JPH06173717A - Control method for flow passage branch valve and control device therefor - Google Patents

Control method for flow passage branch valve and control device therefor

Info

Publication number
JPH06173717A
JPH06173717A JP32679392A JP32679392A JPH06173717A JP H06173717 A JPH06173717 A JP H06173717A JP 32679392 A JP32679392 A JP 32679392A JP 32679392 A JP32679392 A JP 32679392A JP H06173717 A JPH06173717 A JP H06173717A
Authority
JP
Japan
Prior art keywords
flow path
path branch
branch valve
valve
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32679392A
Other languages
Japanese (ja)
Other versions
JP3223476B2 (en
Inventor
Shiyuuichi Kugenuma
修一 久下沼
Ryoichi Kaneko
了市 金子
Junshi Shimomura
純志 下村
Satoru Sato
知 佐藤
Masahito Machida
雅人 町田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Engineering and Services Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Engineering and Services Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Engineering and Services Co Ltd, Hitachi Ltd filed Critical Hitachi Engineering and Services Co Ltd
Priority to JP32679392A priority Critical patent/JP3223476B2/en
Publication of JPH06173717A publication Critical patent/JPH06173717A/en
Application granted granted Critical
Publication of JP3223476B2 publication Critical patent/JP3223476B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Fluidized-Bed Combustion And Resonant Combustion (AREA)

Abstract

PURPOSE:To stop a gas turbine and a compressor safely even when abnormal condition is generated in an operating device by closing first and second flow passage branch valves simultaneously after a third flow passage branch valve is opened firstly when the gas turbine and the compressor are stopped. CONSTITUTION:An normally opened first flow passage branch valve 8 is provided in a first piping 5 by which a compressor 1 and a high temperature gas generating device 4 are connected to each other. A normally opened second flow passage branch valve 9 is provided in a second piping 6 by which the high temperature gas generation device 4 and a gas turbine 2 are connected to each other. A third piping 7 is so arranged as to provide connection between the first and second pipings 5, 6, and also a normally opened third flow passage branch valve 10 is provided in the third piping 7. Especially when the gas turbine 2 and the compressor 1 are stopped, the third flow passage branch valve 10 is firstly opened. Then the first flow passage branch valve 8 and the second flow passage branch valve 9 are closed simultaneously. Thus compressor air discharged from the compressor 1 enters into a gas turbine inlet gas chamber 12 through the first piping 5, the third piping 7, the third flow passage branch valve 10, and the second piping 6 in this order.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、圧縮機と高圧ガス発生
装置とを結ぶ配管、高圧ガス発生装置とガスタービンと
を結ぶ配管、および前記二つの配管を結んでいる配管に
設けられた三つの流路分岐弁の制御方法および制御装置
に係り、特にガスタービンと圧縮機の停止時に安全に停
止させるために好適な流路分岐弁の制御方法および制御
装置に関する。
The present invention relates to a pipe connecting a compressor and a high-pressure gas generator, a pipe connecting a high-pressure gas generator and a gas turbine, and three pipes connecting the two pipes. TECHNICAL FIELD The present invention relates to a control method and a control device for two flow path branch valves, and more particularly to a control method and a control device for a flow path branch valve suitable for safely stopping a gas turbine and a compressor.

【0002】[0002]

【従来の技術】図7はガスタービンを含む動力装置の系
統図であって、通常運転時の流路分岐弁の開閉状態を示
す説明図、図8はガスタービンと圧縮機を停止させると
きの流路分岐弁の開閉状態を示す図、図9はガスタービ
ンと圧縮機の流路説明図である。
2. Description of the Related Art FIG. 7 is a system diagram of a power plant including a gas turbine and is an explanatory view showing an open / closed state of a flow path branch valve during normal operation, and FIG. FIG. 9 is a diagram showing the opened / closed state of the flow channel branch valve, and FIG. 9 is a flow channel explanatory diagram of the gas turbine and the compressor.

【0003】これらの図に示す動力装置は、圧縮機1
と、ガスタービン2と、発電機3と、高温ガス発生装置
4と、圧縮機1と高温ガス発生装置4とを結ぶ第1の配
管5と、高温ガス発生装置4とガスタービン2とを結ぶ
第2の配管6と、前記第1,第2の配管5,6間を結ん
でいる第3の配管7と、前記第1の配管5に設けられた
第1の流路分岐弁8と、前記第2の配管6に設けられた
第2の流路分岐弁9と、前記第3の配管7に設けられた
第3の流路分岐弁10とを備えて構成されている。
The power plant shown in these figures is a compressor 1
A gas turbine 2, a generator 3, a high temperature gas generator 4, a first pipe 5 connecting the compressor 1 and the high temperature gas generator 4, and a high temperature gas generator 4 and the gas turbine 2. A second pipe 6, a third pipe 7 connecting the first and second pipes 5 and 6, and a first flow path branch valve 8 provided in the first pipe 5, A second flow path branch valve 9 provided in the second pipe 6 and a third flow path branch valve 10 provided in the third pipe 7 are configured.

【0004】しかして、通常の運転状態では図7に示す
ように、第1の流路分岐弁8と第2の流路分岐弁9は全
開にし、第3の流路分岐弁10を全閉にする。そして、
この運転状態では圧縮機1で圧縮された圧縮空気は、第
1の配管5および第1の流路分岐弁8を通り、高温ガス
発生装置4へ送られる。この高温ガス発生装置4には、
前記圧縮空気のほかに燃料供給系11より燃料が供給さ
れ、この高温ガス発生装置4で高温ガスが発生する。そ
の高温ガスは、第2の配管6および第2の流路分岐弁9
を通ってガスタービン2に送られる。この高温ガスによ
りガスタービン2が回転駆動され、圧縮機1と発電機3
を駆動し、仕事をする。
However, in a normal operating condition, as shown in FIG. 7, the first flow path branch valve 8 and the second flow path branch valve 9 are fully opened, and the third flow path branch valve 10 is fully closed. To And
In this operating state, the compressed air compressed by the compressor 1 is sent to the high temperature gas generator 4 through the first pipe 5 and the first flow path branch valve 8. In this high temperature gas generator 4,
Fuel is supplied from the fuel supply system 11 in addition to the compressed air, and the high temperature gas generator 4 generates high temperature gas. The high-temperature gas is supplied to the second pipe 6 and the second flow path branch valve 9
To the gas turbine 2. The gas turbine 2 is rotationally driven by this high temperature gas, and the compressor 1 and the generator 3
Drive and do the work.

【0005】そして、通常の運転状態からガスタービン
2および圧縮機1を停止させるとき、または異常発生に
伴いガスタービン2および圧縮機1を停止させるとき
は、図8に示すように、第3の流路分岐弁10を全開に
し、第1の流路分岐弁8と第2の流路分岐弁9を全閉に
する。この状態では、圧縮機1から出た圧縮空気は第1
の配管5からバイパスである第3の配管7および第3の
流路分岐弁10を通り、第2の配管6を経てガスタービ
ン2に流れる。これにより、圧縮機1から高温ガス発生
装置4への圧縮空気の供給を遮断し、かつ高温ガス発生
装置4からガスタービン2への高温ガスの供給を遮断し
たうえで、ガスタービン2と圧縮機1を停止させるよう
にしている。
When the gas turbine 2 and the compressor 1 are stopped from the normal operating state, or when the gas turbine 2 and the compressor 1 are stopped due to the occurrence of an abnormality, as shown in FIG. The flow path branch valve 10 is fully opened, and the first flow path branch valve 8 and the second flow path branch valve 9 are fully closed. In this state, the compressed air discharged from the compressor 1 is
From the pipe 5 to the gas turbine 2 through the third pipe 7 and the third flow path branch valve 10, which are bypasses, and the second pipe 6. As a result, the supply of compressed air from the compressor 1 to the hot gas generator 4 is cut off, and the supply of hot gas from the hot gas generator 4 to the gas turbine 2 is cut off. I am trying to stop 1.

【0006】ところで、この動力装置では図9に拡大し
て示すように、圧縮機1から出た圧縮空気は、第2の配
管6に連結されたガスタービン入口ガス室12の外周を
通り、第1の配管5に流れて行く。ここで、通常運転時
にはガスタービン入口ガス室12の外側に、圧縮機1か
ら出た圧縮空気の圧力が掛かり、内側には高温ガス発生
装置4から出た高温ガスの圧力が掛かっている。すなわ
ち、前記圧縮空気の圧力をP1とし、前記高温ガスの圧
力をP2とするとき、通常運転時は第1,第2の配管
5,6と高温ガス発生装置4等の圧力損失があるため、
P1>P2となっている。
By the way, in this power plant, as shown in an enlarged view in FIG. 9, the compressed air discharged from the compressor 1 passes through the outer periphery of the gas turbine inlet gas chamber 12 connected to the second pipe 6, It flows to the pipe 5 of 1. Here, during normal operation, the pressure of the compressed air discharged from the compressor 1 is applied to the outside of the gas turbine inlet gas chamber 12, and the pressure of the hot gas discharged from the hot gas generator 4 is applied to the inside thereof. That is, when the pressure of the compressed air is P1 and the pressure of the high temperature gas is P2, there is a pressure loss of the first and second pipes 5 and 6 and the high temperature gas generator 4 during normal operation.
P1> P2.

【0007】そして、この動力装置では各機器間のエネ
ルギーのバランスが崩れたときや、いずれかの機器にト
ラブルが発生したときは、次のように制御するようにし
ている。すなわち、例えば高温ガス発生装置4からガス
タービン2へエネルギーの供給が異常に増加した場合、
ガスタービン2には急激な速度変化または負荷の変化が
起こる危険があるため、高温ガス発生装置4とガスター
ビン2とを結ぶ第2の配管6に設けられた第2の流路分
岐弁9を単独で制御し、ガスタービン2に入るエネルギ
ーを減少させる。また、例えば高温ガス発生装置4に異
常が発生した場合には、前記第3の流路分岐弁10を全
閉にし、高温ガス発生装置4からガスタービン2へのエ
ネルギーの供給を遮断するようにしている。さらに、前
記高温ガス発生装置4自体に異常が発生した場合に、圧
縮機1と高温ガス発生装置4とを結ぶ第1の配管5に設
けられた第1の流路分岐弁8を全閉にし、高温ガス発生
装置4への圧縮空気の供給を遮断する。
Further, in this power unit, when the energy balance between the devices is lost or when a trouble occurs in any of the devices, the following control is performed. That is, for example, when the supply of energy from the high temperature gas generator 4 to the gas turbine 2 abnormally increases,
Since there is a risk that a sudden change in speed or a change in load occurs in the gas turbine 2, the second flow path branch valve 9 provided in the second pipe 6 that connects the high temperature gas generator 4 and the gas turbine 2 is installed. It is independently controlled to reduce the energy entering the gas turbine 2. Further, for example, when an abnormality occurs in the high temperature gas generator 4, the third flow path branch valve 10 is fully closed to shut off the energy supply from the high temperature gas generator 4 to the gas turbine 2. ing. Further, when an abnormality occurs in the high temperature gas generator 4 itself, the first flow path branch valve 8 provided in the first pipe 5 connecting the compressor 1 and the high temperature gas generator 4 is fully closed. The supply of compressed air to the high temperature gas generator 4 is shut off.

