solution of each channel is plotted on the vertical axis, and the shape of the pattern obtained by connecting the plotted points for each measured solution shows the distance between each measured solution. The difference in horse mackerel between each solution to be measured can be understood from the shape of the pattern obtained by grasping the difference in horse mackerel or by displaying points on a radar chart as shown in Fig. 8 and plotting points for each solution to be measured. Was trying to figure out.

【0013】[0013]

【発明が解決しようとする課題】従来のアジの把握の仕
方では、例えば8チャンネル(つまり8次元)のデータ
から被測定溶液のアジの遠い近いを直観的に把握するの
は極めて困難である。また、8次元のベクトル演算をし
て距離と方向を求めたとしても直観的に把握するのは極
めて困難である。さらに、センサ間の相関が強くて特徴
が埋もれてしまい、各被測定溶液のアジの違いが把握し
難いという問題もあった。
In the conventional method of grasping horse mackerel, it is extremely difficult to intuitively grasp the distance of the horse mackerel of the solution to be measured from the data of, for example, 8 channels (that is, 8 dimensions). In addition, it is extremely difficult to intuitively grasp even if the distance and the direction are obtained by performing an eight-dimensional vector operation. Further, there is a problem that the correlation between the sensors is strong and the characteristics are buried, and it is difficult to grasp the difference in horse mackerel between the solutions to be measured.

【0014】この発明の目的は、これらの問題を解決
し、脂質膜を用いた味覚センサ(従来の技術の項で述べ
たように、味覚センサの材料となり得るものは脂質だけ
でなく両親媒性物質や苦味物質にまで広がっているが、
以後、その代表として脂質膜で説明を進める。)による
アジの測定データから特徴を引き出して、各被測定溶液
のアジの違いが把握し易いアジの特徴抽出方法を提供す
ることである。
The object of the present invention is to solve these problems and to provide a taste sensor using a lipid membrane (as described in the section of the prior art, the materials that can be used for the taste sensor are not only lipids but also amphipathic substances). It has spread to substances and bitter substances,
The lipid membrane will be explained as a representative example. ) Is used to extract the characteristics from the horse mackerel measurement data, and to provide a method for extracting the horse mackerel characteristics that makes it easy to grasp the difference in the horse mackerel between the solutions to be measured.

【0015】[0015]

【課題を解決するための手段】前述のように味は5基本
味からなるとされている。そのうち同一の食品について
はそのアジの差に寄与している基本味は2つか3つであ
ることが多い。例えば、ビールでは、アジに寄与するの
は、苦味・うま味であり、これらに比べると塩味・甘味
・酸味は極めて弱い。
[Means for Solving the Problems] As mentioned above, the taste is said to consist of five basic tastes. Of the same foods, there are often two or three basic tastes that contribute to the difference in horse mackerel. For example, in beer, bitterness and umami contribute to horse mackerel, and saltiness, sweetness, and sourness are extremely weaker than these.

【0016】一方、味覚センサは用いられている脂質膜
によりアジに対する反応が異なり、しかも、一種類の脂
質膜が一種類のアジのみに反応するわけではない。そこ
で、複数の脂質膜を用いたマルチチャンネルタイプの味
覚センサを使用し、多くのデータからアジの違いを把握
しようとする。しかし、そのままのデータで比較するの
では、データの量が多く、直観的に把握するのが困難で
あり、また、サンプル間のアジの特徴が埋もれてしまう
ことがある。
On the other hand, in the taste sensor, the reaction with respect to horse mackerel differs depending on the lipid membrane used, and moreover, one kind of lipid film does not react with only one kind of horse mackerel. Therefore, we try to grasp the difference of horse mackerel from many data by using a multi-channel type taste sensor using multiple lipid membranes. However, if the data is compared as it is, the amount of data is large, it is difficult to intuitively grasp, and the characteristic of horse mackerel between samples may be buried.

