JPH06174207A - Combustion furnace and combustion method - Google Patents

Combustion furnace and combustion method

Info

Publication number
JPH06174207A
JPH06174207A JP4769991A JP4769991A JPH06174207A JP H06174207 A JPH06174207 A JP H06174207A JP 4769991 A JP4769991 A JP 4769991A JP 4769991 A JP4769991 A JP 4769991A JP H06174207 A JPH06174207 A JP H06174207A
Authority
JP
Japan
Prior art keywords
air
fuel
combustion
supply port
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4769991A
Other languages
Japanese (ja)
Other versions
JP3259843B2 (en
Inventor
Ichiro Nakamachi
一郎 仲町
Hitoshi Kanazawa
仁 金澤
Kenji Koizumi
健司 小泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP04769991A priority Critical patent/JP3259843B2/en
Publication of JPH06174207A publication Critical patent/JPH06174207A/en
Application granted granted Critical
Publication of JP3259843B2 publication Critical patent/JP3259843B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To enable reducing to a low level the evolution of NOx at the time of the combustion of fuel relating to various kinds of combustion furnaces. CONSTITUTION:There are provided a fuel-feeding hole 4, a low-temperature-time air-feeding hole 7 in a manner of surrounding the fuel-feeding hole 4 with, and at least one air-feeding hole 3 on the outer side of and with some distance from the low-temperature-time air-feeding hole 7, all directly opening into the furnace, in a setup to eject air from the low-temperature-time air-feeding hole 7 for the combustion when the temperature is below the firing point of the fuel gas and to eject air from the air-feeding hole 3 at the periphery for the combustion subsequent to rise of the temperature above the firing point.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は鉄鋼加熱炉や金属溶解炉
などに適した窒素酸化物(以下NOX という)抑制のた
めの燃焼炉およびその燃焼方法に関する。
The present invention relates to a nitrogen oxides suitable for iron and steel furnaces and metal melting furnaces Combustion furnaces and the combustion method for (hereinafter referred to as NO X) suppressed.

【0002】[0002]

【従来の技術】最近、環境浄化のためにNOX 生成の低
減を図った燃焼方法が種々開発されている。
2. Description of the Related Art Recently, various combustion methods for reducing NO x production have been developed for environmental purification.

【0003】図5はその一例で、米国特許第 4357134号
に記載されているバーナである。図において、1は炉体
であり、2は炉内である。バーナは中心に燃料口4があ
り、その周囲に複数の空気口3が配置されている。空気
噴流により、燃料を吸引混合してバーナの燃焼室内5で
燃焼を行なう。この時空気噴流は同時に炉内の燃焼ガス
を吸引するために低酸素濃度燃焼となりNOX の生成が
抑制されるとしている。これを効果的に行なうための空
気口の配置、傾斜角度、噴出速度などが、発明の内容と
なっている。
FIG. 5 shows an example of such a burner described in US Pat. No. 4,357,134. In the figure, 1 is a furnace body and 2 is a furnace. The burner has a fuel port 4 at the center and a plurality of air ports 3 arranged around it. The air jet sucks and mixes the fuel to burn it in the combustion chamber 5 of the burner. At this time, the air jet simultaneously sucks the combustion gas in the furnace, so that the combustion becomes low in oxygen concentration and the generation of NO X is suppressed. The arrangement of the air port, the inclination angle, the ejection speed, and the like for effectively performing this are the contents of the invention.

【0004】しかし、この燃焼方法は、燃焼室5内の燃
焼であり、空気噴流により吸引される炉内2の燃焼ガス
量は燃焼室5の大きさで制限されてしまう。そして耐火
断熱材で構成される燃焼室5内での燃焼であるため、と
くにNOX の生成に重要な火炎基部では放熱がないた
め、火炎温度が高くなって、NOX がそれほど低下しな
いという問題がある。
However, this combustion method is combustion in the combustion chamber 5, and the amount of combustion gas in the furnace 2 sucked by the air jet is limited by the size of the combustion chamber 5. Further, since the combustion is performed in the combustion chamber 5 made of a refractory heat insulating material, there is no heat radiation at the flame base, which is particularly important for the generation of NO X , so the flame temperature rises and NO X does not decrease so much. There is.