【0008】[0008]

【発明が解決しようとする課題】ところで、前記動力装
置における流路分岐弁の制御に際して、従来次のような
問題があった。
By the way, in controlling the flow path branch valve in the power plant, there have been the following problems conventionally.

【0009】(1)例えば、高温ガス発生装置4の異常
発生時に、圧縮機1と高温ガス発生装置4とを結ぶ第1
の配管5に設けられた第1の流路分岐弁8のみを急激に
閉じると、圧縮機1は慣性があるために急には停止する
ことができず、圧縮空気の行き場所がなくなる。
(1) For example, when an abnormality occurs in the high temperature gas generator 4, the first connecting the compressor 1 and the high temperature gas generator 4
If only the first flow path branch valve 8 provided in the pipe 5 is abruptly closed, the compressor 1 cannot be stopped suddenly because of inertia, and there is no place for the compressed air to go.

【0010】(2)また、高温ガス発生装置4とガスタ
ービン2とを結ぶ第2の配管6に設けられた第2の流路
分岐弁9のみを最初に閉じると、図9から分かるよう
に、圧縮空気の圧力P1と高温ガスの圧力P2とがP1
>>P2となり、圧縮空気の圧力P1によりつぶされる
可能性がある。
(2) Further, when only the second flow path branch valve 9 provided in the second pipe 6 connecting the high temperature gas generator 4 and the gas turbine 2 is first closed, as can be seen from FIG. , The pressure P1 of the compressed air and the pressure P2 of the hot gas are P1
>> P2, which may be crushed by the pressure P1 of the compressed air.

【0011】(3)第1,第2,第3の流路分岐弁8,
9,10の駆動源として、例えば流体圧や電気を用いた
場合、その駆動源が喪失してしまったとき、ガスタービ
ン2は高温ガス発生装置4から吐き出される高温ガスが
なくなるまで、停止することができなくなる。
(3) First, second and third flow path branch valves 8,
When, for example, fluid pressure or electricity is used as the drive source for the motors 9 and 10, when the drive source is lost, the gas turbine 2 should be stopped until there is no hot gas discharged from the hot gas generator 4. Can not be.

【0012】本発明の目的は、動力装置における第1,
第2,第3の流路分岐弁の順序動作を明確に規定し、動
力装置の異常発生に際しても、ガスタービンと圧縮機を
安全に停止させ得る流路分岐弁の制御方法を提供するこ
とにある。
An object of the present invention is to provide a first and a first power plant.
To provide a flow path branch valve control method that clearly defines the sequential operation of the second and third flow path branch valves and can safely stop the gas turbine and the compressor even when an abnormality occurs in the power plant. is there.

【0013】本発明の他の目的は、前記本発明方法を的
確に実施し得る流路分岐弁の制御装置を提供することに
ある。
Another object of the present invention is to provide a control device for a flow path branch valve, which can accurately carry out the method of the present invention.

【0014】本発明のさらに他の目的は、第1,第2,
第3の流路分岐弁の駆動源として流体圧または電気を用
いた場合に、その駆動源が喪失しても、各流路分岐弁を
確実に作動させ得る流路分岐弁の制御装置を提供するこ
とにある。
Still another object of the present invention is to provide first, second and third objects.
Provided is a flow path branch valve control device capable of reliably operating each flow path branch valve when fluid pressure or electricity is used as a drive source for the third flow path branch valve, even if the drive source is lost. To do.

【0015】[0015]

【課題を解決するための手段】前記目的は、ガスタービ
ンと圧縮機を停止させる際、最初に第3の流路分岐弁を
開いたのち、第1,第2の流路分岐弁を同時に閉じるよ
うにしたことにより、達成される。
The object of the invention is to open the third flow path branch valve first and then close the first and second flow path branch valves at the same time when the gas turbine and the compressor are stopped. This is achieved by doing so.

【0016】また、前記目的は前記ガスタービンと圧縮
機を停止させる際、最初に第3の流路分岐弁を開いたの
ち、第1,第2の流路分岐弁を同時に閉動作させ、かつ
第1の流路分岐弁の閉速度に対して第2の流路分岐弁の
閉速度を漸次遅らせることにより、達成される。
Further, when the gas turbine and the compressor are stopped, the object is to first open the third flow path branch valve, and then simultaneously close the first and second flow path branch valves, and This is achieved by gradually delaying the closing speed of the second passage branch valve with respect to the closing speed of the first passage branch valve.

【0017】さらに、前記目的は前記ガスタービンと圧
縮機を停止させる際、最初に第3の流路分岐弁を開き、
次に第1の流路分岐弁を閉じ、ついで第2の流路分岐弁
を閉じるようにしたことにより、達成される。
Further, the purpose is to first open the third flow path branch valve when stopping the gas turbine and the compressor,
This is achieved by closing the first flow path branch valve and then closing the second flow path branch valve.

【0018】そして、前記目的は前記第1,第2,第3
の流路分岐弁を制御部に接続し、この制御部を、ガスタ
ービンと圧縮を停止させる際、最初に第3の流路分岐弁
を開動作させ、次に第1,第2の流路分岐弁を同時に閉
動作させる順序動作で制御可能に構成したことにより、
達成される。
The above-mentioned objects are the first, second, and third.
The flow path branch valve of is connected to a control unit, and when the control unit stops the compression with the gas turbine, first, the third flow path branch valve is opened, and then the first and second flow paths are opened. By configuring it so that it can be controlled by the sequential operation of closing the branch valves at the same time,
To be achieved.

【0019】また、前記目的は前記第1,第2,第3の
流路分岐弁を制御部に接続し、この制御部を、ガスター
ビンと圧縮機を停止させる際、最初に第3の流路分岐弁
を開動作させ、次に第1,第2の流路分岐弁を同時に閉
動作させ、しかも第1の流路分岐弁の閉速度に対して第
2の流路分岐弁の閉動作を漸次遅らせて制御可能に構成
したことにより、達成される。
Further, the above-mentioned object is to connect the first, second and third flow path branch valves to a control unit, and when this control unit is used to stop the gas turbine and the compressor, the third flow The flow branch valve is opened, then the first and second flow branch valves are simultaneously closed, and the second flow branch valve is closed with respect to the closing speed of the first flow branch valve. This is achieved by arranging the controllable delay to controllable.

【0020】さらに、前記目的は前記第1,第2,第3
の流路分岐弁を制御部に接続し、この制御部を、ガスタ
ービンと圧縮機を停止させる際、最初に第3の流路分岐
弁を開動作させ、次に第1の流路分岐弁を閉動作させ、
ついで第2の流路分岐弁を閉動作させる順序動作で制御
可能に構成したことによっても、達成される。
Further, the above-mentioned objects are the above-mentioned first, second, and third.
The flow passage branch valve of No. 1 is connected to a control unit, and when this control unit stops the gas turbine and the compressor, first the third flow passage branch valve is opened, and then the first flow passage branch valve. To close the
This can also be achieved by arranging the second flow path branch valve so that the second flow path branch valve can be controlled by a sequential operation.

【0021】さらにまた、前記目的は前記第1,第2,
第3の流路分岐弁に、流体圧と電気のいずれかを駆動源
としかつ制御部により制御される通常時の駆動部と、前
記駆動源が喪失したときに機械的に作動する非常時の駆
動部とを付設したことにより、達成される。
Furthermore, the above-mentioned objects are the above-mentioned first, second, and
The third flow path branch valve uses a drive source of either fluid pressure or electricity as a drive source and is controlled by a control unit at a normal time, and an emergency unit that operates mechanically when the drive source is lost. This is achieved by providing a drive unit.

【0022】そして、前記目的は前記第1,第2,第3
の流路分岐弁を各々複数個設置し、かつ各々の流路分岐
弁に流量調整可能な弁を用い、しかも各々の流路分岐弁
を独立に動作可能な弁としたことにより、達成される。
The above-mentioned objects are the above-mentioned first, second, and third.
It is achieved by installing a plurality of flow path branch valves, using a flow rate adjustable valve for each flow path branch valve, and making each flow path branch valve independently operable. .

【0023】さらに、前記目的は少なくとも前記第3の
流路分岐弁に、この第3の流路分岐弁の開動作を検知し
かつ検知信号を制御部に送り込む検知手段を設け、前記
制御部を、検知手段から送り込まれた検知信号に基づい
て前記第1,第2の流路分岐弁を閉動作させるように構
成したことにより、達成される。
Further, for the above-mentioned purpose, at least the third flow path branch valve is provided with detection means for detecting an opening operation of the third flow path branch valve and sending a detection signal to the control section, and the control section is provided. This is achieved by configuring the first and second flow path branch valves to close based on the detection signal sent from the detection means.

【0024】[0024]

【作用】本発明で対象とする動力装置では、通常運転時
は圧縮機と高温ガス発生装置とを結ぶ第1の配管に設け
られた第1の流路分岐弁は全開とされ、高温ガス発生装
置とガスタービンとを結ぶ第2の配管に設けられた第2
の流路分岐弁も全開とされ、第1,第2の配管を結んで
いる第3の配管に設けられた第3の流路分岐弁は全閉と
されている。
In the power plant to which the present invention is applied, the first flow path branch valve provided in the first pipe connecting the compressor and the high temperature gas generator is fully opened during normal operation to generate the high temperature gas. A second pipe provided in a second pipe connecting the device and the gas turbine
The flow path branch valve is also fully opened, and the third flow path branch valve provided in the third pipe connecting the first and second pipes is fully closed.

