JPH0617408B2 - Continuous production method of high melt viscoelastic polypropylene - Google Patents

Continuous production method of high melt viscoelastic polypropylene

Info

Publication number
JPH0617408B2
JPH0617408B2 JP26459385A JP26459385A JPH0617408B2 JP H0617408 B2 JPH0617408 B2 JP H0617408B2 JP 26459385 A JP26459385 A JP 26459385A JP 26459385 A JP26459385 A JP 26459385A JP H0617408 B2 JPH0617408 B2 JP H0617408B2
Authority
JP
Japan
Prior art keywords
polymerization
polypropylene
catalyst
mfr
vessel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP26459385A
Other languages
Japanese (ja)
Other versions
JPS62124108A (en
Inventor
寛正 千葉
俊次 川添
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JNC Corp
Original Assignee
Chisso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chisso Corp filed Critical Chisso Corp
Priority to JP26459385A priority Critical patent/JPH0617408B2/en
Publication of JPS62124108A publication Critical patent/JPS62124108A/en
Publication of JPH0617408B2 publication Critical patent/JPH0617408B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Polymerisation Methods In General (AREA)

Description

【発明の詳細な説明】 〔技術の分野〕 本発明は高溶融粘弾性ポリプロピレンの連続製造法に関
する。更に詳しくは、本発明はプロピレンを直列に結合
された3台以上の重合器を用いて多段階に重合し、広い
分子量分布を有し後加工用シート及び吹込成形に適する
ポリプロピレンを製造する上記方法に関する。
Description: TECHNICAL FIELD The present invention relates to a continuous process for producing high melt viscoelastic polypropylene. More specifically, the present invention is a method for producing polypropylene having a broad molecular weight distribution, which is suitable for post-processing sheets and blow molding, by polymerizing propylene in multiple stages using three or more polymerization vessels connected in series. Regarding

〔従来の技術〕[Conventional technology]

汎用のポリプロピレンは、後加工用シートの用途分野に
ついて次の問題点があった。すなわち、該ポリプロピレ
ンを使用して加工されたシートは、後加工(若しくは2
次加工)のための加熱成形時に次の諸難点すなわち、該
シートの垂れ下りが早い、加工条件の巾が狭い、成形効
率が劣る、巾広シートでは該垂れ下りが大きい、後加工
品の厚みが不均一になり易いおよび積りシワができ易い
があった。
The general-purpose polypropylene has the following problems in the application field of the post-processing sheet. That is, a sheet processed using the polypropylene is post-processed (or 2
The following problems at the time of heat-forming for subsequent processing): the sheet droops quickly, the range of processing conditions is narrow, the molding efficiency is poor, the droop of the wide sheet is large, the thickness of the post-processed product Was likely to be uneven and wrinkles were likely to occur.

汎用のポリプロピレンには、また、吸込成形用の用途分
野についての次の問題点があった。すなわち、成形時
のパリソンの垂れ下りが大きいため成形品の肉厚が不均
一となり、そのため吸込成形法は小形の成形品の製造に
しか適用できない。上述の垂れ下りを防ぐために、
高分子量のポリプロピレンを使用すると流動性不良、成
形時の負荷およびエネルギー損失が大きい、機械的トラ
ブルを惹きおこす危険性がある、成形品の肌荒れが激し
く商品価値が失なわれる等である。
General-purpose polypropylene also has the following problems in the field of application for suction molding. That is, since the parison droops heavily during molding, the thickness of the molded product becomes uneven, so the suction molding method can be applied only to the manufacture of small molded products. To prevent the above droop,
The use of high-molecular-weight polypropylene causes poor fluidity, a large load and energy loss during molding, a risk of causing mechanical troubles, a rough surface of a molded product, and loss of commercial value.

汎用のポリプロピレンを使用した場合の上述のシート成
形性および吸込成形性を改善するために、次のa〜cの
ような技術が提案されている。
In order to improve the above-mentioned sheet moldability and suction moldability when a general-purpose polypropylene is used, the following techniques a to c have been proposed.

すなわち、a.特公昭47-80614および特開昭50-8848で
は、ポリプロピレンに低密度ポリエチレンを混合する。
しかし、このような混合物を使用した成形品は、肌荒れ
を生じ易く、これを防止するには、該混合物の溶融時に
強力な混練が必要となり、混練機の選択と動力消費の面
で制約されるのみならず、成形品の剛性が低下するとい
う問題がある。
That is, a. In JP-B-47-80614 and JP-A-50-8848, low density polyethylene is mixed with polypropylene.
However, a molded article using such a mixture is liable to cause rough skin, and in order to prevent this, strong kneading is required at the time of melting the mixture, which is restricted in terms of selection of a kneading machine and power consumption. In addition, there is a problem that the rigidity of the molded product decreases.

次に、b.特開昭57-185336、同−187337、特開昭58-74
39等は、分子量の異るポリプロピレンを造粒機等を用い
て混合混練する方法を提案している。しかし、このよう
にして得られた混合物を用いた場合には、前述の低密度
ポリエチレンを混合した場合以上に成形品の肌荒れが生
じ易く、混練方法および混合物相互間の分子量較差の選
定条件が制約される。
Then b. JP-A-57-185336, JP-A-187337, JP-A-58-74
39 et al. Propose a method of mixing and kneading polypropylenes having different molecular weights using a granulator or the like. However, when the mixture obtained in this way is used, roughening of the molded product is more likely to occur than in the case where the above-mentioned low-density polyethylene is mixed, and the kneading method and the selection condition of the molecular weight difference between the mixtures are restricted. To be done.

さらに、c.上述のa,bのような混合法による問題点
を解決するためにプロピレンの多段重合法により、ポリ
プロピレンの分子量分布を拡大する方法についても種々
提案されている。例えば、特開昭57-185304、同−1900
6、特開昭58-7406、同−7409、特開昭59-172507等の実
施例においては、バッチ重合法において上述の多段重合
操作をすることによりポリプロピレンに分子量差を付与
しているが、該バッチ重合法は、本質的に原料の仕込
み、製品の抜出し等、重合反応を行わない空き時間が生
じることから、重合器の容量当りの生産性が低いという
問題を有している。
In addition, c. In order to solve the problems caused by the mixing method such as the above a and b, various methods for expanding the molecular weight distribution of polypropylene by a multi-stage polymerization method of propylene have been proposed. For example, JP-A-57-185304 and JP-A-1900.
6, in Examples of JP-A-58-7406, JP-A-7409, JP-A-59-172507 and the like, the difference in molecular weight is imparted to polypropylene by performing the above-mentioned multistage polymerization operation in a batch polymerization method. The batch polymerization method has a problem that the productivity per volume of the polymerization vessel is low because there is essentially an empty time during which the polymerization reaction is not performed, such as charging of raw materials and withdrawal of products.