【0005】この欠点を改良するために、本出願人は特
願平1−300103号において、図6(a)および
(b)に示すような炉内燃焼方法を提案した。
In order to remedy this drawback, the present applicant has proposed in Japanese Patent Application No. 1-300103 a furnace combustion method as shown in FIGS. 6 (a) and 6 (b).

【0006】図において、1は炉体であり、2は炉内で
ある。炉内2に空気供給口3と燃料供給口4を距離d1
隔て別々に開口する。更に、空気供給口3と炉内壁6と
の間も距離d2 だけ隔てる。このような構成にして、空
気供給口3と燃料供給口4から燃料と空気を炉内2に噴
射して、炉内2において図中矢印で示すように再循環流
を形成しながら燃焼させる。
In the figure, 1 is a furnace body and 2 is the inside of the furnace. A distance d 1 between the air supply port 3 and the fuel supply port 4 in the furnace 2
Open separately. Further, the air supply port 3 and the furnace inner wall 6 are also separated by a distance d 2 . With such a configuration, fuel and air are injected from the air supply port 3 and the fuel supply port 4 into the furnace 2 and are burned in the furnace 2 while forming a recirculation flow as indicated by an arrow in the figure.

【0007】[0007]

【発明が解決しようとする課題】しかしながら天然ガス
を燃焼させることを考えると、完全燃焼を行なうために
はガス量の10倍以上の空気量が必要であり、それぞれ
の噴出運動エネルギを比較すると空気の方が圧倒的に大
きい。従ってこの燃焼方法では、空気をバーナの中心に
位置する空気供給口3から噴出する際に、空気噴流の圧
倒的な運動エネルギのために、その外側にある燃料も吸
引して混合、燃焼してしまうため、空気とガスがそれぞ
れ炉内ガスと混合する量は少なく、従って、火炎温度が
あまり低下せず、NOX 濃度もそれほど低下しないとい
う問題がある。
However, in consideration of burning natural gas, an air amount of 10 times or more of the gas amount is required to perform complete combustion. Is overwhelmingly larger. Therefore, in this combustion method, when the air is ejected from the air supply port 3 located in the center of the burner, the fuel on the outside is also sucked, mixed and burned due to the overwhelming kinetic energy of the air jet. put away, the amount of air and gas are mixed with each furnace gas is small, therefore, it does not decrease the flame temperature is too, there is a problem that nO X concentration does not significantly decrease.

【0008】[0008]

【発明の目的】本発明は各種燃焼炉において燃料を燃焼
させる際に発生するNOX を、従来の燃焼方法に比較し
て、低いレベルに抑制することを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to suppress NO X generated when burning fuel in various combustion furnaces to a low level as compared with the conventional combustion method.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
に、本発明においては、バーナ燃焼室を持たず炉内に直
接燃料供給口を開口させ、該燃料供給口を取り囲むよう
に低温時用の第1の空気供給口と、該低温時用空気供給
口から外側に離間して少なくとも1つの第2の空気供給
口とを、炉内に直接開口するように設けたものである。
In order to achieve the above object, in the present invention, a fuel supply port is directly opened in the furnace without a burner combustion chamber, and the fuel supply port is surrounded by the fuel supply port at low temperature. The first air supply port and at least one second air supply port spaced apart from the low temperature air supply port are provided so as to be directly opened in the furnace.

【0010】[0010]