【0025】ここで、動力装置の異常発生時や何らかの
事情でガスタービンと圧縮機を停止させるとき、本発明
制御方法では、まず最初に前記第3の流路分岐弁を開
く。次に、前記第1の流路分岐弁と第2の流路分岐弁と
を同時に閉じる。
Here, when the gas turbine and the compressor are stopped due to an abnormality in the power plant or for some reason, the control method of the present invention first opens the third flow path branch valve. Next, the first flow path branch valve and the second flow path branch valve are closed at the same time.

【0026】これにより、圧縮機から出た圧縮空気は、
第1の配管→第3の配管および第3の流路分岐弁→第2
の配管を通ってガスタービン入口ガス室内に入る。この
ように、前記第1,第2,第3の流路分岐弁の順序動作
を明確にすることによって、圧縮機を停止させたときの
慣性により圧縮された圧縮空気の行き場所がなくなるこ
とによる不具合を解消することができるし、ガスタービ
ン入口ガス室の外側の圧力に対して内側の圧力が異常に
低下することにより、ガスタービン入口ガス室がつぶさ
れる不具合も解消することができる。したがって、動力
装置の異常発生時や何らかの事情によりガスタービンと
圧縮機を停止させる際、これらガスタービンと圧縮機を
安全に停止させることができる。
As a result, the compressed air discharged from the compressor is
1st piping-> 3rd piping and 3rd flow path branch valve-> 2nd
Into the gas turbine inlet gas chamber through the pipe. In this way, by clarifying the sequential operation of the first, second, and third flow path branch valves, the compressed air compressed due to inertia when the compressor is stopped is lost. It is possible to solve the problem, and it is also possible to solve the problem that the gas turbine inlet gas chamber is crushed due to an abnormal decrease in the inner pressure with respect to the pressure outside the gas turbine inlet gas chamber. Therefore, when an abnormality occurs in the power plant or when the gas turbine and the compressor are stopped for some reason, the gas turbine and the compressor can be safely stopped.

【0027】また、本発明制御方法では、ガスタービン
と圧縮機を停止させるとき、最初に前記第3の流路分岐
弁を開き、次に前記第1,第2の流路分岐弁を閉じる
が、第1の流路分岐弁の閉速度に対して第2の流路分岐
弁の閉速度を遅らせるようにしている。
According to the control method of the present invention, when the gas turbine and the compressor are stopped, the third flow passage branch valve is first opened, and then the first and second flow passage branch valves are closed. The closing speed of the second passage branch valve is delayed with respect to the closing speed of the first passage branch valve.

【0028】その結果、第1の流路分岐弁の全閉時間よ
りも第2の流路分岐弁の全閉時間が遅れるため、ガスタ
ービン入口ガス室の外側と内側の圧力差をより一層小さ
くすることができる。したがって、本発明制御方法では
ガスタービンと圧縮機を停止させる際、これらガスター
ビンと圧縮機をより一層安全に停止させることができ
る。
As a result, the fully closed time of the second flow path branch valve is delayed from the fully closed time of the first flow path branch valve, so that the pressure difference between the outside and the inside of the gas turbine inlet gas chamber is further reduced. can do. Therefore, according to the control method of the present invention, when stopping the gas turbine and the compressor, the gas turbine and the compressor can be stopped more safely.

【0029】さらに、本発明制御方法ではガスタービン
と圧縮機を停止させる際、まず最初に第3の流路分岐弁
を開き、次に第1の流路分岐弁を閉じ、ついで第2の流
路分岐弁を閉じるようにしている。
Furthermore, in the control method of the present invention, when the gas turbine and the compressor are stopped, first the third flow path branch valve is opened, then the first flow path branch valve is closed, and then the second flow path is closed. The branch valve is closed.

【0030】その結果、本発明制御方法によっても、ガ
スタービン入口ガス室の外側と内側の圧力差をより一層
小さくすることができるので、ガスタービン入口ガス室
の内,外の圧力差により、ガスタービン入口ガス室がつ
ぶされる不具合をより一層確実に解消し、ガスタービン
と圧縮機を安全に停止させることができる。
As a result, the control method of the present invention can further reduce the pressure difference between the outside and the inside of the gas turbine inlet gas chamber. The problem that the turbine inlet gas chamber is crushed can be eliminated more reliably, and the gas turbine and the compressor can be stopped safely.

【0031】そして、本発明制御装置では第1,第2,
第3の流路分岐弁を制御部に接続している。しかして、
ガスタービンと圧縮機を停止させる際、前記制御部によ
りまず最初に第3の流路分岐弁を開き、次に第1の流路
分岐弁と第2の流路分岐弁を同時に閉じるように制御す
る。
In the control device of the present invention, the first, second, and
The third flow path branch valve is connected to the control unit. Then,
When stopping the gas turbine and the compressor, the control unit controls the first flow path branch valve to be opened first, and then the first flow path branch valve and the second flow path branch valve to be simultaneously closed. To do.

【0032】これにより、ガスタービンと圧縮機を停止
させたときの、圧縮機の慣性により圧縮された圧縮空気
を第1の配管→第3の配管および第3の流路分岐弁→第
2の配管を通り、ガスタービン入口ガス室内に確実に導
くことができる。したがって、本発明制御装置によれ
ば、前記本発明制御方法を的確に実施することができ
る。
As a result, when the gas turbine and the compressor are stopped, the compressed air compressed by the inertia of the compressor is transferred to the first pipe → the third pipe and the third flow path branch valve → the second pipe. It can be reliably guided through the pipe into the gas turbine inlet gas chamber. Therefore, according to the control device of the present invention, the control method of the present invention can be implemented accurately.

【0033】また、本発明制御装置ではガスタービンと
圧縮機を停止させる際、制御部によりまず最初に第3の
流路分岐弁を開ける。次に、同制御部により第1の流路
分岐弁と第2の流路分岐弁を同時に閉じるが、第1の流
路分岐弁の閉速度に対して第2の流路分岐弁の閉速度を
遅らせる。その結果、第1の流路分岐弁の全閉時間に対
して第2の流路分岐弁の全閉時間が遅れることになる。
Further, in the control apparatus of the present invention, when the gas turbine and the compressor are stopped, the control section first opens the third flow path branch valve. Next, the first flow path branch valve and the second flow path branch valve are simultaneously closed by the control unit, but the closing speed of the second flow path branch valve with respect to the closing speed of the first flow path branch valve. Delay. As a result, the fully closed time of the second flow path branch valve is delayed with respect to the fully closed time of the first flow path branch valve.

【0034】このように、本発明制御装置においても、
制御部により第1,第2,第3の流路分岐弁の順序動作
を明確にすることができ、前記本発明制御方法を的確に
実施化することができる。
Thus, also in the control device of the present invention,
The control unit can clarify the sequential operation of the first, second, and third flow path branch valves, and can properly implement the control method of the present invention.

【0035】さらに、本発明制御装置ではガスタービン
と圧縮機を停止させる際、制御部により最初に第3の流
路分岐弁を開ける。次に、同制御部により第1の流路分
岐弁を閉じ、ついで第2の流路分岐弁を閉じるようにし
ている。
Further, in the control apparatus of the present invention, when the gas turbine and the compressor are stopped, the control section first opens the third flow path branch valve. Next, the control unit closes the first flow path branch valve and then closes the second flow path branch valve.

【0036】したがって、本発明制御装置においても、
制御部により第1,第2,第3の流路分岐弁の順序動作
を明確にすることができ、前記本発明制御方法を的確に
実施化することができる。
Therefore, also in the control device of the present invention,
The control unit can clarify the sequential operation of the first, second, and third flow path branch valves, and can properly implement the control method of the present invention.

【0037】さらにまた、本発明制御装置では第1,第
2,第3の流路分岐弁の通常の駆動部と、非常時の駆動
部とを有している。前記通常時の駆動部は、駆動源とし
て流体圧または電気を用い、制御部で制御するようにな
っている。前記非常時の駆動部は、前記駆動源が喪失し
たとき、当該流路分岐弁を機械的に作動するようになっ
ている。
Furthermore, the control device of the present invention has a normal drive section for the first, second and third flow path branch valves and an emergency drive section. The drive unit in the normal state uses fluid pressure or electricity as a drive source and is controlled by the control unit. The emergency drive unit mechanically operates the flow path branch valve when the drive source is lost.

【0038】このように、本発明制御装置では第1,第
2,第3の流路分岐弁に、非常時に機械的に作動する駆
動部を付設しているので、各流路分岐弁の駆動源として
流体圧または電気を用いた場合に、その駆動源が喪失し
ても、各流路分岐弁を確実に作動させることができる。
As described above, in the control device of the present invention, since the first, second, and third flow path branch valves are provided with the drive units that mechanically operate in an emergency, the drive of each flow path branch valve is performed. When fluid pressure or electricity is used as the power source, each flow path branch valve can be reliably operated even if the drive source is lost.

【0039】そして、本発明制御装置では第1,第2,
第3の流路分岐弁を各々複数個ずつ設置している。ま
た、各流路分岐弁に流量調整可能な弁を用い、しかも各
流路分岐弁を独立に動作可能としている。
In the control device of the present invention, the first, second and
A plurality of third flow path branch valves are installed. Further, a valve whose flow rate can be adjusted is used for each flow path branch valve, and each flow path branch valve can be operated independently.

【0040】このように、第1,第2,第3の流路分岐
弁をそれぞれ複数個の弁で構成しているので、1個の弁
が故障しても動力装置を安全に運転できるし、各流路分
岐弁に流量調整可能な弁を用いているので、動力装置の
エネルギーバランスが崩れたときでも、ガスタービンに
入るエネルギー供給量を調整できる結果、動力装置全体
を安全に運転することができる。
As described above, since the first, second and third flow path branch valves are each composed of a plurality of valves, the power plant can be operated safely even if one valve fails. Since a flow rate adjustable valve is used for each flow path branch valve, even if the energy balance of the power plant is lost, the amount of energy supplied to the gas turbine can be adjusted, resulting in safe operation of the entire power plant. You can

【0041】さらに、本発明制御装置では少なくとも前
記第3の流路分岐弁に、この流路分岐弁の開動作を検知
する検知手段を設けている。そして、この検知手段は前
記第3の流路分岐弁の開動作を検知すると、その検知信
号を制御部に送り込む。この制御部では、前記検知手段
から送り込まれた検知信号に基づいて前記第1,第2の
流路分岐弁を閉動作させる。
Further, in the control device of the present invention, at least the third flow path branch valve is provided with detection means for detecting the opening operation of the flow path branch valve. When the detecting means detects the opening operation of the third flow path branch valve, it sends the detection signal to the control section. In this control unit, the first and second flow path branch valves are closed based on the detection signal sent from the detection means.