もっとも、上記cのグループの発明では、連続法につい
ても言及している。連続法によって分子量差を内包する
ポリプロピレンを製造するには、その製造の順序によ
り、二つに区分される。第一に、高分子量−低分子量の
組合せ順序で製造する場合、後段の重合器では単に水素
を追加するだけで遂行可能であり、操作面では円滑であ
るが、後述の問題点がある。第二に、低分子量−高分子
量の組合せ順序で製造する場合には、前段の低分子量ポ
リプロピレンの製造後に反応混合物に対して、落圧脱気
等の操作により過剰の水素を除く必要を生じ、第一の場
合より、操作の円滑性の点で劣る旨述べられている。
However, the invention of group c mentioned above also refers to the continuous method. In order to produce polypropylene containing a difference in molecular weight by the continuous method, it can be divided into two according to the order of production. First, when a high molecular weight-low molecular weight combination sequence is used for production, it can be performed by simply adding hydrogen in the latter-stage polymerization vessel, and the operation is smooth, but there are problems described below. Secondly, in the case of producing in a combination order of low molecular weight-high molecular weight, it is necessary to remove excess hydrogen by an operation such as depressurization degassing with respect to the reaction mixture after the production of the low molecular weight polypropylene in the preceding stage, It is stated that the operation is inferior in smoothness to the first case.

本発明者は、上記cのグループの発明中、第一に述べた
高分子量−低分子量の組合せ順序で製造する方法につき
検討の結果、次のおよびの問題点が存在することを
見出した。すなわち、得られたポリプロピレンにつき
高分子量部分のメルトフローレート(以下MFRと記す)
が低い場合は、高分子量部分のMFRの測定が困難とな
り、運転条件の調節による該MFRの調節が困難となる
(註.このようなポリプロピレンについて粘度〔η〕の
測定は勿論可能であるが、〔η〕の測定には時間を要
し、運転管理の手段としては適当でない)。更に、高
分子量−低分子量の順により製造されたポリプロピレン
は、その造粒前の粉末のMFR値と造粒後のペレットでは
そのMFR値の差異が異常に大きく(註.粉末の方のMFR値
が低い)、該ポリプロピレンにつき分子量較差の調節な
らびに製品としてのMFR(造粒品)の調節上、問題があ
ることが判明した。
The present inventor has found that the following problems 1 and 2 exist as a result of a study on the method for producing the high molecular weight / low molecular weight combination sequence described above in the invention of group c. That is, the melt flow rate of the high molecular weight portion of the obtained polypropylene (hereinafter referred to as MFR)
When is low, it becomes difficult to measure the MFR of the high molecular weight part, and it becomes difficult to adjust the MFR by adjusting the operating conditions (Note: it is of course possible to measure the viscosity [η] of such polypropylene, It takes time to measure [η] and is not suitable as a means of operation management). Furthermore, in the case of polypropylene produced in the order of high molecular weight-low molecular weight, the difference between the MFR value of the powder before granulation and the MFR value of the pellet after granulation is abnormally large (Note. However, it has been found that there is a problem in controlling the molecular weight difference and the MFR (granulated product) as a product for the polypropylene.

〔発明の目的〕[Object of the Invention]

本発明者等は、上述の技術問題を解決すべく種々研究の
結果、重合器3台以上を直列に連結し、触媒および水素
を第一槽のみに供給してプロピレンの重合を実施すると
第一槽の重合反応混合物が順次後段の重合器に移送され
るに伴って、順次後段の重合器内の反応器程、触媒濃度
および水素濃度が低下してゆくため、より高分子量の重
合体を生成せしめることができ、最終製品のポリプロピ
レンとして広い分子量分布のものが得られることを知っ
て本発明を完成した。
As a result of various studies to solve the above-mentioned technical problems, the inventors of the present invention found that three or more polymerization vessels were connected in series and the catalyst and hydrogen were supplied only to the first tank to carry out propylene polymerization. As the polymerization reaction mixture in the tank was sequentially transferred to the subsequent polymerization reactor, the catalyst concentration and hydrogen concentration in the reactor in the subsequent polymerization reactor decreased, so that a higher molecular weight polymer was produced. The present invention has been completed by knowing that polypropylene having a wide molecular weight distribution can be obtained as the final product polypropylene.

以上の記述から明らかなように本発明の目的は、広い分
子量分布を有することにより成形性の良好な高溶融粘弾
性ポリプロピレンの連続製造法において、特に運転性に
すぐれおよび品質管理の容易な改良製造法を提供するこ
とである。他の目的は、上記方法によって製造された成
形性のすぐれた高溶融粘弾性ポリプロピレンを提供する
ことである。
As is clear from the above description, the object of the present invention is a continuous production method of a high-melting viscoelastic polypropylene having a wide molecular weight distribution and good moldability, in particular, improved production with excellent drivability and easy quality control. To provide the law. Another object is to provide a high melt viscoelastic polypropylene produced by the above method and having excellent moldability.

〔発明の構成・効果〕[Constitution / Effect of Invention]

本発明は、下記(1)の主要構成と(2)ないし(5)の実施態
様的構成を有する。
The present invention has the following main constitution (1) and embodiment constitutions (2) to (5).