【作用】燃料供給口と空気供給口を直接炉内に開口さ
せ、さらに空気供給口を燃料供給口の外周に配置するこ
とにより、空気と燃料の噴流はバーナタイルのように炉
内燃焼ガスの吸引を制限するものがないために、燃料と
空気が混合する前に、各々が周囲の燃焼ガスを効率よく
大量に吸引し、酸素濃度の低い燃焼を行ない、低温の火
炎を形成する。また、その火炎は炉内で燃焼が開始さ
れ、形成されるために、燃焼の開始と同時に被加熱物へ
の放射伝熱が始まり、バーナタイルのような断熱空間で
燃焼する部分が全くないために、火炎温度の一層の低下
をもたらす。このようにして火炎温度を格段に低下させ
ることによりNOX を大幅に低減することができる。
[Function] By opening the fuel supply port and the air supply port directly in the furnace, and further arranging the air supply port on the outer periphery of the fuel supply port, the jet flow of air and the fuel flows like the burner tile in the furnace combustion gas. Since there is nothing to limit the suction, each of them efficiently sucks a large amount of the surrounding combustion gas before the fuel and the air are mixed, burns with a low oxygen concentration, and forms a low temperature flame. Also, since the flame starts to be burnt in the furnace and is formed, radiative heat transfer to the object to be heated starts at the same time as the start of combustion, and there is no part that burns in an adiabatic space such as burner tile. In addition, the flame temperature is further reduced. By significantly reducing the flame temperature in this way, NO X can be significantly reduced.

【0011】[0011]

【実施例】以下本発明を図面に基づいて説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the drawings.

【0012】図1は本発明による燃焼炉の実施例の軸断
面図、図2は図1の燃焼炉を矢印Aの方向から見た端面
図である。
FIG. 1 is an axial sectional view of an embodiment of a combustion furnace according to the present invention, and FIG. 2 is an end view of the combustion furnace shown in FIG.

【0013】図において、1は炉体、2は炉内であり、
このような構成において、空気供給口3と燃料供給口4
からそれぞれ空気と燃料ガスを炉内2に直接噴出し、炉
内2において図に矢印で示したように炉内燃焼ガスの再
循環流を形成し、それぞれが炉内燃焼ガスと混合してか
ら燃焼し、10のような炉壁から離れた位置に火炎を形
成する。炉内2の温度が安定した燃焼を行える温度以
下、例えば、750°C以下の低温時には、空気供給口
3への空気入口8に取り付けた切り換え弁9をAL 側に
空気が流入するように切り換えて燃料供給口4を取り囲
んだ低温時用空気供給口7から空気を噴出させて燃焼さ
せ、炉内2の温度が安定した燃焼を行なえる温度以上、
例えば750°C以上に達した時、切り換え弁9をAH
側に空気が流入するように切り換えて、燃焼を継続させ
る。なお、一例として切り換え弁9は、燃焼装置上に取
り付けたエアシリンダ(図示せず)により駆動させてい
る。
In the figure, 1 is a furnace body, 2 is a furnace,
In such a configuration, the air supply port 3 and the fuel supply port 4
Respectively, air and fuel gas are directly ejected into the furnace 2 to form a recirculation flow of the furnace combustion gas in the furnace 2 as shown by an arrow in the figure, and after each is mixed with the furnace combustion gas, It burns and forms a flame such as 10 away from the furnace wall. When the temperature inside the furnace 2 is lower than a temperature at which stable combustion is possible, for example, at a low temperature of 750 ° C. or lower, the switching valve 9 attached to the air inlet 8 to the air supply port 3 is set so that the air flows into the A L side. Air is jetted from the low-temperature air supply port 7 surrounding the fuel supply port 4 by switching to burn the fuel, and the temperature in the furnace 2 is higher than a temperature at which stable combustion can be performed.
For example, when the temperature reaches 750 ° C or higher, the switching valve 9 is set to A H.
The combustion is continued by switching the air flow to the side. As an example, the switching valve 9 is driven by an air cylinder (not shown) mounted on the combustion device.

【0014】従来例による燃焼方法と本発明による燃焼
方法とを燃料として天然ガスを用いた場合のNOX 濃度
の比較を第1表に示す。 第 1 表
Table 1 shows a comparison of NO x concentration when the conventional combustion method and the combustion method according to the present invention use natural gas as a fuel. Table 1