【0042】したがって、本発明のこの制御装置によれ
ば、第1,第2,第3の流路分岐弁の順序動作をより一
層明確に規定することができる。
Therefore, according to this control device of the present invention, the sequential operation of the first, second and third flow path branch valves can be more clearly defined.

【0043】[0043]

【実施例】以下、本発明の実施例を図面により説明す
る。
Embodiments of the present invention will be described below with reference to the drawings.

【0044】(実施例1)図1は本発明の実施例1の説
明図であって、第1,第2,第3の流路分岐弁の順序動
作を示すダイヤグラムである。
(Embodiment 1) FIG. 1 is an explanatory view of Embodiment 1 of the present invention, and is a diagram showing the sequential operation of the first, second and third flow path branch valves.

【0045】動力装置の通常運転時には、図7に示すよ
うに、圧縮機1と高温ガス発生装置4とを結ぶ第1の配
管5に設けられた第1の流路分岐弁8は全開、高温ガス
発生装置4とガスタービン2とを結ぶ第2の配管6に設
けられた第2の流路分岐弁9も全開、前記第1の配管5
と第2の配管6間を結んでいる第3の配管7に設けられ
た第3の流路分岐弁10は全閉となっている。
During normal operation of the power unit, as shown in FIG. 7, the first flow path branch valve 8 provided in the first pipe 5 connecting the compressor 1 and the high temperature gas generator 4 is fully opened and high temperature is reached. The second flow path branch valve 9 provided in the second pipe 6 that connects the gas generator 4 and the gas turbine 2 is also fully opened, and the first pipe 5 is used.
The third flow path branch valve 10 provided in the third pipe 7 connecting between the second pipe 6 and the second pipe 6 is fully closed.

【0046】この状態から、動力装置の異常発生時また
は他の事情で図1に示すように、トリップ信号が発せら
れると、その時点から所定の時間遅れDTをおいて、制
御部(図示せず)によりまず最初に第3の流路分岐弁1
0を開く。次に、第3の流路分岐弁10の開動作から所
定の時間遅れDT′をおいて、同制御部により第1の流
路分岐弁8と第2の流路分岐弁9を同時に閉じる。そし
て、同制御部により第1の流路分岐弁8の閉速度に対し
て第2の流路分岐弁9の閉速度を漸次遅らせる。
From this state, when a trip signal is issued as shown in FIG. 1 when an abnormality occurs in the power plant or in other circumstances, a control unit (not shown) delays a predetermined time DT from that point. ) Firstly, the third flow path branch valve 1
Open 0. Next, after a predetermined time delay DT 'from the opening operation of the third flow path branch valve 10, the control section simultaneously closes the first flow path branch valve 8 and the second flow path branch valve 9. Then, the control unit gradually delays the closing speed of the second passage branch valve 9 with respect to the closing speed of the first passage branch valve 8.

【0047】したがって、第1の流路分岐弁8の全閉時
間に対して第2の流路分岐弁9の全閉時間が遅れること
になる。
Therefore, the fully closed time of the second flow path branch valve 9 is delayed with respect to the fully closed time of the first flow path branch valve 8.

【0048】なお、第1の流路分岐弁8と第2の流路分
岐弁9の閉速度の調整は、制御部の構成部材として、例
えば第1,第2の流路分岐弁8,9の駆動源として流体
圧を用いる場合には、流体の流量を制御する流量調節弁
を設けるか、可変オリフィスを挿入する等の手段により
行うことができる。
The adjustment of the closing speeds of the first flow path branch valve 8 and the second flow path branch valve 9 is performed by, for example, the first and second flow path branch valves 8 and 9 as a component of the control unit. When the fluid pressure is used as the drive source of the above, it can be performed by a means such as providing a flow rate control valve for controlling the flow rate of the fluid or inserting a variable orifice.

【0049】前述のごとく、実施例1ではガスタービン
2と圧縮機1を停止させる際、最初に第3の流路分岐弁
10を開いたのち、第1,第2の流路分岐弁8,9を同
時に閉動作させ、かつ第1の流路分岐弁8の閉速度に対
して第2の流路分岐弁9の閉速度を漸次遅らせるように
していることにより、圧縮機1から出た圧縮空気を、図
7および図8に示す第1の配管5→第3の配管7および
第3の流路分岐弁10→第2の配管6を通って、図9に
示すガスタービン入口ガス室12内に入れることができ
る。
As described above, in the first embodiment, when the gas turbine 2 and the compressor 1 are stopped, the third flow path branch valve 10 is first opened, and then the first and second flow path branch valves 8, 9 is closed at the same time, and the closing speed of the second flow path branch valve 9 is gradually delayed with respect to the closing speed of the first flow path branch valve 8. Air is passed through the first pipe 5 shown in FIGS. 7 and 8 → the third pipe 7 and the third flow path branch valve 10 → the second pipe 6 to pass through the gas turbine inlet gas chamber 12 shown in FIG. Can be put inside.

【0050】このように、第1,第2,第3の流路分岐
弁8,9,10の順序動作を明確にすることにより、圧
縮機1を停止させたときの、圧縮機1の慣性により圧縮
された圧縮空気の行き場所がなくなることによる不具合
を解消することができる。また、ガスタービン入口ガス
室12の外側と内側の圧力差により、ガスタービン入口
ガス室12がつぶれる不具合も解消することができる。
したがって、この実施例1ではガスタービン2と圧縮機
1を停止させる際、これらガスタービン2と圧縮機1を
安全に停止させることが可能となる。
In this way, by clarifying the sequential operation of the first, second, and third flow path branch valves 8, 9, 10, the inertia of the compressor 1 when the compressor 1 is stopped As a result, it is possible to solve the problem that the compressed compressed air has no place to go. Further, it is possible to eliminate the problem that the gas turbine inlet gas chamber 12 is collapsed due to the pressure difference between the outside and the inside of the gas turbine inlet gas chamber 12.
Therefore, in the first embodiment, when the gas turbine 2 and the compressor 1 are stopped, it is possible to safely stop the gas turbine 2 and the compressor 1.

【0051】なお、この実施例1において、第1,第2
の流路分岐弁8,9の閉速度を等しくし、同時に全閉状
態になるようにしてもよい。
In the first embodiment, the first and second
Alternatively, the flow passage branch valves 8 and 9 may be closed at the same speed so that the flow passage branch valves 8 and 9 are in the fully closed state at the same time.

【0052】(実施例2)次に、図2は本発明の実施例
2の説明図であって、第1,第2,第3の流路分岐弁の
順序動作を示すダイヤグラムである。
(Embodiment 2) Next, FIG. 2 is an explanatory view of Embodiment 2 of the present invention and is a diagram showing the sequential operation of the first, second and third flow path branch valves.

【0053】この図2に示す実施例2では、ガスタービ
ン2と圧縮機1を停止させる際、トリップ信号が発せら
れた時点から所定の時間遅れDTをおいて、制御部(図
示せず)によりまず最初に第3の流路分岐弁10を開
く。そして、前記第3の流路分岐弁10の開動作を検知
したのち、時間遅れDTをおいて、同制御部により第1
の流路分岐弁8を閉じる。続いて、前記第3の流路分岐
弁10の開動作を検知したのち、時間遅れDTをおい
て、同制御部により第2の流路分岐弁9を閉じる。な
お、この実施例2では第1,第2の流路分岐弁8,9の
閉速度は、ほぼ同じに設定している。
In the second embodiment shown in FIG. 2, when the gas turbine 2 and the compressor 1 are stopped, a control unit (not shown) sets a predetermined time delay DT after the trip signal is issued. First, the third flow path branch valve 10 is opened. Then, after the opening operation of the third flow path branch valve 10 is detected, a time delay DT is set, and the first control is performed by the control unit.
The flow path branch valve 8 is closed. Then, after detecting the opening operation of the third flow path branch valve 10, the control section closes the second flow path branch valve 9 after a time delay DT. In the second embodiment, the closing speeds of the first and second flow path branch valves 8 and 9 are set to be substantially the same.

【0054】前記第3の流路分岐弁10の開動作の検知
は、例えば開閉動作する弁体側に接触子を設け、固定部
材側にリミットスイッチを設けた検知手段により行うこ
とができる。
The detection of the opening operation of the third flow path branch valve 10 can be performed by, for example, a detection means having a contact on the valve body side for opening and closing and a limit switch on the fixed member side.

【0055】前述のごとく、この実施例2ではガスター
ビン2と圧縮機1を停止させる際、最初に第3の流路分
岐弁10を開き、次に第1の流路分岐弁8を閉じ、つい
で第2の流路分岐弁9を閉じるようにしている。
As described above, in the second embodiment, when the gas turbine 2 and the compressor 1 are stopped, the third flow passage branch valve 10 is first opened, and then the first flow passage branch valve 8 is closed. Then, the second flow path branch valve 9 is closed.

【0056】その結果、この実施例2においては、ガス
タービン入口ガス室12内に、第2の流路分岐弁9が全
閉になるまで、図8および図9に示す第2の配管6を通
じて高温ガス発生装置4から吐出される高温ガスを導入
できるので、ガスタービン入口ガス室12の外側と内側
の圧力差をより一層小さくすることができ、内,外の圧
力差によりガスタービン入口ガス室12がつぶされる不
具合をより一層確実に解消することができる。
As a result, in the second embodiment, the second pipe 6 shown in FIGS. 8 and 9 is passed through the gas turbine inlet gas chamber 12 until the second flow path branch valve 9 is fully closed. Since the high-temperature gas discharged from the high-temperature gas generator 4 can be introduced, the pressure difference between the outside and the inside of the gas turbine inlet gas chamber 12 can be further reduced, and the gas turbine inlet gas chamber can be changed by the pressure difference between the inside and the outside. The problem that 12 is crushed can be eliminated more reliably.

【0057】この実施例2の他の構成,作用について
は、前記実施例1と同様である。
The other structure and operation of the second embodiment are the same as those of the first embodiment.

【0058】(実施例3)ついで、図3〜図5は本発明
の実施例3を示す図であって、第1,第2,第3の流路
分岐弁に用いる蝶型弁を示すもので、図3は一部横断平
面図、図4は図3のA−A線断面図、図5は図3のB矢
視図である。
(Embodiment 3) Next, FIGS. 3 to 5 are views showing Embodiment 3 of the present invention, showing a butterfly valve used for the first, second and third flow path branch valves. 3 is a partially transverse plan view, FIG. 4 is a sectional view taken along the line AA of FIG. 3, and FIG.