【0017】そこで、各サンプルのアジの違いを最もよ
く表す成分に着目して、各サンプルを位置付ける方法を
とることとした。すなわち、複数種類の脂質膜を用いた
複数チャンネルを有する味覚センサを使用して複数の被
測定溶液のアジに関連するデータをそれぞれのチャンネ
ルについて測定する段階と、前記複数の被測定溶液をサ
ンプルとし前記複数のチャンネルを変量として、前記デ
ータを主成分分析して第1軸、第2軸、第3軸となる成
分を決定する段階と、第1軸と第2軸又は第3軸とで決
まる平面に、主成分分析の過程で変換されたデータに基
づいて前記被測定溶液を位置付ける段階とからなってい
る。
Therefore, the method of locating each sample was decided by focusing on the component that best represents the difference in horse mackerel between each sample. That is, using a taste sensor having a plurality of channels using a plurality of types of lipid membrane to measure the data related to the aji of a plurality of measured solutions for each channel, and the plurality of measured solutions as a sample The step of determining the components to be the first axis, the second axis, and the third axis by performing the principal component analysis of the data using the plurality of channels as variables, and the first axis and the second axis or the third axis. Positioning the solution to be measured on a plane based on the data converted in the process of principal component analysis.

【0018】また、マルチチャンネルタイプの味覚セン
サで得られる多くのデータの中には、ノイズとなるデー
タも含まれているので、サンプル毎の相関をとる前に、
チャンネル毎の相関をとって、寄与率の高いチャンネル
から選んでいき、寄与率の合計が例えば95%を越えた
ところまでのチャンネルのデータをサンプル毎の相関を
とるのに用いることとした。すなわち、複数種類の脂質
膜を用いた複数チャンネルを有する味覚センサを使用し
て複数の被測定溶液のアジに関連するデータをそれぞれ
のチャンネルについて測定する段階と、前記複数のチャ
ンネルをサンプルとし前記複数の被測定溶液を変量とし
て、前記データを主成分分析する段階と、前記主成分分
析の結果から前記複数のチャンネルから所望の複数のチ
ャンネルを選択する段階と、前記複数の被測定溶液をサ
ンプルとし前記選択された複数のチャンネルを変量とし
て、前記データを主成分分析して第1軸、第2軸、第3
軸となる成分を決定する段階と、第1軸と第2軸又は第
3軸とで決まる平面に、主成分分析の過程で変換された
データに基づいて前記被測定溶液を位置付ける段階とか
らなっている。
Further, since a lot of data obtained by the multi-channel type taste sensor also includes data that become noise, before taking correlation for each sample,
Correlation is performed for each channel, and a channel having a high contribution rate is selected, and the data of the channels up to a point where the total contribution rate exceeds 95% are used for obtaining the correlation for each sample. That is, using a taste sensor having a plurality of channels using a plurality of types of lipid membranes, measuring the data related to the azimuth of a plurality of solutions to be measured for each channel, and using the plurality of channels as a sample As a variable, the step of subjecting the data to principal component analysis, the step of selecting a desired plurality of channels from the plurality of channels from the result of the principal component analysis, and the plurality of subject solutions to be measured as samples. Using the selected plurality of channels as variables, principal component analysis of the data is performed to determine the first axis, the second axis, and the third axis.
The method comprises the steps of determining a component serving as an axis, and positioning the solution to be measured on a plane defined by the first axis and the second axis or the third axis based on the data converted in the process of principal component analysis. ing.

【0019】[0019]

【作用】第1の発明のアジの特徴抽出方法では、複数チ
ャンネルを有する味覚センサを使用して得られた複数の
被測定溶液のアジに関連するデータは主成分分析され、
その結果に基づいて各被測定溶液は2軸の平面または3
軸の空間に位置付けられる。被測定溶液を同種の食品に
限定すると基本味で2から3次元であるため、前記2軸
または3軸で各被測定溶液のアジの違いを十分表わせ
る。しかも2次元、3次元は、人にとって把握が容易で
ある。
In the feature extraction method for horse mackerel according to the first aspect of the present invention, principal component analysis is performed on data related to horse mackerel of a plurality of solutions to be measured obtained by using a taste sensor having a plurality of channels.
Based on the result, each solution to be measured is a biaxial plane or 3
It is located in the axial space. When the solutions to be measured are limited to foods of the same kind, the basic taste is two to three-dimensional, and thus the two or three axes can sufficiently express the difference in horse mackerel between the solutions to be measured. Moreover, two-dimensional and three-dimensional are easy for a person to grasp.