(1)チーグラーナッタ型触媒を用いてスラリー法若しく
はバルク重合法でプロピレンを重合させてポリプロピレ
ンを連続的に製造する方法において、 直列に連結された3台以上の重合器を用い、使用す
る触媒の全量を第一重合器に供給し、該触媒は、反応混
合物と共に第二以降の重合器に順次連続的に移動させ、 分子量調節剤として水素を使用し、使用する該水素の
全量を第一重合器に供給し、該水素は反応混合物と共に
第二以降の重合器に順次連続的に移動させ、 該触媒上に各重合器において重合生成したポリプロピ
レンを順次形成せしめた後最終の重合器より、反応スラ
リーを連続的に排出させ、 第i番目の重合器内における単位時間当り重合量Qiが
下記式(1)の範囲内にある如く調節し、 但し、 i番目およびi+1番目の重合器で生成する重合体のMFR
値であるMFRiおよびMFRi+1が相互に下式(2)の関係にあ
る如く調節し、 直列に連結された重合器の中i番目の重合器の重合圧
力がi-1番目の重合器の重合圧力より2kg/cm2G以上低
くならないように調整し、 直列に連結された重合器の中i番目の重合器の重合温
度がi-1番目の重合器の重合温度より10℃以上高くなら
ないように調節する ことを特徴とする高溶融粘弾性ポリプロピレンの連続製
造法。
(1) In a method for continuously producing polypropylene by polymerizing propylene by a slurry method or a bulk polymerization method using a Ziegler-Natta type catalyst, using three or more polymerization units connected in series, The whole amount is supplied to the first polymerization reactor, the catalyst is continuously moved to the second and subsequent polymerization reactors together with the reaction mixture, hydrogen is used as a molecular weight regulator, and the entire amount of the hydrogen used is transferred to the first polymerization reactor. To the second and subsequent polymerization reactors, and the polypropylene produced by polymerization in each polymerization reactor was sequentially formed on the catalyst, and then the reaction was conducted from the final polymerization reactor. The slurry is continuously discharged, and the polymerization amount Qi per unit time in the i-th polymerization vessel is adjusted so as to be within the range of the following formula (1), However, MFR of polymer produced in i-th and i + 1-th polymerization vessel
The values MFR i and MFR i + 1 are adjusted so that they have the relationship of the following formula (2), Adjust the polymerization pressure of the i-th polymerization reactor in the polymerization reactors connected in series so that it does not become lower than the polymerization pressure of the i-1th polymerization reactor by 2 kg / cm 2 G or more, and adjust the polymerization pressure of the polymerization reactors connected in series. A continuous production method of high melt viscoelastic polypropylene, characterized in that the polymerization temperature of the i-th polymerization vessel is adjusted not to be higher than the polymerization temperature of the i-1th polymerization vessel by 10 ° C or more.

本発明の構成と効果につき以下に詳述する。The structure and effect of the present invention will be described in detail below.

本発明に使用する触媒は、遷移金属化合物と周期律表の
第I〜III族金属の有機化合物若しくはハイドライド等
との組合せに係る所謂チーグラー・ナッタ型触媒であれ
ば、特に制限されない。しかしながら、好ましくは、チ
タン化合物と有機アルミニウム化合物を基本的に組合せ
た触媒が使用し易い。該チタン化合物としては、四塩化
チタンを水素又は金属アルミニウム等で還元して得られ
た三塩化チタン又は三塩化チタン組成物を更にボールミ
ル、振動ミル等で粉砕して活性化したもの、あるいは、
更に上記被活性化物を電子供与性化合物で処理したも
の、または四塩化チタンを有機アルミニウム化合物で還
元し、更に各種の処理(例えば、TiCl4中の加熱によ
り、結晶転移させた三塩化チタン組成物、電子供与性化
合物及び/又は電子受容性化合物で処理し高活性化され
た三塩化チタン組成物等とする)をすることにより得ら
れた三塩化チタン組成物、塩化マグネシウム等の担体に
四塩化チタンを担持させることにより得られたいわゆる
担持型触媒等、一般にプロピレンの立体規則性重合に用
いられている触媒が使用できる。
The catalyst used in the present invention is not particularly limited as long as it is a so-called Ziegler-Natta type catalyst relating to a combination of a transition metal compound and an organic compound of Group I to III metals of the periodic table, hydride or the like. However, it is preferable to use a catalyst that basically combines a titanium compound and an organoaluminum compound. As the titanium compound, titanium trichloride or a titanium trichloride composition obtained by reducing titanium tetrachloride with hydrogen or metallic aluminum is further crushed by a ball mill, a vibration mill or the like, or activated.
Further, the activated material is treated with an electron-donating compound, or titanium tetrachloride is reduced with an organoaluminum compound, and further various treatments (for example, titanium trichloride composition in which crystal transition is caused by heating in TiCl 4 ). A titanium trichloride composition obtained by treating with an electron-donating compound and / or an electron-accepting compound to obtain a highly activated titanium trichloride composition, and tetrachloride on a carrier such as magnesium chloride. A catalyst generally used for stereoregular polymerization of propylene such as a so-called supported catalyst obtained by supporting titanium can be used.

本発明に好ましく用いられる前述の有機アルミニウム化
合物としては、AlRnR′n′X3-(n+n′)で表わされる化合
物が特に好ましい。該式中Xはフッ素、塩素、臭素及び
ヨー素のハロゲンを表わし、n,n′は0<n+n′3の任
意の正の数を表わす。その具体例としては、トリアルキ
ルアルミニウム類、ジアルキルアルミニウム類を挙げる
ことができ、これらの2種類以上を混合して使用するこ
ともできる。
As the organoaluminum compounds mentioned above preferably used in the present invention, a compound represented by AlR n R 'n' X 3- (n + n ') is particularly preferred. In the formula, X represents halogen such as fluorine, chlorine, bromine and iodine, and n and n'represent any positive number of 0 <n + n'3. Specific examples thereof include trialkylaluminums and dialkylaluminums, and two or more kinds of these may be mixed and used.

上述の触媒には、更に所謂第3成分として知られている
電子供与体を組合せて使用することもできる。
The above-mentioned catalyst may be used in combination with an electron donor known as a so-called third component.

重合形式としては、原料プロピレン、触媒のほか、不活
性溶媒例えばプロパン、ヘキサン、ヘプタン、オクタ
ン、ベンゼン若しくはトルエン等の炭化水素溶媒を用い
るスラリー重合又はプロピレン自身を溶媒(分散媒)と
したバルク重合が使用できる。
Polymerization methods include, in addition to raw material propylene and a catalyst, slurry polymerization using an inert solvent such as propane, hexane, heptane, octane, benzene or toluene, or a hydrocarbon solvent, or bulk polymerization using propylene itself as a solvent (dispersion medium). Can be used.

本発明の方法に使用する重合器としては、好ましくは槽
型のもの3台以上を直列に連結し、反応混合物の移送方
法としては、前段の重合器内の液相(スラリー)部分の
一部を連続的に次段の重合器に移送する。該3台以上の
重合器は必ず直列に連結されていなければならない。
As the polymerization vessel used in the method of the present invention, preferably three or more tank type polymerization vessels are connected in series, and as a method for transferring the reaction mixture, a part of the liquid phase (slurry) portion in the polymerization vessel of the preceding stage is used. Are continuously transferred to the next-stage polymerization vessel. The three or more polymerizers must be connected in series.