【0059】前記第1,第2,第3の流路分岐弁8,
9,10として用いられるこの実施例3に示す蝶型弁
は、ケーシング15と、弁棒16に一体に取り付けられ
た蝶型の弁体17と、ケーシング15における弁棒16
の長さ方向の両側部に設けられた軸封装置18と、二つ
のクランク腕19a,19bを有しかつ前記弁棒16の
一端部に取り付けられたクランク19と、一方のクラン
ク腕19aの端部側に配置された流体圧シリンダ20
と、これに嵌挿されかつ前記一方のクランク腕19aに
連結されたピストンロッド21と、他方のクランク腕1
9bに連結された圧縮ばね22と、制御器24および方
向切換弁25を含む制御部23と、弁体17の開動作を
検知するリミットスイッチ26と、弁棒16の一端部
に、円周方向に間隔をおいて設けられかつリミットスイ
ッチ26に接触可能に設けられた複数個の接触子27と
を備えて構成されている。前記方向切換弁25は、流体
圧供給装置(図示せず)に接続されている。
The first, second and third flow path branch valves 8,
The butterfly type valve shown in the third embodiment used as 9, 10 has a casing 15, a butterfly type valve body 17 integrally attached to a valve rod 16, and a valve rod 16 in the casing 15.
A shaft sealing device 18 provided on both sides in the longitudinal direction of the shaft, a crank 19 having two crank arms 19a and 19b and attached to one end of the valve rod 16, and an end of one crank arm 19a. Fluid pressure cylinder 20 arranged on the side
A piston rod 21 fitted into the crank arm 19a and connected to the one crank arm 19a, and the other crank arm 1
9b, a compression spring 22, a control unit 23 including a controller 24 and a direction switching valve 25, a limit switch 26 for detecting an opening operation of the valve body 17, and a circumferential direction at one end of the valve rod 16. And a plurality of contacts 27 that are provided at intervals and that can contact the limit switch 26. The direction switching valve 25 is connected to a fluid pressure supply device (not shown).

【0060】ところで、この蝶型弁を例えば図7および
図8に示す第3の流路分岐弁10として用いた場合は、
動力装置の通常運転時には全閉とされている。
By the way, when this butterfly valve is used as the third flow path branch valve 10 shown in FIGS. 7 and 8, for example,
It is fully closed during normal operation of the power plant.

【0061】そして、ガスタービン2と圧縮機1を停止
させるときは、例えば図2に示すトリップ信号が発せら
れると、そのトリップ信号は制御器24に送り込まれ
る。そこで、制御器24では所定の時間遅れDTをおい
て、弁体17を開く方向に流体圧シリンダ20へ流体圧
を供給すべく方向切換弁25を切り換える。これによ
り、流体圧シリンダ20はピストンロッド21を制御
し、このピストンロッド21、一方のクランク腕19
a、弁棒16を通じて弁体17を回転させ、第3の流路
分岐弁10としての蝶型弁を例えば図2に示すように全
開まで開く。この第3の流路分岐弁10としての蝶型弁
の開動作時、最初に接触する接触子27とリミットスイ
ッチ26とにより開動作を検知し、その検知信号を制御
器24に送り込む。前記制御器24が最初に第3の流路
分岐弁10の開動作の検知信号を受け取ると、例えば図
2に示す実施例2では所定の時間遅れDTをおいて、第
1の流路分岐弁8の方向切換弁に制御信号を送り、第1
の流路分岐弁8を閉動作させる。ついで、2回目に接触
する接触子27がリミットスイッチ26に接触し、リミ
ットスイッチ26から制御器24が2回目の第3の流路
分岐弁10の開動作の検知信号を受け取ると、例えば図
2に示す実施例2では所定の時間遅れDTをおいて、第
2の流路分岐弁9の方向切換弁に制御信号を送り、第2
の流路分岐弁9を閉動作させる。
When the gas turbine 2 and the compressor 1 are stopped, for example, when the trip signal shown in FIG. 2 is issued, the trip signal is sent to the controller 24. Therefore, the controller 24 switches the direction switching valve 25 in order to supply the fluid pressure to the fluid pressure cylinder 20 in the direction to open the valve body 17 after a predetermined time delay DT. As a result, the fluid pressure cylinder 20 controls the piston rod 21, and the piston rod 21 and one crank arm 19 are controlled.
a, the valve element 17 is rotated through the valve rod 16 to open the butterfly valve as the third flow path branch valve 10 until it is fully opened, as shown in FIG. During the opening operation of the butterfly-shaped valve as the third flow path branch valve 10, the opening operation is detected by the contact 27 and the limit switch 26 that come into contact first, and the detection signal is sent to the controller 24. When the controller 24 first receives the detection signal of the opening operation of the third flow path branch valve 10, for example, in the second embodiment shown in FIG. 2, the first flow path branch valve is delayed by a predetermined time delay DT. The control signal is sent to the directional valve 8
The flow path branch valve 8 is closed. Then, when the contactor 27 that contacts the second time contacts the limit switch 26 and the controller 24 receives a detection signal of the second opening operation of the third flow path branch valve 10 from the limit switch 26, for example, FIG. In the second embodiment shown in (1), a control signal is sent to the directional control valve of the second flow path branch valve 9 after a predetermined time delay DT, and the second
The flow path branch valve 9 is closed.

【0062】また、この実施例3において流体圧供給装
置の故障等により、流体圧が喪失した場合には、圧縮ば
ね22の作用により他方のクランク腕19bが回転制御
され、流体圧シリンダ20による制御と同じように、弁
棒16を通じて弁体17が制御される。
In the third embodiment, when the fluid pressure is lost due to a failure of the fluid pressure supply device or the like, the rotation of the other crank arm 19b is controlled by the action of the compression spring 22, and the control by the fluid pressure cylinder 20 is performed. Similarly, the valve element 17 is controlled through the valve rod 16.

【0063】前記蝶型弁を第1,第2の流路分岐弁8,
9として使用する場合は、動力装置の通常運転時には全
開にセットし、ガスタービン2と圧縮機1を停止させる
際には全開から全閉状態に制御するようにし、圧縮ばね
22は弁体17を閉じる方向に作用するように組み込
む。
The butterfly valve is replaced with the first and second flow path branch valves 8,
When it is used as No. 9, it is set to be fully opened during normal operation of the power plant, and when the gas turbine 2 and the compressor 1 are stopped, it is controlled from fully open to fully closed, and the compression spring 22 causes the valve element 17 to be closed. Install to act in the closing direction.

【0064】なお、この蝶型弁を第1,第2,第3の流
路分岐弁8,9,10に用いて、図1に示す実施例1の
ように制御することも可能である。
It is also possible to use this butterfly valve for the first, second, and third flow path branch valves 8, 9, 10 to control it as in the first embodiment shown in FIG.

【0065】また、この実施例3において、弁棒16の
回転制御を、流体圧シリンダ20に代えて可逆回転式の
電動モータにより行うようにしてもよい。
In the third embodiment, the rotation control of the valve rod 16 may be performed by a reversible rotation type electric motor instead of the fluid pressure cylinder 20.

【0066】さらに、この蝶型弁を第1,第2の流路分
岐弁8,9として使用し、しかも実施例2のように、第
1の流路分岐弁8の閉速度に対して第2の流路分岐弁9
の閉速度を遅らせるような場合には、流体圧シリンダ2
0と方向切換弁25間に流量調節弁や、可変オリフィス
等を設け、流量調整可能に構成するものとする。
Further, this butterfly valve is used as the first and second flow path branch valves 8 and 9, and, as in the second embodiment, the first flow path branch valve 8 is closed with respect to the closing speed. 2 flow path branch valve 9
If the closing speed of the
A flow rate control valve, a variable orifice, or the like is provided between 0 and the direction switching valve 25 so that the flow rate can be adjusted.

【0067】(実施例4)続いて、図6は本発明の実施
例4を示すもので、第1,第2,第3の流路分岐弁に用
いるアングル弁の縦断面図である。
(Embodiment 4) Next, FIG. 6 shows Embodiment 4 of the present invention and is a vertical sectional view of an angle valve used for the first, second and third flow path branch valves.

【0068】この図6に示す実施例4のアングル弁は、
ケーシング30と、このケーシング30に組み付けられ
たアングル型の管路31と、弁座32と、弁体33と、
弁棒34と、前記ケーシング30の軸方向に連結された
検知器取り付け用のスリーブ35と、弁棒34の移動方
向に間隔をおいて配置されかつスリーブ35に取り付け
られた複数個(2個)のリミットスイッチ36と、前記
弁棒34に設けられかつリミットスイッチ36に接触す
る接触子37と、前記スリーブ35に連結された流体圧
シリンダ38と、前記弁棒34に取り付けられかつ流体
圧シリンダ38に嵌合されたピストン39と、流体圧シ
リンダ38のばね受け部とピストン39間に設けられた
圧縮ばね40と、制御器42および方向切換弁43を有
する制御部41とを備えて構成されている。前記方向切
換弁43は、流体圧供給装置(図示せず)に接続されて
いる。
The angle valve of the fourth embodiment shown in FIG. 6 is
A casing 30, an angled pipe line 31 assembled to the casing 30, a valve seat 32, a valve body 33,
A valve stem 34, a detector mounting sleeve 35 connected in the axial direction of the casing 30, and a plurality (two) arranged at intervals in the moving direction of the valve stem 34 and attached to the sleeve 35. Limit switch 36, a contact 37 provided on the valve rod 34 and in contact with the limit switch 36, a fluid pressure cylinder 38 connected to the sleeve 35, and a fluid pressure cylinder 38 attached to the valve rod 34. And a compression spring 40 provided between the spring receiving portion of the fluid pressure cylinder 38 and the piston 39, and a control unit 41 having a controller 42 and a direction switching valve 43. There is. The direction switching valve 43 is connected to a fluid pressure supply device (not shown).

【0069】そして、この実施例4のアングル弁を例え
ば図7および図8に示す第3の流路分岐弁10として使
用した場合は、動力装置の通常運転時には全閉とされて
いる。
When the angle valve of the fourth embodiment is used as, for example, the third flow path branch valve 10 shown in FIGS. 7 and 8, it is fully closed during normal operation of the power plant.