【0020】[0020]

【実施例】まず、主成分分析について説明する。主成分
分析とは、相関のある多くの変数の値を、小数個の合成
変量で表す方法である。その際、この合成変量の中にも
との変量の持っている情報をできるだけ多く含ませ、つ
まり、多くの変量をまとめ、現象を要約する1つの有効
な方法である。計算の過程の概略を以下に示す。センサ
i(p≧i≧1)の出力をvi、とくに被測定溶液jを
測った時の出力をvijとする。ここでは、変量をセン
サ、サンプルを被測定溶液とする。このデータから、セ
ンサ出力(vi)を線形変換して得られる合成変量Y
は、
EXAMPLE First, principal component analysis will be described. Principal component analysis is a method in which the values of many correlated variables are represented by decimal synthetic variables. At this time, this synthetic variable includes as much information as the original variable has, that is, it is an effective method of summarizing many variables and summarizing the phenomenon. The outline of the calculation process is shown below. The output of the sensor i (p ≧ i ≧ 1) is vi, and the output when the measured solution j is measured is vij. Here, the variable is the sensor and the sample is the solution to be measured. A composite variable Y obtained by linearly converting the sensor output (vi) from this data
Is

【0021】[0021]

【数1】 [Equation 1]

【0022】但し、However,

【0023】[0023]

【数2】 [Equation 2]

【0024】とする。このようにして作られた合成変量
Yは、p個のセンサ出力を十分に反映していなければな
らない。すなわち、各被測定溶液のちらばりの最も大き
い方向にその総合的指標を見つけだそうとするものであ
る。このことは、合成変量Yの分散を最大にすることに
帰着する。合成変量Yの分散V(Y)は、
It is assumed that The composite variable Y thus created must sufficiently reflect the outputs of p sensors. That is, the comprehensive index is to be found in the direction in which the scattering of each solution to be measured is the largest. This results in maximizing the variance of the composite variable Y. The variance V (Y) of the composite variable Y is

【0025】[0025]

【数3】 [Equation 3]

【0026】但し、a=(a1,a2,・・・、ap)
でaTはaの転置行列、mはサンプルの数、Sはこのデ
ータの変量(センサ)による分散共分散行列である。従
って、数1の制約のもとで数3を最大にするaiを求め
ることになる。このことは、行列S(分散共分散行列)
の固有値問題に帰着する。そして行列Sは、p個の固有
値(λ1≧λ2≧・・・・≧λp)を持ち、その中で、
数3を最大にする合成変換Y1は、最大固有値λ1に対
する固有ベクトルの要素を係数a1iとして、
However, a = (a1, a2, ..., ap)
Where aT is the transposed matrix of a, m is the number of samples, and S is the variance-covariance matrix due to the variable (sensor) of this data. Therefore, ai that maximizes Equation 3 is obtained under the constraint of Equation 1. This is the matrix S (variance covariance matrix)
Reduce to the eigenvalue problem of. The matrix S has p eigenvalues (λ1 ≧ λ2 ≧ ... ≧ λp), in which
The synthetic transformation Y1 that maximizes Equation 3 is such that the element of the eigenvector for the maximum eigenvalue λ1 is the coefficient a1i,

【0027】[0027]

【数4】 [Equation 4]

【0028】と表される。この合成変量Y1は第一主成
分と呼ばれる。この合成変量Y1の分散はλ1であり、
分散が最も大きい。従って、p個の変量(センサ)のデ
ータの情報を一番含む合成変量である。λjに対する固
有ベクトルの要素を係数として、
Is represented by This synthetic variable Y1 is called the first principal component. The variance of this composite variable Y1 is λ1,
Largest variance. Therefore, it is a synthetic variate that includes the information of p pieces of variates (sensors) most. Using the elements of the eigenvector for λj as coefficients,