本発明の方法では、触媒はその全量を第一槽にのみ供給
する。該触媒(固体)は、前述の反応混合物と共に、順
次第二槽以降の重合器を経由し、同一の触媒の固体上に
各重合器においてポリプロピレンを順次形成させ、かゝ
る触媒固体を包含する反応混合物は、最終槽の重合器か
ら連続的に抜出される。若しも第二槽以降のいづれかの
重合器に触媒を追加して重合を行うと該追加触媒粒子上
には、第一槽経由のものとはMFRの大幅に異る重合体が
形成され、製品収得後の造粒によっても均一に混合され
ず、フィッシュアイ(FE)等、加工製品の外観不良を引き
おこすので好ましくない。
In the method of the present invention, the catalyst is supplied in its entire amount only to the first tank. The catalyst (solid), together with the reaction mixture described above, sequentially passes through the second and subsequent polymerization vessels to sequentially form polypropylene on each polymerization vessel on the solid of the same catalyst, and includes such a catalyst solid. The reaction mixture is continuously withdrawn from the polymerizer in the final tank. If the polymerization is carried out by adding a catalyst to any of the polymerization vessels of the second tank and thereafter, a polymer having a significantly different MFR from the one via the first tank is formed on the additional catalyst particles, Even if the product is obtained after granulation, it is not uniformly mixed, and the appearance of processed products such as fish eyes (FE) is deteriorated, which is not preferable.

本発明の方法においては、分子量調節剤として使用する
水素も上述の触媒と同様にその全量を第一槽にのみ供給
する。重合器内における水素の供給位置は、液相部分で
も気相部分でもよい。しかしながら、液相部分に水素を
供給する場合は、該供給物が気泡として第二槽への抜出
し(移送)スラリーに巻込まれないように注意する必要
がある。何となれば、本発明の方法では、一般に第二槽
以降に供給される水素は、反応混合物(スラリー)に溶
解した状態においてのみそれぞれの直前の槽から供給さ
れるからである。従って、気泡として巻込まれた水素が
次槽に送られると、その槽で製造されるポリプロピレン
と該次槽で製造されるポリプロピレンとの分子量差が、
予定したものより小さくなり、最終製品であるポリプロ
ピレンの分子量分布が十分に広くなり得ないので好まし
くない。
In the method of the present invention, the hydrogen used as the molecular weight regulator is supplied to the first tank only in its total amount as in the above-mentioned catalyst. The supply position of hydrogen in the polymerization vessel may be a liquid phase part or a gas phase part. However, when supplying hydrogen to the liquid phase portion, it is necessary to take care so that the supply material is not trapped as bubbles in the withdrawn (transferred) slurry to the second tank. This is because, in the method of the present invention, hydrogen supplied to the second and subsequent tanks is generally supplied from the tank immediately before each in a state of being dissolved in the reaction mixture (slurry). Therefore, when hydrogen trapped as bubbles is sent to the next tank, the difference in molecular weight between the polypropylene produced in the tank and the polypropylene produced in the next tank is
This is not preferable because it becomes smaller than expected and the molecular weight distribution of the final product polypropylene cannot be sufficiently wide.

また、本発明の方法では、重合器は直列に連結された3
台以上のものを使用する。触媒と水素を第一槽のみに供
給する本発明の方法では、重合器が2台では、製品ポリ
プロピレンの重合度分布をその用途目的に応ずる程度に
十分に広くすることができない。前述の触媒と水素の供
給方法と異り、原料のプロピレンまたは溶媒は、それぞ
れ所要量を各段階の重合器に供給することができる。
Also, in the method of the present invention, the polymerization vessels are connected in series.
Use more than one. In the method of the present invention in which the catalyst and hydrogen are supplied only to the first tank, the polymerization degree distribution of the product polypropylene cannot be made wide enough to meet the purpose of use with two polymerization vessels. Unlike the above-mentioned method of supplying the catalyst and hydrogen, the required amount of propylene or solvent as the raw material can be supplied to the polymerization reactor at each stage.

各段階の重合器におけるプロピレンの重合量は、最終製
品の品質維持の必要から、下式(1)で示される範囲内と
することが望ましい。
The polymerization amount of propylene in each stage of the polymerization vessel is preferably within the range represented by the following formula (1) in order to maintain the quality of the final product.

但し、 上記式(1)が示すように、各重合器の具体的重合量は、
各重合器で均等に重合させた場合を基準としてその±30
%の変動巾の範囲内に調節する必要がある。該Qi値が上
記式(1)の範囲外にある場合は、最終製品の分子量分布
の広さが不十分となり、目的とする品質の高溶融粘弾性
ポリプロピレンを得ることが困難になる。
However, As shown in the above formula (1), the specific polymerization amount of each polymerization vessel is
± 30 based on the case of uniform polymerization in each polymerization vessel
It is necessary to adjust within the range of the fluctuation range of%. When the Qi value is out of the range of the above formula (1), the width of the molecular weight distribution of the final product becomes insufficient, and it becomes difficult to obtain the target high-melt viscoelastic polypropylene.

本発明の方法の重合温度は、限定されないが、通常20〜
100℃、好ましくは40〜80℃が実施し易い。各重合器の
温度は、同一でも異っていてもよい。しかしながら、該
重合温度に関しては、直列に連結されている前後の重合
器において後の重合器の該温度は、その直前の重合器の
重合温度より10℃以上高くならないようにする必要があ
る。若しも該後段の重合器の重合温度が前段のそれより
10℃以上高い場合には、該後段で製造されるポリプロピ
レンの分子量が低下しすぎて、最終製品の分子量分布を
十分に広くすることができない。反対に、直列直後の重
合器の重合温度の差は、同温度又は後段の方が前段より
低い温度とすることに関しては制限はない。何故なら、
本発明の方法は、後段の重合器ほどより高い重合度のポ
リプロピレンを製造する方法だからである。
The polymerization temperature of the method of the present invention is not limited, but is usually 20 to
It is easy to carry out at 100 ° C, preferably 40 to 80 ° C. The temperature of each polymerization vessel may be the same or different. However, with respect to the polymerization temperature, it is necessary to prevent the temperature of the subsequent polymerization units in the polymerization units before and after being connected in series from being higher than the polymerization temperature of the polymerization unit immediately before that by 10 ° C. or more. If the polymerization temperature of the latter-stage polymerization vessel is higher than that of the previous-stage polymerization vessel
If the temperature is higher than 10 ° C., the molecular weight of the polypropylene produced in the latter stage will be too low, and the molecular weight distribution of the final product cannot be widened sufficiently. On the contrary, the difference in the polymerization temperature of the polymerization vessel immediately after the series is not limited with respect to the same temperature or a lower temperature in the latter stage than in the former stage. Because,
This is because the method of the present invention is a method for producing polypropylene having a higher degree of polymerization in the latter-stage polymerization vessel.