【0015】これによると、インプット熱量90×10
4 kcal/h、燃料ガス供給口を空気供給口の周囲に8本
設け、燃料ガスを軸方向に速度49m/sで噴出し、空
気供給口を中央に1本設け、空気を速度117m/sで
噴出した従来例では、NOXは55ppmとなる。一
方、燃料ガス供給口を中心に1本設けてそこから同じく
燃料ガスを軸方向にのみ噴出し、その外周に空気供給口
を8本設けて、燃料ガスと空気はさきほどと同じ速度で
噴出した本発明の場合では、NOX は約16%低減して
46ppmとなる。
According to this, the input heat quantity 90 × 10
4 kcal / h, 8 fuel gas supply ports are provided around the air supply port, fuel gas is ejected in the axial direction at a velocity of 49 m / s, one air supply port is provided in the center, and air is 117 m / s In the conventional example ejected at 1, NO x is 55 ppm. On the other hand, one fuel gas supply port was provided at the center, and the fuel gas was similarly ejected only in the axial direction from there, and eight air supply ports were provided at the outer periphery, and the fuel gas and air were ejected at the same speed as before. In the case of the present invention, NO x is reduced by about 16% to 46 ppm.

【0016】本実施例の燃焼炉は中心に設けた燃料供給
口4の周囲に6個の空気供給口3が同一の仮想円上に設
けてあり、この6個の空気供給口3が配置された仮想円
の直径(ピッチサークル径という)をφ(mm)とする
と、本発明者らは、数多くの実験を重ねた結果、ピッチ
サークル径φとインプット熱量Ip×104 kcal/hと
の関係が次式を満足するときNOX 生成量を抑制するこ
とができることを確認した。
In the combustion furnace of this embodiment, six air supply ports 3 are provided on the same virtual circle around the fuel supply port 4 provided at the center, and the six air supply ports 3 are arranged. Assuming that the diameter of the imaginary circle (referred to as the pitch circle diameter) is φ (mm), the present inventors have conducted many experiments, and as a result, the relationship between the pitch circle diameter φ and the input heat quantity Ip × 10 4 kcal / h. It was confirmed that the amount of NO x produced can be suppressed when satisfies the following equation.

【0017】φ≧101.89217 ×Ip0.33697 図3はピッチサークル径φを横軸に取ったときのNOX
発生量を示したもので、ピッチサークル径φが大きいほ
どすなわち空気供給口3が燃料供給口4の中心から離れ
るほどNOX 発生量は減少することがわかる。
Φ ≧ 10 1.89217 × Ip 0.33697 FIG. 3 shows NO x when the pitch circle diameter φ is taken on the horizontal axis.
The generated amount is shown, and it can be seen that the larger the pitch circle diameter φ, that is, the farther the air supply port 3 is from the center of the fuel supply port 4, the smaller the NO x generation amount.

【0018】さらに、本発明者らは燃料供給口4から燃
料ガスの噴出方向とNOX 発生量の関係について次のよ
うな事実を見いだした。
Furthermore, the present inventors have found the following facts regarding the relationship between the direction in which fuel gas is ejected from the fuel supply port 4 and the amount of NO x produced.

【0019】すなわち、燃料ガスは燃焼炉の軸方向に噴
出するほかに燃料の一部を図4に矢印で示す方向(以下
半径方向)にも噴出させるというものである。その場合
噴出方向が空気供給口3から噴出する空気噴流に衝突す
る図4(a)のような配置と、空気噴流の間を貫通する
図4(b)のような配置とが得られる。実験の結果は下
の表のようになる。 第 2 表 インプット熱量Ip=90×104 kcal/ h 第2表からわかるように、燃料ガスが空気噴流に衝突す
る図4(a)の配置では、ガスと空気との混合が促進さ
れNOX が41ppm排出される。それに対して、ガス
を空気噴流の間を貫通するよう噴出させる図4(b)の
配置では、急速に混合しなくなるために、さらに緩慢燃
焼となり火炎の輝度は増大し、NOX は約30%低下
し、30ppmとなる。このように、一部のガスを半径
方向でかつ空気供給口の間隙に噴射することによりさら
にNOX 低減を図ることができる。
That is, the fuel gas is ejected in the axial direction of the combustion furnace, and in addition, a part of the fuel is ejected in the direction indicated by an arrow in FIG. 4 (hereinafter referred to as the radial direction). In that case, the arrangement as shown in FIG. 4A in which the ejection direction collides with the air jet ejected from the air supply port 3 and the arrangement as shown in FIG. 4B penetrating between the air jets are obtained. The table below shows the results of the experiment. Table 2 Input heat quantity Ip = 90 × 10 4 kcal / h As can be seen from Table 2, in the arrangement of FIG. 4A in which the fuel gas collides with the air jet, mixing of the gas and air is promoted and 41 ppm of NO x is discharged. On the other hand, in the arrangement of FIG. 4 (b) in which the gas is ejected so as to penetrate between the air jets, the mixture does not mix rapidly, so combustion becomes slower and the brightness of the flame increases, and NO x is about 30%. It decreases to 30 ppm. Thus, by injecting a part of the gas in the radial direction and into the gap of the air supply port, NO X can be further reduced.