【0029】[0029]

【数5】 [Equation 5]

【0030】とする。この合成変量Yjは第j主成分と
呼ばれ、分散がj番目に大きい。各主成分がもとのデー
タをどれくらい反映しているかの指標が寄与率Kjであ
る。一般に各主成分の分散は、その固有値λjで表され
るが、その総和は、もとの変量の分散の総和に等しい。
そこで、
It is assumed that This synthetic variable Yj is called the j-th principal component and has the j-th largest variance. An index of how much each principal component reflects the original data is the contribution rate Kj. In general, the variance of each principal component is represented by its eigenvalue λj, and its sum is equal to the sum of variances of the original variables.
Therefore,

【0031】[0031]

【数6】 [Equation 6]

【0032】と定める。また、第1から第j番目までの
寄与率の合計を累積寄与率と呼ぶ。ここで、12種の日
本酒について、16chの味覚センサで得たデータから
作成したレーダーチャートを図8に示す。さらに、同じ
データを主成分分析した結果を図9に示す。ここでは、
純米酒と醸造酒の識別について考える。純米酒とは、米
からのみ作られた酒で、醸造酒とは醸造用アルコール等
を添加して作られた酒である。純米酒は1、2、3、
7、10、11の酒で、他は醸造酒である。純米酒を黒
丸、醸造酒を白丸で表す。図8のレーダーチャートで
は、2者の違いを識別することは難しい。しかし、主成
分分析では、醸造酒のグループは図の中央に固まってあ
り、識別は非常に簡単である。サンプルの数を増やして
いくと、ますます2者間の境界線の様子がわかり識別が
正確なものとなる。一方、レーダーチャートでは、サン
プルの数が増すほど、各々のパターンの種類が増し、パ
ターンの形から2者の判別をする事は、ますます難しく
なる。また、識別の境界が複雑な形をするほど、主成分
分析の効果は非常に大きいものとなる。サンプルの数を
ふやしてもサンプルを酒なら酒だけと限定すると、前に
述べたように、基本味の軸の数は2本か3本に限られて
いるため、主成分分析の結果も第2かせいぜい第3主成
分まで見ればよく、つまり、2次元か3次元で考えれば
よく理解し易い。
Defined as In addition, the total of the first to j-th contribution rates is called a cumulative contribution rate. Here, FIG. 8 shows a radar chart created from data obtained by the taste sensor of 16ch for 12 kinds of sake. Further, FIG. 9 shows the result of principal component analysis of the same data. here,
Think about the distinction between pure rice and brewed sake. Junmaishu is sake made only from rice, and brewed sake is sake made by adding brewing alcohol and the like. Junmaishu is 1, 2, 3,
7, 10 and 11 liquors, the other is brewed liquor. Pure rice sake is represented by black circles and brewed sake is represented by white circles. In the radar chart of FIG. 8, it is difficult to distinguish the difference between the two. However, in the principal component analysis, the brewed liquor group is centered in the center of the figure and is very easy to identify. As the number of samples increases, the state of the boundary line between the two becomes more apparent and the identification becomes more accurate. On the other hand, in the radar chart, as the number of samples increases, the type of each pattern increases, and it becomes more and more difficult to discriminate between the two from the shape of the pattern. Further, the more complicated the boundary of discrimination, the greater the effect of the principal component analysis. If we limit the number of samples to only liquor if it is liquor even if the number of samples is increased, the number of axes of basic taste is limited to 2 or 3 as described above, so the result of principal component analysis is also It is only necessary to look at the second principal component up to two degrees, that is, it is easy to understand if it is considered in two or three dimensions.