従って、本発明に係るポリプロピレンの分子量分布をよ
り広くするためには第一重合器の温度を最も高くし、第
二重合器以降の温度を順次低下させる方が容易である。
Therefore, in order to broaden the molecular weight distribution of the polypropylene according to the present invention, it is easier to raise the temperature of the first polymerization vessel to the highest temperature and sequentially lower the temperature of the second polymerization vessel and thereafter.

本発明の方法の重合圧力は、限定されないが、通常常圧
〜50kg/cm2Gが使用される。直列に連結された本発明の
方法に係る各重合器の重合圧力は相互に同一であっても
異っていてもよい。しかしながら、該直列に連結された
前後の重合器において後の重合器の重合圧力が、その直
前の重合器の重合圧力より好ましくは2kg/cm2以上低く
ならないようにする必要がある。2kg/cm2以上低くなっ
た場合は、その重合器で製造されるポリプロピレンの分
子量が所期のものより低下し、最終製品の分子量分布を
充分に広くすることが困難となる。
The polymerization pressure in the method of the present invention is not limited, but normally atmospheric pressure to 50 kg / cm 2 G is used. The polymerization pressures of the respective polymerization reactors connected in series according to the method of the present invention may be the same or different from each other. However, it is necessary to prevent the polymerization pressure of the subsequent polymerization units in the polymerization units before and after being connected in series from being lower than the polymerization pressure of the polymerization unit immediately before that by preferably 2 kg / cm 2 or more. When it becomes 2 kg / cm 2 or more, the molecular weight of the polypropylene produced in the polymerization vessel becomes lower than that expected, and it becomes difficult to sufficiently widen the molecular weight distribution of the final product.

以上の説明から明らかなように、本発明の方法において
は、直列に連結された各重合器の圧力を第一槽から順次
高くする方が、最終製品の分子量分布をより広く調節す
ることが容易になる。
As is clear from the above description, in the method of the present invention, it is easier to control the molecular weight distribution of the final product more broadly by increasing the pressure of each polymerization vessel connected in series from the first tank in order. become.

本発明の方法において、直列に連結された各重合器内の
反応混合物の平均滞留時間は、限定されないが、通常30
分〜10時間で実施される。また、上述の各種の重合条件
すなわち、圧力,温度,滞留時間等は、目的とするポリ
プロピレンの品質及び使用触媒その他により選択して実
施することにより、容易に本発明の目的を達成できる。
其他、直列に連結された重合器間のスラリーの移送は、
常用のポンプ輸送、差圧輸送其他の方法を採用でき特別
な制限はない。
In the method of the present invention, the average residence time of the reaction mixture in each polymerization vessel connected in series is not limited, but is usually 30
It is carried out in minutes to 10 hours. In addition, the above-mentioned various polymerization conditions, that is, pressure, temperature, residence time, etc., can be easily achieved by selecting the desired quality of polypropylene, the catalyst used, and the like.
Besides, the transfer of the slurry between the polymerization vessels connected in series is
Regular pumping, differential pressure transportation and other methods can be adopted without any special restrictions.

以上のようにして得られる本発明に係るポリプロピレン
のMFRは、通常0.01〜100であるが、特にシート成形用、
吸込み成形用としては、該MFR値が、0.05〜10、好まし
くは0.10〜5.0のものが用いられる。因に、直列に連結
された各重合器で製造されるポリプロピレン間の分子量
差は、MFR値として表現された場合、下記式(2)の範囲内
にあることが好ましい。
The MFR of the polypropylene according to the present invention obtained as described above is usually 0.01 to 100, especially for sheet molding,
For suction molding, those having an MFR value of 0.05 to 10, preferably 0.10 to 5.0 are used. Incidentally, it is preferable that the difference in molecular weight between polypropylenes produced by the respective polymerization reactors connected in series is within the range of the following formula (2) when expressed as an MFR value.

たゞし、 MFRi;i番目の重合器で生成する重合体のMFR MFRi+1;i+1番目の 〃 上式(2)の左辺の数値が、1.0に満たない場合は、本発明
の目的とする高溶融粘弾性が不十分となり易く好ましく
ない。また該数値の上限については限定されないが、本
発明の方法の具体的実施態様においては3.0以上とする
ことは困難である。
However, MFRi; MFR MFR i + 1 of the polymer produced in the i-th polymerization vessel; i + 1-th 〃 If the value on the left side of the above formula (2) is less than 1.0, The desired high melt viscoelasticity tends to be insufficient, which is not preferable. Although the upper limit of the numerical value is not limited, it is difficult to set it to 3.0 or more in a specific embodiment of the method of the present invention.

本発明の方法の主要な効果を要約すると下記の如くであ
る。
The main effects of the method of the present invention are summarized as follows.

第一に、本発明の方法に係るポリプロピレンは、分子量
分布が広いため、押出成形時の流動性が良好となり、押
出機による押出量の増加、消費動力の節約等の効果があ
る。更に、射出成形時の流動性が優れている等の特徴を
有するため、各種の成型分野の用途に品質面及び加工能
率の面で優れた効果を発揮することができる。
First, since the polypropylene according to the method of the present invention has a wide molecular weight distribution, it has good fluidity during extrusion molding, and has effects such as an increase in the amount of extrusion by an extruder and saving of power consumption. Furthermore, since it has characteristics such as excellent fluidity at the time of injection molding, it can exhibit excellent effects in terms of quality and processing efficiency in applications in various molding fields.

第二に、本発明方法は、多段階重合法として重合プロセ
スの管理又は重合条件の調節が極めて簡単である。
Secondly, in the method of the present invention, as a multi-step polymerization method, it is extremely easy to control the polymerization process or adjust the polymerization conditions.

すなわち、3台以上直列に連結された重合槽の第一槽の
みに触媒と水素を供給するので第二槽以降へは、必要な
プロピレンと溶剤のみを追加すればよい。各槽の重合条
件は、最も簡易には、同一圧力、同一温度としてもよ
く、相隣る二槽間では圧力及び温度が逆転(註.後段の
方が数値的に高いこと)してもその程度が許容限度範囲
(2kg/cm2G以下、10℃以内)であれば、本発明の目的
達成可能である。
That is, since the catalyst and hydrogen are supplied only to the first tank of the polymerization tanks in which three or more units are connected in series, only the necessary propylene and solvent may be added to the second tank and thereafter. In the simplest way, the polymerization conditions in each tank may be the same pressure and the same temperature, even if the pressure and temperature are reversed between two adjacent tanks (Note: the latter stage is numerically higher) When the degree is within the allowable limit range (2 kg / cm 2 G or less, within 10 ° C.), the object of the present invention can be achieved.