【0070】ついで、ガスタービン2と圧縮機1を停止
させるときは、例えば図2に示すトリップ信号が発せら
れると、そのトリップ信号が制御器42に送り込まれ、
制御器42は所定の時間遅れDTをおいて、弁体33を
開く方向に流体圧シリンダ38へ流体圧を供給すべく方
向切換弁43を切り換える。前述のごとく、方向切換弁
43が切り換えられることにより、ピストン39および
弁棒34を介して弁体33が全開まで開く。この第3の
流路分岐弁10としてのアングル弁の開動作時、接触子
37が最初のリミットスイッチ36から離れたとき、第
3の流路分岐弁10の開動作を検知し、その検知信号を
制御器42に送り込む。前記制御器42では、最初に第
3の流路分岐弁10の開動作の検知信号を受け取ると、
例えば図2に示す実施例2では所定の時間遅れDTをお
いて、第1の流路分岐弁8の方向切換弁に制御信号を送
り、第1の流路分岐弁8を閉動作させる。ついで、接触
子37が次のリミットスイッチ36に接触したとき、そ
のリミットスイッチ36から制御器42へ第3の流路分
岐弁10の2回目の開動作の検知信号を送り込む。ここ
で、制御器42が2回目の第3の流路分岐弁10の開動
作の検知信号を受け取ると、例えば図2に示す実施例2
では所定の時間遅れDTをおいて、第2の流路分岐弁9
の方向切換弁に制御信号を送り、第2の流路分岐弁9を
閉動作させる。
Next, when stopping the gas turbine 2 and the compressor 1, for example, when a trip signal shown in FIG. 2 is issued, the trip signal is sent to the controller 42,
The controller 42 switches the directional control valve 43 to supply the fluid pressure to the fluid pressure cylinder 38 in the direction to open the valve body 33 after a predetermined time delay DT. As described above, by switching the direction switching valve 43, the valve element 33 is opened to the full opening via the piston 39 and the valve rod 34. During the opening operation of the angle valve as the third flow path branch valve 10, when the contact 37 is separated from the first limit switch 36, the opening operation of the third flow path branch valve 10 is detected, and the detection signal thereof is detected. Is sent to the controller 42. When the controller 42 first receives a detection signal of the opening operation of the third flow path branch valve 10,
For example, in the second embodiment shown in FIG. 2, after a predetermined time delay DT, a control signal is sent to the direction switching valve of the first flow path branch valve 8 to close the first flow path branch valve 8. Then, when the contact 37 comes into contact with the next limit switch 36, the limit switch 36 sends a detection signal of the second opening operation of the third flow path branch valve 10 to the controller 42. Here, when the controller 42 receives the detection signal of the second opening operation of the third flow path branch valve 10, for example, the second embodiment shown in FIG.
Then, after a predetermined time delay DT, the second flow path branch valve 9
A control signal is sent to the directional control valve to close the second flow path branch valve 9.

【0071】そして、この実施例4において流体圧供給
装置の故障等により、流体圧が喪失した場合には、圧縮
ばね40の作用によりピストン39が制御され、流体圧
シリンダ38による制御と同じように、弁棒34を通じ
て弁体33が制御される。
In the fourth embodiment, when the fluid pressure is lost due to a failure of the fluid pressure supply device or the like, the piston 39 is controlled by the action of the compression spring 40, similarly to the control by the fluid pressure cylinder 38. The valve element 33 is controlled through the valve rod 34.

【0072】前述のアングル弁を第1,第2の流路分岐
弁8,9として使用する場合は、動力装置の通常運転時
には全開にセットし、ガスタービン2と圧縮機1を停止
させる際には全開から全閉状態に制御するようにし、ま
た圧縮ばね40は弁体33を閉じる方向に組み込むもの
とする。
When the above-mentioned angle valve is used as the first and second flow path branch valves 8 and 9, it is set to full open during normal operation of the power plant, and when the gas turbine 2 and the compressor 1 are stopped. Is controlled from the fully open state to the fully closed state, and the compression spring 40 is incorporated in the direction of closing the valve body 33.

【0073】また、この実施例4のアングル弁を第1,
第2,第3の流路分岐弁8,9,10として使用し、図
1に示す実施例1のように制御することも可能である。
Further, the angle valve of the fourth embodiment is
It is also possible to use it as the second and third flow path branch valves 8, 9, 10 and control it as in the first embodiment shown in FIG.

【0074】[0074]

【発明の効果】以上説明した本発明によれば、次のよう
な効果がある。
The present invention described above has the following effects.

【0075】(請求項1)動力装置のガスタービンと圧
縮機を停止させる際、最初に第3の流路分岐弁を開いた
のち、第1,第2の流路分岐弁を同時に閉じるようにし
ており、前記第1,第2,第3の流路分岐弁の順序動作
を明確に規定しているので、圧縮機を停止させたときの
慣性により圧縮された圧縮空気の行き場所がなくなるこ
とによる不具合を解消することができるし、ガスタービ
ン入口ガス室の外側の圧力に対して内側の圧力が異常に
低下することにより、ガスタービン入口ガス室がつぶさ
れる不具合も解消することができる結果、動力装置の異
常発生時や何らかの事情によりガスタービンと圧縮機を
停止させる際、これらガスタービンと圧縮機を安全に停
止させ得る効果がある。
(Claim 1) When stopping the gas turbine and the compressor of the power plant, first open the third flow path branch valve, and then simultaneously close the first and second flow path branch valves. Since the sequential operation of the first, second, and third flow path branch valves is clearly defined, the compressed air compressed due to inertia when the compressor is stopped does not have a place to go. As a result, it is possible to solve the problem that the gas turbine inlet gas chamber is crushed by the abnormal decrease in the inner pressure with respect to the outer pressure of the gas turbine inlet gas chamber. There is an effect that the gas turbine and the compressor can be safely stopped at the time of stopping the gas turbine and the compressor when an abnormality occurs in the power plant or for some reason.

【0076】(請求項2)動力装置のガスタービンと圧
縮機を停止させる際、最初に第3の流路分岐弁を開いた
のち、第1,第2の流路分岐弁を同時に閉動作させ、か
つ第1の流路分岐弁の閉速度に対して第2の流路分岐弁
の閉速度を漸次遅らせるようにしているので、ガスター
ビンと圧縮機を停止させる際、これらガスタービンと圧
縮機をより一層安全に停止させ得る効果がある。
(Claim 2) When stopping the gas turbine and the compressor of the power plant, first open the third flow path branch valve, and then simultaneously close the first and second flow path branch valves. Since the closing speed of the second flow path branch valve is gradually delayed with respect to the closing speed of the first flow path branch valve, when the gas turbine and the compressor are stopped, the gas turbine and the compressor are closed. There is an effect that it can be stopped more safely.

【0077】(請求項3)動力装置のガスタービンと圧
縮機を停止させる際、最初に第3の流路分岐弁を開き、
次に第1の流路分岐弁を閉じ、ついで第2の流路分岐弁
を閉じるようにしているので、ガスタービン入口ガス室
の内,外の圧力差によりガスタービン入口ガス室がつぶ
される不具合をより一層確実に解消し、ガスタービンと
圧縮機を安全に停止させ得る効果がある。
(Claim 3) When stopping the gas turbine and the compressor of the power unit, first open the third flow path branch valve,
Next, since the first flow path branch valve is closed and then the second flow path branch valve is closed, the gas turbine inlet gas chamber is crushed due to the pressure difference between the inside and the outside of the gas turbine inlet gas chamber. Is more reliably eliminated, and the gas turbine and the compressor can be stopped safely.

【0078】(請求項4)前記第1,第2,第3の流路
分岐弁を制御部に接続し、この制御部を、前記ガスター
ビンと圧縮機を停止させる際、最初に第3の流路分岐弁
を開動作させ、次に第1,第2の流路分岐弁を同時に閉
動作させる順序動作で制御するように構成しているの
で、前記請求項1記載の制御方法を的確に実施し得る効
果がある。
(Claim 4) The first, second, and third flow path branch valves are connected to a control unit, and when the control unit stops the gas turbine and the compressor, first the third flow path branch valve is connected to the control unit. Since the flow path branch valve is opened, and then the first and second flow path branch valves are closed at the same time, the control method according to claim 1 is appropriately performed. There are effects that can be implemented.

【0079】(請求項5)前記第1,第2,第3の流路
分岐弁を制御部に接続し、この制御部を、前記ガスター
ビンと圧縮機を停止させる際、最初に第3の流路分岐弁
を開動作させ、次に第1,第2の流路分岐弁を同時に閉
動作させ、しかも第1の流路分岐弁の閉速度に対して第
2の流路分岐弁の閉動作を漸次遅らせて制御するように
構成しているので、前記請求項2記載の制御方法を的確
に実施し得る効果がある。
(Claim 5) The first, second, and third flow path branch valves are connected to a control unit, and when the control unit stops the gas turbine and the compressor, first the third flow path branch valve is connected to the control unit. The flow path branch valve is opened, then the first and second flow path branch valves are simultaneously closed, and the second flow path branch valve is closed with respect to the closing speed of the first flow path branch valve. Since the operation is controlled to be gradually delayed, there is an effect that the control method according to the second aspect can be properly implemented.

【0080】(請求項6)前記第1,第2,第3の流路
分岐弁を制御部に接続し、この制御部を、前記ガスター
ビンと圧縮機を停止させる際、最初に第3の流路分岐弁
を開動作させ、次に第1の流路分岐弁を閉動作させ、つ
いで第2の流路分岐弁を閉動作させる順序動作で制御す
るように構成しているので、前記請求項3記載の制御方
法を的確に実施し得る効果がある。
(Claim 6) The first, second, and third flow path branch valves are connected to a control unit, and when the control unit stops the gas turbine and the compressor, first the third flow path branch valve is connected to the control unit. Since the flow path branch valve is operated to open, the first flow path branch valve is then closed, and then the second flow path branch valve is closed, the control is performed in a sequential operation. There is an effect that the control method described in the item 3 can be implemented accurately.

【0081】(請求項7)前記第1,第2,第3の流路
分岐弁に、流体圧と電気のいずれかを駆動源としかつ制
御部により制御される通常時の駆動部と、前記駆動源が
喪失したときに機械的に作動する非常時の駆動部とを付
設しているので、第1,第2,第3の流路分岐弁の駆動
源である流体圧や電気が喪失しても、機械的に作動する
非常時の駆動部の作用により、第1,第2,第3の流路
分岐弁を確実に作動させ得る効果がある。
(Claim 7) In the first, second, and third flow path branch valves, a normal-time drive unit that uses either fluid pressure or electricity as a drive source and is controlled by a control unit, and Since an emergency drive unit that mechanically operates when the drive source is lost is attached, the fluid pressure and electricity that are the drive sources of the first, second, and third flow path branch valves are lost. However, there is an effect that the first, second, and third flow path branch valves can be reliably operated by the action of the mechanically operating emergency drive unit.