【0033】次に、12種の酒を変数とし、16chの
味覚センサをサンプルとして、味覚センサのチャンネル
間の特性の違いについて考える。主成分分析の結果を図
11に示す。図のなかでは、ch間が近い程、似た特性の
センサであり、逆に遠い程、異なった特性のセンサであ
る。図11から、1、2、3ch等を含む楕円で囲んだグ
ループと、4、13chのグループと、6chのグルー
プの3つに大きく分類されることが分かる。それぞれの
グループより、4ch,6ch,それらから遠い距離に
ある1chの3つを選ぶ。この3つのセンサを変数と
し、12種の日本酒をサンプルとして、主成分分析を行
う。この結果を図10に示す。16個のチャンネル全てを
使った場合(図9)と、上記3つのチャンネルを使った
場合(図10)を比べてみる。明らかに後者の方が、第2
主成分の寄与率が大きく情報を多く表現している。第
1、第2主成分の寄与率は、前者の場合、81.6%、
10.5%とほぼ第1主成分のみで表されているのに対
し、後者の場合、61.2%、27.0%と第2主成分
の寄与率が高い。それだけ、識別もしやすくなる。前者
の場合、16個のセンサの内、大部分のセンサの特性が
1chを含むグループに属しているため、このグループ
の特性のみで分析が行われていたため、第1主成分のみ
に情報が集中した。つまり、小数の他のグループのチャ
ンネルの持つ情報が無視され、1次元の情報しか無いと
評価される。しかし、味覚センサのチャンネルの特性を
前もって主成分分析で分析し、特性の違いから、チャン
ネルを選定してデータを主成分分析することでより、隠
れていた情報を引き出すことができる。ここでは、セン
サの出力値をそのまま扱ったが、規格化した後、主成分
分析を行うこにしてもよい。そのとき、センサのチャン
ネル毎で、測定誤差が大きく違う場合は、センサ出力を
測定誤差(繰り返しの標準偏差)で割り、出力値の誤差
の含まれる割合を一定にする。センサの感度が大きく違
う場合は、センサ出力をそのベクトル長で割って、ベク
トル長を1に規格化、つまり感度を一定にそろえる。
Next, using 12 kinds of liquor as variables and 16ch taste sensor as a sample, consider differences in characteristics between channels of the taste sensor. Figure of results of principal component analysis
Shown in 11. In the figure, the closer the channels are, the more similar the sensor is, and the farther the channel is, the more different the sensor is. It can be seen from FIG. 11 that the groups are broadly classified into three groups: a group surrounded by ellipses including 1, 2, 3 channels, etc., a group of 4, 13 channels, and a group of 6 channels. From each group, select 4ch, 6ch, and 1ch far from them. Principal component analysis is performed using these three sensors as variables and 12 kinds of sake as samples. The result is shown in FIG. Compare the case of using all 16 channels (Fig. 9) and the case of using the above three channels (Fig. 10). Obviously the latter is the second
The contribution rate of the main component is large and represents a lot of information. In the former case, the contribution ratios of the first and second principal components are 81.6%,
While 10.5% is represented by only the first main component, in the latter case, the contribution ratio of the second main component is high at 61.2% and 27.0%. The more that is, the easier it is to identify. In the former case, the characteristics of most of the 16 sensors belong to the group including 1ch, so the analysis was performed only with the characteristics of this group, so the information concentrates only on the first principal component. did. In other words, it is evaluated that the information held by a small number of channels of other groups is ignored and that there is only one-dimensional information. However, it is possible to extract hidden information by analyzing the characteristics of the channels of the taste sensor by the principal component analysis in advance and selecting the channels and principal component analysis of the data based on the difference in the characteristics. Although the output value of the sensor is directly handled here, the principal component analysis may be performed after normalization. At this time, when the measurement error is largely different for each sensor channel, the sensor output is divided by the measurement error (standard deviation of repetition), and the ratio of the output value error is kept constant. If the sensitivities of the sensors are significantly different, the sensor output is divided by the vector length to standardize the vector length to 1, that is, the sensitivities are made constant.