以下更に具体的に実施例をもって説明するが、本発明は
これに制限されるものではない。
Hereinafter, the present invention will be described more specifically with reference to Examples, but the present invention is not limited thereto.

本発明の実施例に係る物性値の測定は、下記の方法を用
いた。
The following methods were used for measuring the physical property values according to the examples of the present invention.

1)メルトフローレート(MFR):ASTMD1238 2)各重合器で生成した重合体のMFRの算出: MFR1;第1段のMFR(*1) MFR2;第2 〃 MFR3;第3 〃 MFR1+2;第1段と第2段で生成した全体のMFR(*1) MFR1+2+3;第1段と第2段と第3段で生成した全体のMF
R(*1) W1+W2+W3=1.0 *1;各段でサンプリングし実測する。
1) Melt flow rate (MFR): ASTM D1238 2) Calculation of MFR of polymer produced in each polymerization reactor: MFR 1 ; 1st stage MFR (* 1) MFR 2 ; 2nd MFR 3 ; 3rd MFR 1 + 2 ; Overall MFR (* 1) MFR 1 + 2 + 3 generated in the 1st and 2nd stages; Overall MF generated in 1st, 2nd and 3rd stages
R (* 1) W 1 + W 2 + W 3 = 1.0 * 1; Sampling at each stage and measurement.

*2;各段でサンプリングし重合体のチタン含量(蛍光X
線分析)を測定し計算により重合割合を求めた。
* 2: Titanium content of polymer sampled at each stage (fluorescence X
(Line analysis) was measured and the polymerization rate was calculated.

MFR2,MFR3の計算はつぎの関係式によって求めた。The calculation of MFR 2 and MFR 3 was obtained by the following relational expression.

3)シート成形品の物性測定法: ヤング率;ASTMD882(kgf/mm2) 加熱挙動;チッソ法 シートの加熱真空成形性をモデル的に評価するため、シ
ートを40cm×40cmの枠に固定し、200℃の恒温室に入れ
て次の物性を測定した。すなわち、イ)シートの垂下量
(mm)、ロ)最大戻り量(註.{1/150×(150−最大回復
時垂下量(mm)×100})および、ハ)最大回復時から垂
下再開始時までの保持時間(秒)である。
3) Physical properties measurement method for sheet molded products: Young's modulus; ASTM D882 (kgf / mm 2 ) Heating behavior; Chisso method To evaluate the heating vacuum forming property of the sheet as a model, the sheet was fixed to a 40 cm × 40 cm frame, The following physical properties were measured by placing in a thermostatic chamber at 200 ° C. That is, a) the amount of droop of the seat
(mm), b) Maximum return amount (Note. {1/150 x (150-droop amount during maximum recovery (mm) x 100}) and c) Hold time from maximum recovery to restart of droop (seconds) ).

実施例1 1)触媒の製造 n-ヘキサン6、ジエチルアルミニウムモノクロリド(D
EAC)5.0モル、ジイソアミルエーテル12.0モルを25℃で
5分間で混合し、5分間同温度で反応させて反応液
(I)(ジイソアミルエーテル/DEACのモル比2.4)を
得た。窒素置換された反応器に四塩化チタン40モルを入
れ35℃に加熱し、これに上記反応生成液(I)の全量を
180分間で滴下した後、同温度に30分間保ち、75℃に昇
温して更に1時間反応させ、室温まで冷却し上澄液を除
き、n-ヘキサン30を加えてデカンテーションで除く操
作を4回繰り返して、固体生成物(II)1.9kgを得た。
Example 1 1) Preparation of catalyst n-hexane 6, diethyl aluminum monochloride (D
5.0 mol of EAC) and 12.0 mol of diisoamyl ether were mixed at 25 ° C. for 5 minutes and reacted at the same temperature for 5 minutes to obtain a reaction solution (I) (diisoamyl ether / DEAC molar ratio 2.4). 40 mol of titanium tetrachloride was placed in a reactor purged with nitrogen and heated to 35 ° C., and the whole amount of the above reaction product liquid (I) was added to this.
After dropping for 180 minutes, keep at the same temperature for 30 minutes, raise to 75 ℃ and react for 1 hour, cool to room temperature, remove the supernatant, add n-hexane 30 and remove by decantation. Repeated 4 times to give 1.9 kg of solid product (II).

この(II)の全量をn-ヘキサン30中に懸濁させた状態
で20℃でジイソアミルエーテル1.6kgと四塩化チタン3.5
kgを室温にて約5分間で加え、65℃で1時間反応させ
た。反応終了後、室温(20℃)迄冷却し、上澄液をデカ
ンテーションによって除いた後、30のn-ヘキサンを加
え15分間撹拌し、静置して上澄液を除く操作を5回繰り
返した後、減圧下で乾燥させ、固体生成物(III)を得
た。
The total amount of this (II) was suspended in n-hexane 30 at 20 ° C. to obtain 1.6 kg of diisoamyl ether and 3.5 mg of titanium tetrachloride.
kg was added at room temperature for about 5 minutes and reacted at 65 ° C. for 1 hour. After the reaction was completed, the mixture was cooled to room temperature (20 ° C), the supernatant was removed by decantation, 30 n-hexane was added and stirred for 15 minutes, and the mixture was allowed to stand and the supernatant was removed 5 times. After that, it was dried under reduced pressure to obtain a solid product (III).

2)触媒の調整 内容積50のタンクにn-ヘキサン40、ジエチルアルミ
ニウムクロリド850g、上記固体生成物360g、メチルパ
ラトルエート3.8gを仕込み、次に30℃に維持撹拌しな
がらプロピレンガスを180g/Hで2時間供給し、予備処理
を行った。
2) Preparation of catalyst Charge n-hexane 40, diethylaluminum chloride 850g, the above solid product 360g, and methyl paratoluate 3.8g into a tank with an internal volume of 50, and then maintain propylene gas at 180g / g while maintaining stirring at 30 ° C. It was supplied with H for 2 hours and pretreated.

3)重合方法 図1に示した重合装置により実施した。3) Polymerization method It was carried out by the polymerization apparatus shown in FIG.

重合器(1)へ毎時n-ヘキサン26/H、触媒スラリー120m
/Hを連続的に供給した。重合器(1)〜(3)の温度は70
℃、圧力はそれぞれ6kg/cm2G,8kg/cm2G,10kg/cm2Gにな
るように各重合器にプロピレンを供給し調整した。
N-Hexane 26 / H / hour, catalyst slurry 120m to polymerization vessel (1)
/ H was continuously supplied. The temperature of the polymerization vessels (1) to (3) is 70.
Propylene was supplied to each polymerization vessel so that the temperature and the pressure were 6 kg / cm 2 G, 8 kg / cm 2 G, and 10 kg / cm 2 G, respectively.