【0020】上記実施例は主として工業用燃焼炉につい
て説明したが、本発明は業務用や家電用の燃焼炉にも同
様に適用することができる。
Although the above-described embodiments have been mainly described with respect to an industrial combustion furnace, the present invention can be similarly applied to a commercial-use or household-use combustion furnace.

【0021】[0021]

【発明の効果】以上説明したように、本発明による燃焼
炉は、炉内に燃料供給口を直接開口させるとともに、該
燃料供給口を取り囲むように低温時用空気供給口と、該
低温時用空気供給口の外側に離間して少なくとも1つの
空気供給口とを炉内に開口させ、燃料ガス着火温度以下
では低温時用空気供給口から空気を噴出させて燃焼さ
せ、着火温度以上になった後は周辺の空気供給口から空
気を噴出させて燃焼をさせるように構成したので、高温
の予熱空気を使用してもNOX の発生量を抑えることが
でき、安定燃焼を確保することができる。
As described above, in the combustion furnace according to the present invention, the fuel supply port is directly opened in the furnace, and the low temperature air supply port and the low temperature air supply port are provided so as to surround the fuel supply port. At least one air supply port is opened outside the air supply port and opened in the furnace, and when the temperature is lower than the fuel gas ignition temperature, air is jetted from the low temperature air supply port and burned to become higher than the ignition temperature. After that, since the air is ejected from the peripheral air supply port to perform combustion, the amount of NO X generated can be suppressed even if high-temperature preheated air is used, and stable combustion can be ensured. .

【0022】さらに、燃料ガスを軸方向に噴出するのに
加え、一部のガスを半径方向に、空気噴流との間を貫通
するような向きに噴出することにより、火炎の輝度は増
大し、さらにNOX の低減を図ることができる。
Further, in addition to ejecting the fuel gas in the axial direction, a part of the gas is ejected in the radial direction so as to penetrate through the air jet flow, thereby increasing the brightness of the flame. Further, NO X can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による燃焼炉の一実施例の軸断面図であ
る。
FIG. 1 is an axial sectional view of an embodiment of a combustion furnace according to the present invention.

【図2】図1に示した燃焼炉を矢印Aの方向から見た端
面図である。
FIG. 2 is an end view of the combustion furnace shown in FIG. 1 as seen in the direction of arrow A.

【図3】本発明におけるピッチサークル径とNOX 発生
量との関係を示すグラフである。
FIG. 3 is a graph showing the relationship between the pitch circle diameter and the NO X generation amount in the present invention.

【図4】(a)および(b)は燃料ガスの噴出方向と空
気噴流との異なる位置関係を示す図である。
4 (a) and 4 (b) are diagrams showing different positional relationships between a jet direction of a fuel gas and an air jet flow.

【図5】従来の燃焼用バーナの一例の軸断面図である。FIG. 5 is an axial sectional view of an example of a conventional combustion burner.

【図6】(a)は従来の燃焼用バーナの他の例の要部断
面図であり、(b)は(a)に示した燃焼用バーナを矢
印Aの方向からみた端面図である。
6A is a sectional view of a main part of another example of a conventional combustion burner, and FIG. 6B is an end view of the combustion burner shown in FIG.