【0082】(請求項8)前記第1,第2,第3の流路
分岐弁を各々複数個設置し、かつ各々の流路分岐弁に流
量調整可能な弁を用い、しかも各々の流路分岐弁を独立
に動作可能な弁としているので、第1,第2,第3の流
路分岐弁とも、1個の弁が故障した場合でも、動力装置
を安全に運転できるし、各流路分岐弁に流量調整可能な
弁を用いているので、動力装置のエネルギーバランスが
崩れたときでも、ガスタービンに入るエネルギー供給量
を調整できる結果、動力装置全体を安全に運転し得る効
果がある。
(Claim 8) A plurality of the first, second, and third flow path branch valves are provided, and a flow rate adjustable valve is used for each flow path branch valve. Since the branch valve is an independently operable valve, both the first, second, and third flow path branch valves can safely operate the power unit even if one valve fails, and each flow path Since a valve whose flow rate can be adjusted is used for the branch valve, the amount of energy supplied to the gas turbine can be adjusted even when the energy balance of the power plant is lost, resulting in the safe operation of the entire power plant.

【0083】(請求項9)少なくとも前記第3の流路分
岐弁に、この第3の流路分岐弁の開動作を検知しかつ検
知信号を制御部に送り込む検知手段を設け、前記制御部
を、検知手段から送り込まれた検知信号に基づいて第
1,第2の流路分岐弁を閉動作させるように構成してい
るので、第1,第2,第3の流路分岐弁の順序動作をよ
り一層明確に規定し得る効果がある。
(Claim 9) At least the third flow path branch valve is provided with detection means for detecting an opening operation of the third flow path branch valve and sending a detection signal to the control section, and the control section is provided. Since the first and second flow path branch valves are closed based on the detection signal sent from the detection means, sequential operation of the first, second, and third flow path branch valves is performed. Is more clearly defined.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1を示すもので、第1,第2,
第3の流路分岐弁の順序動作を示すダイヤグラムであ
る。
FIG. 1 shows Example 1 of the present invention.
It is a diagram showing the sequential operation of the third flow path branch valve.

【図2】本発明の実施例2を示すもので、第1,第2,
第3の流路分岐弁の順序動作を示すダイヤグラムであ
る。
FIG. 2 is a view showing a second embodiment of the present invention.
It is a diagram showing the sequential operation of the third flow path branch valve.

【図3】本発明の実施例3を示すもので、第1,第2,
第3の流路分岐弁に用いられる蝶型弁の横断平面図であ
る。
FIG. 3 shows Example 3 of the present invention.
It is a cross-sectional top view of the butterfly type valve used for a 3rd flow path branch valve.

【図4】図3のA−A線断面図である。4 is a cross-sectional view taken along the line AA of FIG.

【図5】図3のB矢視図である。5 is a view on arrow B of FIG.

【図6】本発明の実施例4を示すもので、第1,第2,
第3の流路分岐弁に用いられるアングル弁の縦断面図で
ある。
FIG. 6 shows Embodiment 4 of the present invention.
It is a longitudinal cross-sectional view of an angle valve used for a third flow path branch valve.

【図7】本発明で対象とする動力装置の系統図であっ
て、通常運転時の状態を示す図である。
FIG. 7 is a system diagram of a power plant to which the present invention is directed, showing a state during normal operation.

【図8】図7に示す動力装置のガスタービンと圧縮機を
停止させる状態を示す図である。
FIG. 8 A diagram showing a state in which the gas turbine and the compressor of the power plant shown in FIG. 7 are stopped.

【図9】図7に示す動力装置におけるガスタービンと圧
縮機の流路の説明図である。
FIG. 9 is an explanatory diagram of flow paths of the gas turbine and the compressor in the power plant shown in FIG. 7.

【符号の説明】[Explanation of symbols]

1…圧縮機、2…ガスタービン、3…発電機、4…高温
ガス発生装置、5,6,7…第1,第2,第3の配管、
8,9,10…第1,第2,第3の流路分岐弁、12…
ガスタービン入口ガス室、15…第1,第2,第3の流
路分岐弁として用いられる蝶型弁のケーシング、16…
同弁棒、17…同弁体、19…同クランク、20…通常
時の駆動部である流体圧シリンダ、21…同ピストンロ
ッド、22…非常時の駆動部である圧縮ばね、23…弁
の制御部、24…制御部における制御器、25…同方向
切換弁、26…弁の開動作の検知手段であるリミットス
イッチ、27…同接触子、30…第1,第2,第3の流
路分岐弁として用いられるアングル弁のケーシング、3
1…同アングル型の管路、32…同弁座、33…同弁
体、34…同弁棒、36…弁の開動作の検知手段である
リミットスイッチ、37…同接触子、38…通常時の駆
動源である流体圧シリンダ、39…同ピストン、40…
非常時の駆動部である圧縮ばね、41…弁の制御部、4
2…制御部における制御器、43…同方向切換弁。
DESCRIPTION OF SYMBOLS 1 ... Compressor, 2 ... Gas turbine, 3 ... Generator, 4 ... High temperature gas generator, 5, 6, 7 ... 1st, 2nd, 3rd piping,
8, 9, 10 ... First, second, third flow path branch valves, 12 ...
Gas turbine inlet gas chamber, 15 ... Butterfly-type valve casing used as first, second, and third flow path branch valves, 16 ...
The same valve rod, 17 ... The same valve body, 19 ... The same crank, 20 ... The fluid pressure cylinder which is a drive unit in normal times, 21 ... The piston rod, 22 ... The compression spring which is a drive unit in an emergency, 23 ... Control unit, 24 ... Controller in control unit, 25 ... Same direction switching valve, 26 ... Limit switch which is means for detecting opening operation of valve, 27 ... Same contactor, 30 ... First, second, third flow Angle valve casing used as a branch valve, 3
1 ... Same angle type conduit, 32 ... Same valve seat, 33 ... Same valve body, 34 ... Same valve rod, 36 ... Limit switch which is means for detecting opening operation of valve, 37 ... Same contact, 38 ... Normal Fluid pressure cylinder, 39 ... Same piston, 40 ...
A compression spring, which is a drive unit in an emergency, 41 ... A valve control unit, 4
2 ... a controller in the control unit, 43 ... the same direction switching valve.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 下村 純志 茨城県日立市幸町三丁目1番1号 株式会 社日立製作所日立工場内 (72)発明者 佐藤 知 茨城県日立市幸町三丁目1番1号 株式会 社日立製作所日立工場内 (72)発明者 町田 雅人 茨城県日立市幸町三丁目1番1号 株式会 社日立製作所日立工場内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Junshi Shimomura 3-1-1, Saiwaicho, Hitachi-shi, Ibaraki Hitachi Ltd. Hitachi factory (72) Inventor Satoshi Sato 3-chome, Hitachi-shi, Ibaraki 1-1 Hitachi Ltd., Hitachi Works, Hitachi Plant (72) Inventor Masato Machida 3-1-1, Saiwaicho, Hitachi City, Ibaraki Hitachi Ltd., Hitachi Works, Ltd.