【0034】[0034]

【発明の効果】第1の発明によれば、複数のチャンネル
を有する脂質膜を用いた味覚センサによるアジの測定デ
ータを主成分分析して、被測定溶液を2次元又は3次元
の空間に位置付けることとしたから、各被測定溶液のア
ジの違いが把握し易くなった。また、第2の発明によれ
ば、被測定溶液を2次元又は3次元の空間に位置付ける
ための主成分分析に先立ち、該主成分分析にどの味覚セ
ンサのデータを用いるかを決める、味覚センサをサンプ
ルとし、被測定溶液を変量とした主成分分析を行うこと
としたから、各被測定溶液のアジの違いがさらに把握し
易くなった。
According to the first aspect of the present invention, the measurement data of horse mackerel by the taste sensor using the lipid membrane having a plurality of channels is subjected to principal component analysis to position the solution to be measured in a two-dimensional or three-dimensional space. Therefore, it became easier to understand the difference in horse mackerel between the solutions to be measured. According to the second invention, a taste sensor for determining which taste sensor data is used for the principal component analysis prior to the principal component analysis for positioning the solution to be measured in the two-dimensional or three-dimensional space. Since it was decided to perform the principal component analysis using the sample solution as a variable as the sample, it became easier to understand the difference in horse mackerel between the sample solutions.

【図面の簡単な説明】[Brief description of drawings]

【図1】第1の発明のアジの特徴抽出方法を示す流れ
図。
FIG. 1 is a flowchart showing a horse mackerel feature extraction method of the first invention.

【図2】第2の発明のアジの特徴抽出方法を示す流れ
図。
FIG. 2 is a flowchart showing a horse mackerel feature extraction method of the second invention.

【図3】チャンネルを横軸にとったときのセンサの出力
パターンを示す図。
FIG. 3 is a diagram showing an output pattern of a sensor when channels are plotted on the horizontal axis.

【図4】脂質膜を化学物の設計法で使われている表現方
法で表した模式図。
FIG. 4 is a schematic diagram showing a lipid membrane by an expression method used in a chemical design method.

【図5】味覚センサの模式図であり、(a)は正面図、
(b)は断面図。
FIG. 5 is a schematic view of a taste sensor, (a) is a front view,
(B) is a sectional view.

【図6】アジの測定系を示す図。FIG. 6 is a diagram showing a horse mackerel measurement system.

【図7】単分子膜を化学物の設計法で使われている表現
方法で表した模式図。
FIG. 7 is a schematic diagram showing a monomolecular film by an expression method used in a chemical design method.

【図8】日本酒に対するセンサの出力をレーダーチャー
トに表した図。
FIG. 8 is a diagram showing the output of the sensor for sake on a radar chart.

【図9】1ch〜16chを変量に使い、日本酒に対す
る主成分分析結果を表した図。
FIG. 9 is a diagram showing a principal component analysis result for sake using 1 ch to 16 ch as variables.

【図10】1ch、4ch、6chのみを変量に使い、
日本酒に対する主成分分析結果を表した図。
FIG. 10: Only 1ch, 4ch, and 6ch are used for variables,
The figure showing the result of principal component analysis for sake.

【図11】日本酒を変量に、センサをサンプルにした時
の主成分分析の結果で、センサの特性の違いを表した
図。
FIG. 11 is a diagram showing a difference in sensor characteristics as a result of principal component analysis when sake is used as a variable and a sensor is used as a sample.

【符号の説明】[Explanation of symbols]

1 基材(基板) 2 電極 3 脂質膜 4 緩衝層 5 リード線 7 ベース膜 11 被測定溶液 12 容器 13 味覚センサアレイ 14 各々の脂質膜(黒点で示す) 15 参照電極 16 緩衝層 17 リード線 18 バッファ増幅器 20 アナログスイッチ 21 AD変換器 22 マイクロコンピュータ 23 XYレコーダ 24 接地電位 31 脂質性分子群 31′脂質性分子群 32 膜部材 33 マトリックス 36 両親媒性分子群または苦味物質の分子群 37 両親媒性分子または苦味物質の分子 1 Base Material (Substrate) 2 Electrode 3 Lipid Membrane 4 Buffer Layer 5 Lead Wire 7 Base Membrane 11 Solution to be Measured 12 Container 13 Taste Sensor Array 14 Each Lipid Membrane (Indicated by Black Point) 15 Reference Electrode 16 Buffer Layer 17 Lead Wire 18 Buffer amplifier 20 Analog switch 21 AD converter 22 Microcomputer 23 XY recorder 24 Ground potential 31 Lipid molecule group 31 'Lipid molecule group 32 Membrane member 33 Matrix 36 Amphiphile molecule group or bitter substance molecule group 37 Amphiphilic Molecule or molecule of bitter substance