重合器(1)〜(3)の気相部の水素濃度は重合器(1)のみ、
2.5モル%になるように供給したところ重合器(2),重合
器(3)はそれぞれ0.37モル%,0.06モル%であった。又
各重合器の反応量及びMFRの分析値は表に示した通りで
あった。
The hydrogen concentration of the gas phase part of the polymerization vessel (1) ~ (3) is only the polymerization vessel (1),
When supplied at 2.5 mol%, the polymerizer (2) and the polymerizer (3) were 0.37 mol% and 0.06 mol%, respectively. The reaction amount and MFR analysis value of each polymerization vessel were as shown in the table.

尚各種重合器は液レベル80%になるようにコントロール
バルブにより抜出した。製造重合体は6kg/Hで得られ
た。
The various polymerization vessels were pulled out by a control valve so that the liquid level was 80%. The polymer produced was obtained at 6 kg / H.

分析値は表1に示した通りである。The analytical values are as shown in Table 1.

4)造粒方法およびシート成形 上記で得た白色重合体粉末15kgにBHT(2.6-di-t-Buty
L-P-cresol)15g、Irganox1010(Tetrakis〔Methylene
(3.5-di-t-butyL-4-Hydrocinnamate〕methane)7.5g、Cal
cium stearate 30gを添加し40mm造粒機を用いて造粒
した。ついで該造粒物を50mm中押出成形機により、22
5℃で加工して巾60cm、厚さ0.4mmのシートを作製し、前
記方法によりシート物性を評価した。結果は表−1に示
した。
4) Granulation method and sheet molding BHT (2.6-di-t-Buty) was added to 15 kg of the white polymer powder obtained above.
LP-cresol) 15g, Irganox1010 (Tetrakis 〔Methylene
(3.5-di-t-butyL-4-Hydrocinnamate] methane) 7.5g, Cal
30 g of cium stearate was added and granulated using a 40 mm granulator. Then, the granules were mixed with a 50 mm medium extruder for 22
A sheet having a width of 60 cm and a thickness of 0.4 mm was prepared by processing at 5 ° C., and the physical properties of the sheet were evaluated by the above methods. The results are shown in Table-1.

比較例1 実施例1に於て、重合器気相部水素濃度を各種重合器に
水素を供給することにより同一にして実施した。この場
合シートの加熱挙動の点で著しく劣っていた。
Comparative Example 1 In Example 1, the hydrogen concentration in the vapor phase of the polymerization reactor was made the same by supplying hydrogen to various polymerization reactors. In this case, the heating behavior of the sheet was significantly inferior.

比較例2,3 実施例1に於て、第3段目の重合を省略し、又重合圧力
及び水素を表の如く変化させて実施した。2段重合では
重合器間のMFR差及び重合率が本発明の範囲内であって
もシートの加熱挙動の点で劣り、本発明の目的は達成さ
れなかった。
Comparative Examples 2 and 3 In Example 1, the third stage polymerization was omitted, and the polymerization pressure and hydrogen were changed as shown in the table. In the two-stage polymerization, even if the MFR difference between the polymerization vessels and the polymerization rate are within the range of the present invention, the heating behavior of the sheet is inferior, and the object of the present invention was not achieved.

実施例2,3,4 実施例1に於て、重合温度、重合圧力を表の如く変化さ
せて実施した。
Examples 2, 3 and 4 In Example 1, the polymerization temperature and the polymerization pressure were changed as shown in the table.

比較例4 実施例1に於て圧力を表の如く変えて実施した。又各重
合器の重合量を本発明の範囲に調製するため重合器の液
レベルをそれぞれ重合器(1)は40%、重合器(2)は60%、
重合器(3)は80%で実施した。重合器間の圧力が本発明
の範囲外では、重合器間のMFR較差を取ることが困難と
なり、シートの加熱挙動の点で劣っていた。
Comparative Example 4 The procedure of Example 1 was repeated except that the pressure was changed as shown in the table. Further, in order to adjust the polymerization amount of each polymerization vessel to the range of the present invention, the liquid level of the polymerization vessel is 40% for the polymerization vessel (1), 60% for the polymerization vessel (2),
The polymerization reactor (3) was operated at 80%. If the pressure between the polymerization vessels was outside the range of the present invention, it was difficult to obtain the MFR difference between the polymerization vessels, and the heating behavior of the sheet was poor.

比較例5,6 実施例1に於て、各重合器の重合量を変化させるため、
表に示した条件で実施した。重合比率が本発明の範囲外
の場合もシートの加熱挙動の点で劣り好ましくなかっ
た。
Comparative Examples 5 and 6 In Example 1, in order to change the polymerization amount of each polymerization vessel,
It carried out on the conditions shown in the table. Even when the polymerization ratio was outside the range of the present invention, the heating behavior of the sheet was inferior, which was not preferable.

比較例7 実施例1に於て、触媒スラリーの供給を3台の重合器に
分配して供給した。分配比率は、重合器(1):重合器
(2):重合器(3)=8:1:1とした。シート物性に於て
シートの表面に激しい肌荒れ(FE)が発生した。
Comparative Example 7 In Example 1, the catalyst slurry was distributed and supplied to three polymerization vessels. Distribution ratio is polymerization vessel (1): polymerization vessel
(2): Polymerization unit (3) = 8: 1: 1. In terms of physical properties of the sheet, severe surface roughness (FE) occurred on the surface of the sheet.

比較例8 実施例1に於て、重合温度、圧力を表の如く変化させて
実施した。又重合比率を本発明の範囲にするため、重合
器の液レベルを、重合器(1):重合器(2):重合器(3)=8
5%:65%:45%で実施した。重合器間の重合温度を本
発明の範囲外にした場合、重合器間のMFR較差をとるこ
とが困難になり、シートの加熱挙動の点で劣って好まし
くない。
Comparative Example 8 In Example 1, the polymerization temperature and the pressure were changed as shown in the table. In order to set the polymerization ratio within the range of the present invention, the liquid level in the polymerization vessel is set to polymerization vessel (1): polymerization vessel (2): polymerization vessel (3) = 8
5%: 65%: 45%. When the polymerization temperature between the polymerization vessels is out of the range of the present invention, it becomes difficult to obtain the MFR difference between the polymerization vessels, and the heating behavior of the sheet is inferior, which is not preferable.