【図7】従来の燃焼用バーナの他の例の要部断面図であ
る。
FIG. 7 is a cross-sectional view of a main part of another example of a conventional combustion burner.

【符号の説明】[Explanation of symbols]

1 炉体 2 炉内 3 空気供給口 4 燃料供給口 5 燃焼室 6 炉内壁 7 低温時用空気供給口 8 空気入口 9 切り換え弁 10 火炎 1 Furnace Body 2 Furnace 3 Air Supply Port 4 Fuel Supply Port 5 Combustion Chamber 6 Furnace Inner Wall 7 Low Temperature Air Supply Port 8 Air Inlet 9 Switching Valve 10 Flame

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成3年5月22日[Submission date] May 22, 1991

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図3[Name of item to be corrected] Figure 3

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図3】 ─────────────────────────────────────────────────────
[Figure 3] ─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成3年5月22日[Submission date] May 22, 1991

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0013[Correction target item name] 0013

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0013】 図において、1は炉体、2は炉内であ
り、このような構成において、空気供給口3と燃料供給
口4からそれぞれ空気と燃料ガスを炉内2に直接噴出
し、炉内2において図に矢印で示したように炉内燃焼ガ
スの再循環流を形成し、それぞれが炉内燃焼ガスと混合
してから燃焼し、10のような炉壁から離れた位置に火
炎を形成する。炉内2の温度が安定した燃焼を行える温
度以下、例えば、750以下の低温時には、空気供給
口3への空気入口8に取り付けた切り換え弁9をA
に空気が流入するように切り換えて燃料供給口4を取り
囲んだ低温時用空気供給口7から空気を噴出させて燃焼
させ、炉内2の温度が安定した燃焼を行なえる温度以
上、例えば750以上に達した時、切り換え弁9をA
側に空気が流入するように切り換えて、燃焼を継続さ
せる。なお、一例として切り換え弁9は、燃焼装置上に
取り付けたエアシリンダ(図示せず)により駆動させて
いる。
In the figure, 1 is a furnace body, 2 is a furnace, and in such a structure, air and fuel gas are directly jetted into the furnace 2 from the air supply port 3 and the fuel supply port 4, respectively. In Fig. 2, the recirculation flow of the combustion gas in the furnace is formed as shown by the arrow in the figure, and each mixture is mixed with the combustion gas in the furnace and burned to form a flame at a position such as 10 away from the furnace wall. To do. When the temperature in the furnace 2 is lower than a temperature at which stable combustion is possible, for example, at a low temperature of 750 ° C. or lower, the switching valve 9 attached to the air inlet 8 to the air supply port 3 is switched so that air flows into the A L side. When the temperature in the furnace 2 reaches or exceeds a temperature at which stable combustion can be performed, for example, 750 ° C. or more, a switching valve is ejected from a low temperature air supply port 7 surrounding the fuel supply port 4 to burn the air. 9 for A
Switching is performed so that air flows into the H side, and combustion is continued. As an example, the switching valve 9 is driven by an air cylinder (not shown) mounted on the combustion device.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 炉内に、燃料供給口を直接開口させると
ともに、該燃料供給口を取り囲むように低温時用の第1
の空気供給口と、該低温時用空気供給口から外側に離間
して少なくとも1つの第2の空気供給口とを直接開口さ
せたことを特徴とする燃焼炉。
1. A first fuel-cooling first opening for use at low temperature so as to directly open a fuel supply opening and surround the fuel supply opening.
And the at least one second air supply port spaced apart from the low temperature air supply port to the outside and directly opened.
【請求項2】 前記燃料供給口は、燃料の一部を燃料供
給管の軸線に対してほぼ直角に且つ前記第2の空気供給
口から供給する空気噴流と衝突しない向きに燃料を噴出
するようにし、且つ残りの燃料は軸線と平行に噴射する
ような構造である請求項1に記載の燃焼炉。
2. The fuel supply port ejects the fuel in a direction in which a part of the fuel is substantially perpendicular to the axis of the fuel supply pipe and does not collide with an air jet supplied from the second air supply port. The combustion furnace according to claim 1, wherein the fuel is injected into the combustion furnace in parallel with the axial line.
【請求項3】 炉内に直接開口した燃料供給口から燃料
を供給しながら燃料の着火温度以下では前記燃料供給口
を取り囲むように設けられた第1の空気供給口から空気
を供給して燃焼させ、炉内温度が燃料の着火温度以上に
達したときは前記第1の空気供給口からの空気の供給を
停止し、前記第1の空気供給口から外側に離間して設け
られた少なくとも1つの第2の空気供給口から空気を供
給して炉内燃焼させることを特徴とする燃焼方法。
3. The fuel is supplied from a fuel supply port opened directly into the furnace, and at a temperature below the ignition temperature of the fuel, air is supplied from a first air supply port provided so as to surround the fuel supply port and burns. When the temperature in the furnace reaches the ignition temperature of the fuel or higher, the supply of air from the first air supply port is stopped, and at least 1 is provided outside from the first air supply port. Combustion method, characterized in that air is supplied from two second air supply ports for combustion in the furnace.
JP04769991A 1991-02-20 1991-02-20 Combustion furnace and combustion method Expired - Fee Related JP3259843B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04769991A JP3259843B2 (en) 1991-02-20 1991-02-20 Combustion furnace and combustion method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04769991A JP3259843B2 (en) 1991-02-20 1991-02-20 Combustion furnace and combustion method