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 複数種類の脂質膜を用いた複数チャンネ
ルを有する味覚センサを使用して複数の被測定溶液のア
ジに関連するデータをそれぞれのチャンネルについて測
定する段階と、前記複数の被測定溶液をサンプルとし前
記複数のチャンネルを変量として、前記データを主成分
分析して第1軸、第2軸、第3軸となる成分を決定する
段階と、第1軸と第2軸又は第3軸とで決まる平面に、
主成分分析の過程で変換されたデータに基づいて前記被
測定溶液を位置付ける段階とからなるアジの特徴抽出方
法。
1. A step of measuring, for each channel, data relating to aji of a plurality of solutions to be measured using a taste sensor having a plurality of channels using a plurality of types of lipid membranes, and the plurality of solutions to be measured. Using the plurality of channels as variables and principal component analysis of the data to determine the components to be the first axis, the second axis, and the third axis, and the first axis and the second axis or the third axis. On the plane determined by
A method for extracting a horse mackerel feature, which comprises the step of positioning the solution to be measured based on the data converted in the process of principal component analysis.
【請求項2】 複数種類の脂質膜を用いた複数チャンネ
ルを有する味覚センサを使用して複数の被測定溶液のア
ジに関連するデータをそれぞれのチャンネルについて測
定する段階と、前記複数のチャンネルをサンプルとし前
記複数の被測定溶液を変量として、前記データを主成分
分析する段階と、前記主成分分析の結果から前記複数の
チャンネルから所望の複数のチャンネルを選択する段階
と、前記複数の被測定溶液をサンプルとし前記選択され
た複数のチャンネルを変量として、前記データを主成分
分析して第1軸、第2軸、第3軸となる成分を決定する
段階と、第1軸と第2軸又は第3軸とで決まる平面に、
主成分分析の過程で変換されたデータに基づいて前記被
測定溶液を位置付ける段階とからなるアジの特徴抽出方
法。
2. A step of measuring data relating to aji of a plurality of solutions to be measured for each channel by using a taste sensor having a plurality of channels using a plurality of types of lipid membranes, and sampling the plurality of channels. And a plurality of solutions to be measured as a variable, a step of performing the principal component analysis of the data, a step of selecting a desired plurality of channels from the plurality of channels from the result of the principal component analysis, the plurality of solutions to be measured Using the selected plurality of channels as variables and performing principal component analysis on the data to determine the components to be the first axis, the second axis, and the third axis, and the first axis and the second axis, or On the plane determined by the third axis,
A method for extracting a horse mackerel feature, which comprises the step of positioning the solution to be measured based on the data converted in the process of principal component analysis.
JP35049892A 1992-12-02 1992-12-02 Horse mackerel feature extraction method Expired - Lifetime JP3390194B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35049892A JP3390194B2 (en) 1992-12-02 1992-12-02 Horse mackerel feature extraction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35049892A JP3390194B2 (en) 1992-12-02 1992-12-02 Horse mackerel feature extraction method

Publications (2)

Publication Number Publication Date
JPH06174689A true JPH06174689A (en) 1994-06-24
JP3390194B2 JP3390194B2 (en) 2003-03-24

Family

ID=18410903

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35049892A Expired - Lifetime JP3390194B2 (en) 1992-12-02 1992-12-02 Horse mackerel feature extraction method

Country Status (1)

Country Link
JP (1) JP3390194B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005109246A1 (en) * 2004-05-12 2005-11-17 Ajikaori Senryaku Kenkyusyo Co., Ltd. Sense database
WO2006126489A1 (en) * 2005-05-23 2006-11-30 Keio University Method of taste measuring, taste sensor therefor and taste measuring apparatus
US8137623B2 (en) 2006-06-07 2012-03-20 Shimadzu Corporation Taste analyzing apparatus
JP2022047369A (en) * 2020-09-11 2022-03-24 Tdk株式会社 Method for making sense-of-taste estimation model, sense-of-taste estimation system, and sense-of-taste estimation program
WO2023181595A1 (en) * 2022-03-22 2023-09-28 株式会社島津製作所 Taste information providing method and program