【図面の簡単な説明】 図は、本発明の方法に使用する重合装置のフローシート
である。 図において、 1…第一重合器(150) 2…第二 〃 (150) 3…第三 〃 (150) 4…脱ガス槽(100) 5…反応液移送ポンプ である。
BRIEF DESCRIPTION OF THE DRAWINGS The figure is a flow sheet of a polymerization apparatus used in the method of the present invention. In the figure, 1 ... First polymerization vessel (150) 2 ... Second 〃 (150) 3 ... Third 〃 (150) 4 ... Degassing tank (100) 5 ... Reactant transfer pump.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】チーグラーナッタ型触媒を用いてスラリー
法若しくはバルク重合法でプロピレンを重合させてポリ
プロピレンを連続的に製造する方法において、 直列に連結された3台以上の重合器を用い、 使用する触媒の全量を第一重合器に供給し、該触媒
は、反応混合物と共に第二以降の重合器に順次連続的に
移動させ、 分子量調節剤として水素を使用し、使用する該水素の
全量を第一重合器に供給し、該水素は反応混合物と共に
第二以降の重合器に順次連続的に移動させ、 該触媒上に各重合器において重合生成したポリプロピ
レンを順次形成せしめた後最終の重合器より、反応スラ
リーを連続的に排出させ、 第i番目の重合器内における単位時間当り重合量Qiが
下記式(1)の範囲内にある如く調節し、 但し、 i番目およびi+1番目の重合器で生成する重合体のMFR
値であるMFRiおよびMFRi+1が相互に下式(2)の関係にあ
る如く調節し、 直列に連結された重合器の中i番目の重合器の重合圧
力がi-1番目の重合器の重合圧力より2kg/cm2G以上低
くならないように調整し、 直列に連結された重合器の中i番目の重合器の重合温
度がi-1番目の重合器の重合温度より10℃以上高くなら
ないように調節する ことを特徴とする高溶融粘弾性ポリプロピレンの連続製
造法。
1. A method for continuously producing polypropylene by polymerizing propylene by a slurry method or a bulk polymerization method using a Ziegler-Natta type catalyst, which uses three or more polymerization vessels connected in series. The total amount of the catalyst is fed to the first polymerization reactor, and the catalyst is continuously moved to the second and subsequent polymerization reactors together with the reaction mixture, hydrogen is used as a molecular weight regulator, and the total amount of the hydrogen used is adjusted to the first polymerization reactor. It is supplied to one polymerization reactor, and the hydrogen is continuously transferred to the second and subsequent polymerization reactors together with the reaction mixture, and polypropylene formed by polymerization in each polymerization reactor is sequentially formed on the catalyst. , The reaction slurry is continuously discharged, and the polymerization amount Qi per unit time in the i-th polymerization vessel is adjusted to be within the range of the following formula (1), However, MFR of polymer produced in i-th and i + 1-th polymerization vessel
The values MFR i and MFR i + 1 are adjusted so that they have the relationship of the following formula (2), Adjust the polymerization pressure of the i-th polymerization reactor in the polymerization reactors connected in series so that it does not become lower than the polymerization pressure of the i-1th polymerization reactor by 2 kg / cm 2 G or more, and adjust the polymerization pressure of the polymerization reactors connected in series. A continuous production method of high melt viscoelastic polypropylene, characterized in that the polymerization temperature of the i-th polymerization vessel is adjusted not to be higher than the polymerization temperature of the i-1th polymerization vessel by 10 ° C or more.
JP26459385A 1985-11-25 1985-11-25 Continuous production method of high melt viscoelastic polypropylene Expired - Lifetime JPH0617408B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26459385A JPH0617408B2 (en) 1985-11-25 1985-11-25 Continuous production method of high melt viscoelastic polypropylene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26459385A JPH0617408B2 (en) 1985-11-25 1985-11-25 Continuous production method of high melt viscoelastic polypropylene

Publications (2)

Publication Number Publication Date
JPS62124108A JPS62124108A (en) 1987-06-05
JPH0617408B2 true JPH0617408B2 (en) 1994-03-09

Family

ID=17405455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26459385A Expired - Lifetime JPH0617408B2 (en) 1985-11-25 1985-11-25 Continuous production method of high melt viscoelastic polypropylene

Country Status (1)

Country Link
JP (1) JPH0617408B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3066951D1 (en) * 1979-06-20 1984-04-19 Sumitomo Chemical Co Method for production of highly crystalline olefin polymers
US4970280A (en) * 1987-04-01 1990-11-13 Chisso Corporation Continuous process for producing high molten viscoelastic polypropylene or ethylene-propylene copolymer
US5140062A (en) * 1987-04-01 1992-08-18 Chisso Corporation Continuous process for producing high molten viscoelastic polypropylene of ethylene-propylene copolymer
SG11201404870YA (en) * 2012-02-27 2014-09-26 Borealis Ag Process for the preparation of polypropylene with low ash content
JP6810653B2 (en) * 2017-04-28 2021-01-06 東邦チタニウム株式会社 Method for producing olefin polymer

Also Published As

Publication number Publication date
JPS62124108A (en) 1987-06-05

Similar Documents

Publication Publication Date Title
EP3434703B1 (en) Method for industrial production of trans-butadiene-isoprene copolymer rubber and apparatus therefor
JP2004530778A (en) Propylene random copolymer and process for producing the same
EP0285415B1 (en) Continuous process for producing polypropylene
JPS5950246B2 (en) Production method of olefin copolymer for molding
KR860001060B1 (en) Process for producing highrigidity ethylene-propylene copolymer
JPS645051B2 (en)
JPS6248962B2 (en)
JPS623167B2 (en)
JPH046725B2 (en)
JPS58104907A (en) Polypropylene for molded article having high rigidity and its preparation
CN108192005A (en) A kind of polyolefin and preparation method thereof
JPH0617408B2 (en) Continuous production method of high melt viscoelastic polypropylene
CN112625155B (en) Preparation method of polypropylene
CN109929185A (en) A method of producing polypropene composition
JPH0621133B2 (en) Continuous production method of high melt viscoelastic polypropylene
CN104768977B (en) Produce the multistep method of polypropene composition
JP2712307B2 (en) Method for producing polyethylene
JPS6353206B2 (en)
JPH049804B2 (en)
CN108707289A (en) A kind of polyolefin alloy material and preparation method thereof
US5140062A (en) Continuous process for producing high molten viscoelastic polypropylene of ethylene-propylene copolymer
JPS6150085B2 (en)
JPH0244846B2 (en)
CN114846076A (en) Heterophasic propylene polymeric material
JPH07680B2 (en) High melting viscoelasticity ethylene / propylene copolymer continuous production method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term