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機と高温ガス発生装置とを結ぶ第1
の配管に常開の第1の流路分岐弁を設け、高温ガス発生
装置とガスタービンとを結ぶ第2の配管には常開の第2
の流路分岐弁を設け、第1,第2の配管間を第3の配管
で結ぶとともに、この第3の配管に常閉の第3の流路分
岐弁を設けた動力装置における流路分岐弁の制御方法に
おいて、前記ガスタービンと圧縮機を停止させる際、最
初に第3の流路分岐弁を開いたのち、第1,第2の流路
分岐弁を同時に閉じるようにしたことを特徴とする流路
分岐弁の制御方法。
1. A first connection between a compressor and a high temperature gas generator
Is provided with a normally open first flow path branch valve, and a second pipe that connects the high temperature gas generator and the gas turbine is provided with a normally open second passage valve.
A flow path branch valve in a power plant in which a first flow path branch valve is provided, the first and second pipes are connected by a third pipe, and a normally closed third flow path branch valve is provided in the third pipe. In the valve control method, when the gas turbine and the compressor are stopped, the third flow path branch valve is first opened, and then the first and second flow path branch valves are simultaneously closed. Flow path branch valve control method.
【請求項2】 圧縮機と高温ガス発生装置とを結ぶ第1
の配管に常開の第1の流路分岐弁を設け、高温ガス発生
装置とガスタービンとを結ぶ第2の配管には常開の第2
の流路分岐弁を設け、第1,第2の配管間を第3の配管
で結ぶとともに、この第3の配管に常閉の第3の流路分
岐弁を設けた動力装置における流路分岐弁の制御方法に
おいて、前記ガスタービンと圧縮機を停止させる際、最
初に第3の流路分岐弁を開いたのち、第1,第2の流路
分岐弁を同時に閉動作させ、かつ第1の流路分岐弁の閉
速度に対して第2の流路分岐弁の閉速度を漸次遅らせる
ことを特徴とする流路分岐弁の制御方法。
2. A first connecting a compressor and a high temperature gas generator
Is provided with a normally open first flow path branch valve, and a second pipe that connects the high temperature gas generator and the gas turbine is provided with a normally open second passage valve.
A flow path branch valve in a power plant in which a first flow path branch valve is provided, the first and second pipes are connected by a third pipe, and a normally closed third flow path branch valve is provided in the third pipe. In the valve control method, when the gas turbine and the compressor are stopped, the third flow path branch valve is first opened, then the first and second flow path branch valves are simultaneously closed, and the first flow path branch valve is closed. The method for controlling a flow path branch valve, wherein the closing speed of the second flow path branch valve is gradually delayed with respect to the closing speed of the flow path branch valve.
【請求項3】 圧縮機と高温ガス発生装置とを結ぶ第1
の配管に常開の第1の流路分岐弁を設け、高温ガス発生
装置とガスタービンとを結ぶ第2の配管には常開の第2
の流路分岐弁を設け、第1,第2の配管間を第3の配管
で結ぶとともに、この第3の配管に常閉の第3の流路分
岐弁を設けた動力装置における流路分岐弁の制御方法に
おいて、前記ガスタービンと圧縮機を停止させる際、最
初に第3の流路分岐弁を開き、次に第1の流路分岐弁を
閉じ、ついで第2の流路分岐弁を閉じるようにしたこと
を特徴とする流路分岐弁の制御方法。
3. A first connecting a compressor and a high temperature gas generator
Is provided with a normally open first flow path branch valve, and a second pipe that connects the high temperature gas generator and the gas turbine is provided with a normally open second passage valve.
A flow path branch valve in a power plant in which a first flow path branch valve is provided, the first and second pipes are connected by a third pipe, and a normally closed third flow path branch valve is provided in the third pipe. In the valve control method, when the gas turbine and the compressor are stopped, first the third flow path branch valve is opened, then the first flow path branch valve is closed, and then the second flow path branch valve is opened. A method for controlling a flow path branch valve, which is characterized in that it is closed.
【請求項4】 圧縮機と高温ガス発生装置とを結ぶ第1
の配管に常開の第1の流路分岐弁を設け、高温ガス発生
装置とガスタービンとを結ぶ第2の配管には常開の第2
の流路分岐弁を設け、第1,第2の配管間を第3の配管
で結ぶとともに、この第3の配管に常閉の第3の流路分
岐弁を設けた動力装置における流路分岐弁の制御装置に
おいて、前記第1,第2,第3の流路分岐弁を制御部に
接続し、この制御部を、前記ガスタービンと圧縮機を停
止させる際、最初に第3の流路分岐弁を開動作させ、次
に第1,第2の流路分岐弁を同時に閉動作させる順序動
作で制御可能に構成したことを特徴とする流路分岐弁の
制御装置。
4. A first connecting a compressor and a high temperature gas generator
Is provided with a normally open first flow path branch valve, and a second pipe that connects the high temperature gas generator and the gas turbine is provided with a normally open second passage valve.
A flow path branch valve in a power plant in which a first flow path branch valve is provided, the first and second pipes are connected by a third pipe, and a normally closed third flow path branch valve is provided in the third pipe. In the valve control device, the first, second, and third flow path branch valves are connected to a control unit, and when this control unit stops the gas turbine and the compressor, first the third flow path is provided. A control device for a flow-path branch valve, which is configured to be controllable by a sequential operation in which the branch valve is opened and then the first and second flow-path branch valves are simultaneously closed.
【請求項5】 圧縮機と高温ガス発生装置とを結ぶ第1
の配管に常開の第1の流路分岐弁を設け、高温ガス発生
装置とガスタービンとを結ぶ第2の配管には常開の第2
の流路分岐弁を設け、第1,第2の配管間を第3の配管
で結ぶとともに、この第3の配管に常閉の第3の流路分
岐弁を設けた動力装置における流路分岐弁の制御装置に
おいて、前記第1,第2,第3の流路分岐弁を制御部に
接続し、この制御部を、前記ガスタービンと圧縮機を停
止させる際、最初に第3の流路分岐弁を開動作させ、次
に第1,第2の流路分岐弁を同時に閉動作させ、しかも
第1の流路分岐弁の閉速度に対して第2の流路分岐弁の
閉動作を漸次遅らせて制御可能に構成したことを特徴と
する流路分岐弁の制御装置。
5. A first connecting a compressor and a high temperature gas generator
Is provided with a normally open first flow path branch valve, and a second pipe that connects the high temperature gas generator and the gas turbine is provided with a normally open second passage valve.
A flow path branch valve in a power plant in which a first flow path branch valve is provided, the first and second pipes are connected by a third pipe, and a normally closed third flow path branch valve is provided in the third pipe. In the valve control device, the first, second, and third flow path branch valves are connected to a control unit, and when this control unit stops the gas turbine and the compressor, first the third flow path is provided. The branch valve is opened, then the first and second flow path branch valves are simultaneously closed, and the second flow path branch valve is closed with respect to the closing speed of the first flow path branch valve. A control device for a flow path branch valve, which is configured to be controllable by gradually delaying.
【請求項6】 圧縮機と高温ガス発生装置とを結ぶ第1
の配管に常開の第1の流路分岐弁を設け、高温ガス発生
装置とガスタービンとを結ぶ第2の配管には常開の第2
の流路分岐弁を設け、第1,第2の配管間を第3の配管
で結ぶとともに、この第3の配管に常閉の第3の流路分
岐弁を設けた動力装置における流路分岐弁の制御装置に
おいて、前記第1,第2,第3の流路分岐弁を制御部に
接続し、この制御部を、前記ガスタービンと圧縮機を停
止させる際、最初に第3の流路分岐弁を開動作させ、次
に第1の流路分岐弁を閉動作させ、ついで第2の流路分
岐弁を閉動作させる順序動作で制御可能に構成したこと
を特徴とする流路分岐弁の制御装置。
6. A first connecting a compressor and a high temperature gas generator
Is provided with a normally open first flow path branch valve, and a second pipe that connects the high temperature gas generator and the gas turbine is provided with a normally open second passage valve.
A flow path branch valve in a power plant in which a first flow path branch valve is provided, the first and second pipes are connected by a third pipe, and a normally closed third flow path branch valve is provided in the third pipe. In the valve control device, the first, second, and third flow path branch valves are connected to a control unit, and when this control unit stops the gas turbine and the compressor, first the third flow path is provided. A flow-path branch valve, which is configured to be controllable by a sequential operation of opening the branch valve, then closing the first flow-path branch valve, and then closing the second flow-path branch valve. Control device.
【請求項7】 前記第1,第2,第3の流路分岐弁に、
流体圧と電気のいずれかを駆動源としかつ制御部により
制御される通常時の駆動部と、前記駆動源が喪失したと
きに機械的に作動する非常時の駆動部とを付設したこと
を特徴とする請求項4〜6のいずれかに記載の流路分岐
弁の制御装置。
7. The first, second and third flow path branch valves,
The present invention is characterized in that a normal-time drive unit that uses either fluid pressure or electricity as a drive source and is controlled by the control unit, and an emergency drive unit that mechanically operates when the drive source is lost are provided. The flow path branch valve control device according to any one of claims 4 to 6.
【請求項8】 前記第1,第2,第3の流路分岐弁を各
々複数個設置し、かつ各々の流路分岐弁に流量調整可能
な弁を用い、しかも各々の流路分岐弁を独立に動作可能
な弁としたことを特徴とする請求項4〜7のいずれかに
記載の流路分岐弁の制御装置。
8. A plurality of said first, second, and third flow path branch valves are installed, and a flow rate adjustable valve is used for each flow path branch valve, and each flow path branch valve is The flow path branch valve control device according to any one of claims 4 to 7, wherein the control device is an independently operable valve.
【請求項9】少なくとも前記第3の流路分岐弁に、この
第3の流路分岐弁の開動作を検知しかつ検知信号を制御
部に送り込む検知手段を設け、前記制御部を、検知手段
から送り込まれた検知信号に基づいて前記第1,第2の
流路分岐弁を閉動作させるように構成したことを特徴と
する請求項4〜8のいずれかに記載の流路分岐弁の制御
装置。
9. At least the third flow path branch valve is provided with detection means for detecting an opening operation of the third flow path branch valve and sending a detection signal to a control section, and the control section is provided with the detection means. The flow path branch valve control according to any one of claims 4 to 8, wherein the first and second flow path branch valves are configured to be closed based on a detection signal sent from the flow path branch valve. apparatus.
JP32679392A 1992-12-07 1992-12-07 Control method of flow path branch valve, control device, control method of power device, and power device Expired - Lifetime JP3223476B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32679392A JP3223476B2 (en) 1992-12-07 1992-12-07 Control method of flow path branch valve, control device, control method of power device, and power device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32679392A JP3223476B2 (en) 1992-12-07 1992-12-07 Control method of flow path branch valve, control device, control method of power device, and power device

Publications (2)

Publication Number Publication Date
JPH06173717A true JPH06173717A (en) 1994-06-21
JP3223476B2 JP3223476B2 (en) 2001-10-29

Family

ID=18191775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32679392A Expired - Lifetime JP3223476B2 (en) 1992-12-07 1992-12-07 Control method of flow path branch valve, control device, control method of power device, and power device

Country Status (1)

Country Link
JP (1) JP3223476B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109957940A (en) * 2017-12-26 2019-07-02 青岛海尔洗衣机有限公司 A kind of inlet valve, washing facility and its control method of variable water flow

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109957940A (en) * 2017-12-26 2019-07-02 青岛海尔洗衣机有限公司 A kind of inlet valve, washing facility and its control method of variable water flow
CN109957940B (en) * 2017-12-26 2023-09-29 重庆海尔洗衣机有限公司 Washing equipment with water inlet valve with variable outlet water flow and control method thereof

Also Published As

Publication number Publication date
JP3223476B2 (en) 2001-10-29

Similar Documents

Publication Publication Date Title
US9091369B2 (en) Control device, and valve arrangement having such a control device
JP4150961B2 (en) Method and apparatus for preventing rotor overspeed and overboost
JP3797688B2 (en) Trip oil system in a fuel supply and method for controlling fuel flow to a gas turbine
JPH06173717A (en) Control method for flow passage branch valve and control device therefor
CN112302735B (en) Steam turbine main valve auxiliary system and control method thereof
US3794292A (en) Spool valve
JP2986148B2 (en) Turbine emergency equipment
JP2786711B2 (en) Emergency stop device for steam turbine
JP2707751B2 (en) Bleed line system of the bleed turbine
JPH07158406A (en) Power generating radial turbine stop device
KR102525617B1 (en) Thrust control apparatus for balance piston of nuclear power plant
JPH06129305A (en) Emergency shut-off device of gas engine
JP2003336603A (en) Hydraulic drive device and steam turbine with hydraulic controller therefor
JPH1030545A (en) Guide vane closing device
JPS61237801A (en) Controlling method for steam valve
CA3221137A1 (en) Energy-recovery turbine with pressure-release valve
RU1815372C (en) Control system for gas-turbine engine
JPH0642309A (en) Operating device for bleeder check valve of bleeder turbine
SU1613658A1 (en) Actuator of turbine steam bleed valve
JP2960584B2 (en) Hydraulic control unit for combined cycle power plant
JPS623105A (en) Reverse thrust prevention device of screw expanding machine
JPH0674061A (en) Method and device for protecting bypass device in power device
JPH01273879A (en) Emergency stop device for water wheel
US664553A (en) Exhaust-valve for steam-engines.
JPS60240877A (en) Runner vane controller for movable blade turbine

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20070824

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20080824

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20080824

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20090824

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100824

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20100824

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110824

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120824

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130824

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20130824