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5164046B2 (en) * 2009-02-25 2013-03-13 有限会社エフ・テイ・イノベーション Identification of non-edible substances by taste and energy

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005109246A1 (en) * 2004-05-12 2005-11-17 Ajikaori Senryaku Kenkyusyo Co., Ltd. Sense database
JPWO2005109246A1 (en) * 2004-05-12 2008-03-21 株式会社味香り戦略研究所 Sensory database
US7827189B2 (en) 2004-05-12 2010-11-02 Ajikaori Senryaku Kenkyusyo Co., Ltd. Sense database
WO2006126489A1 (en) * 2005-05-23 2006-11-30 Keio University Method of taste measuring, taste sensor therefor and taste measuring apparatus
US7899765B2 (en) 2005-05-23 2011-03-01 Keio University Method of measuring taste using two phase radial basis function neural networks, a taste sensor, and a taste measuring apparatus
US8137623B2 (en) 2006-06-07 2012-03-20 Shimadzu Corporation Taste analyzing apparatus
JP2022047369A (en) * 2020-09-11 2022-03-24 Tdk株式会社 Method for making sense-of-taste estimation model, sense-of-taste estimation system, and sense-of-taste estimation program
WO2023181595A1 (en) * 2022-03-22 2023-09-28 株式会社島津製作所 Taste information providing method and program

Also Published As

Publication number Publication date
JP3390194B2 (en) 2003-03-24

Similar Documents

Publication Publication Date Title
Ciosek et al. Classification of beverages using a reduced sensor array
Vlasov et al. Nonspecific sensor arrays (" electronic tongue") for chemical analysis of liquids (IUPAC Technical Report)
Gok et al. Differentiation of Anatolian honey samples from different botanical origins by ATR-FTIR spectroscopy using multivariate analysis
Legin et al. Application of electronic tongue for quantitative analysis of mineral water and wine
Legin et al. Evaluation of Italian wine by the electronic tongue: recognition, quantitative analysis and correlation with human sensory perception
Ciosek et al. Electronic tongue for flow-through analysis of beverages
CN104698044A (en) Electronic tongue for food detection
Lu et al. Visualized attribute analysis approach for characterization and quantification of rice taste flavor using electronic tongue
CN103649731A (en) Testing apparatus
CN108875913A (en) A kind of matsutake Fast nondestructive evaluation system and method based on convolutional neural networks
EP0763729B1 (en) Method of determining taste with gustatory sensor made from molecular membrane
Ren et al. Estimation of Congou black tea quality by an electronic tongue technology combined with multivariate analysis
Ciosek et al. Potentiometric electronic tongue based on integrated array of microelectrodes
CN110702815A (en) Olfactory sensing detection method for flour storage quality
JP3390194B2 (en) Horse mackerel feature extraction method
CN105954412A (en) Sensor array optimization method for Carya cathayensis freshness detection
JP3037971B2 (en) Horse mackerel detection method
Anthony et al. Electronic honey quality analyser
Tian et al. Discrimination of red wine age using voltammetric electronic tongue based on multifrequency large-amplitude voltammetry and pattern recognition method
JP2022047369A (en) Method for making sense-of-taste estimation model, sense-of-taste estimation system, and sense-of-taste estimation program
Sarkar et al. Taste recognizer by multi sensor electronic tongue: a case study with tea quality classification
Brodnicka et al. Potentiometric sensor with lipid-polymer membranes for quality assessment of French red wines
JP3769095B2 (en) Aji detection method
JPH0599896A (en) Measuring method for taste
CN109900685B (en) Array sensor for detecting pesticide residues and preparation method and application thereof

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090117

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090117

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100117

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110117

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120117

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130117

Year of fee payment: 10

EXPY Cancellation because of completion of term