Publications (2)

Publication Number Publication Date
JPH06174207A true JPH06174207A (en) 1994-06-24
JP3259843B2 JP3259843B2 (en) 2002-02-25

Family

ID=12782542

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04769991A Expired - Fee Related JP3259843B2 (en) 1991-02-20 1991-02-20 Combustion furnace and combustion method

Country Status (1)

Country Link
JP (1) JP3259843B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5681159A (en) * 1994-03-11 1997-10-28 Gas Research Institute Process and apparatus for low NOx staged-air combustion
US6071115A (en) * 1994-03-11 2000-06-06 Gas Research Institute Apparatus for low NOx, rapid mix combustion

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5681159A (en) * 1994-03-11 1997-10-28 Gas Research Institute Process and apparatus for low NOx staged-air combustion
US6071115A (en) * 1994-03-11 2000-06-06 Gas Research Institute Apparatus for low NOx, rapid mix combustion

Also Published As

Publication number Publication date
JP3259843B2 (en) 2002-02-25

Similar Documents

Publication Publication Date Title
JP2683545B2 (en) Combustion method in furnace
CN1715745A (en) Staged combustion system with ignition-assisted fuel lances
US20120288810A1 (en) Low NOx Fuel Injection for an Indurating Furnace
JP2005274126A5 (en)
RU2387924C2 (en) Method of staged fuel combustion in oxygen-containing atmosphere by using pre-heated reagents
WO2005080869A1 (en) A method of operating a burner, and a burner for liquid and/or gaseous fuels
KR101328255B1 (en) Burner using more than two gases having a different burning speed
JPH06174207A (en) Combustion furnace and combustion method
EP0774621B1 (en) Method and apparatus for achieving combustion with a low production of nitrogen oxides
CN108821615B (en) Injector for annular sleeve kiln
KR100400418B1 (en) Oxygen enriched combustion burner for low NOx emission
JP3683998B2 (en) Furnace burner
KR101729201B1 (en) Oxy fuel burner
JPH066906U (en) Hot air generator
CN211146484U (en) Ultralow nitrogen combustion device
JP4877680B2 (en) Wire heating furnace
JP2000356310A (en) Regenerative radiant tube burner
JP3590495B2 (en) Low NOx burner for high temperature air
WO2016032098A2 (en) Low-pollution pellet combustion device and method therefor
KR100560814B1 (en) Two-staged low NOx burner equipped with single biased primary air nozzle
TW201740060A (en) Radiant tube burner
KR200157863Y1 (en) Boiler furnace of nitrogen oxide reduction type
KR20030018188A (en) A low Nox regenerative radiant tube burner having two fuel nozzels
RU2052726C1 (en) Waste gas afterburning device
JPH01167508A (en) Nozzle for liquid fuel injection lance

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20000208

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees