JPH06173663A - Exhaust emission control device for internal combustion engine - Google Patents

Exhaust emission control device for internal combustion engine

Info

Publication number
JPH06173663A
JPH06173663A JP4327706A JP32770692A JPH06173663A JP H06173663 A JPH06173663 A JP H06173663A JP 4327706 A JP4327706 A JP 4327706A JP 32770692 A JP32770692 A JP 32770692A JP H06173663 A JPH06173663 A JP H06173663A
Authority
JP
Japan
Prior art keywords
temperature
ehc
catalyst
exhaust
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4327706A
Other languages
Japanese (ja)
Inventor
Hiroyasu Yoshino
太容 吉野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP4327706A priority Critical patent/JPH06173663A/en
Publication of JPH06173663A publication Critical patent/JPH06173663A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Catalysts (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

PURPOSE:To prevent an EHC melting loss, and lengthen battery service life and the like by setting supply electric power to electric heating type catalyst (EHC) in the necessary minimum electric power. CONSTITUTION:When an engine is started, an EHC temperature is detected (S2), and when it is low, current supply is started (S4) in the maximum electric power. Afterwards, an exhaust gas flow rate Qg and an exhaust gas temperature Tg are found from the engine revolution number Ne and a load Tp, and an EHC reference temperature raising speed deltaTr is determined (S7, 8). Supply electric power W is controlled in W=W-(deltaT-deltaTr)XGAIN so that a difference between an actual temperature raising speed deltaT and the reference temperature raising speed deltaTr becomes a prescribed value (S12).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、排気通路に電気加熱式
触媒(以下EHCという)を備える内燃機関の排気浄化
装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust gas purification apparatus for an internal combustion engine having an electrically heated catalyst (hereinafter referred to as EHC) in an exhaust passage.

【0002】[0002]

【従来の技術】内燃機関の冷間時は、燃料霧化が悪いの
で運転性の向上のために供給燃料を増量したりすること
により、また低壁温による消炎作用により、多量のHC
が機関より排出される。その一方、排気通路に設けられ
る排気浄化用の触媒の温度が低く、触媒活性が不十分で
あるために、これらのHCは、ほとんど浄化されること
なく大気に放出される。
2. Description of the Related Art When an internal combustion engine is cold, a large amount of HC is produced by increasing the amount of fuel supplied in order to improve drivability because of poor atomization of fuel and by the extinction effect due to the low wall temperature.
Is discharged from the engine. On the other hand, since the temperature of the exhaust gas purification catalyst provided in the exhaust passage is low and the catalyst activity is insufficient, these HCs are released to the atmosphere without being substantially purified.

【0003】このために、より早く触媒を昇温させて冷
間時のエミッションを低減することが求められており、
その1つの解として、触媒担体を金属製とし、これに通
電して加熱し急速に昇温させるEHCが挙げられる(実
開昭63−67609号公報参照)。
For this reason, it is required to raise the temperature of the catalyst more quickly to reduce the cold emission.
One solution is EHC in which the catalyst carrier is made of metal and is heated by supplying electricity to the catalyst carrier to rapidly raise the temperature (see Japanese Utility Model Laid-Open No. 63-67609).

【0004】[0004]

【発明が解決しようとする課題】しかしながら、触媒担
体として金属を使用しているため、セラミック製担体と
比較して耐熱性に劣り、必要以上の電力供給を行った場
合、急速に高温に達してしまい溶損する惧れがある。ま
た、EHCに対し、始動時及び始動後にEHC温度が目
標温度に達するまで通電する場合、従来は供給電力を一
律にして、EHCが十分に活性化する 400℃に達するま
で、約5kwの電力を約30秒間も供給しているのが現状
である。1回でこれ程の大きな電力を放電することは、
バッテリの劣化を促進し、また該バッテリの再充電にも
長時間を要することとなる。
However, since a metal is used as a catalyst carrier, it is inferior in heat resistance as compared with a ceramic carrier, and when power is supplied more than necessary, it rapidly reaches a high temperature. There is a risk that it will be melted down. Moreover, when electricity is supplied to the EHC until the EHC temperature reaches the target temperature at the time of starting and after the starting, conventionally, the power supply is uniform and about 5 kW of electric power is supplied until the temperature reaches 400 ° C. at which the EHC is fully activated. Currently, it is supplied for about 30 seconds. Discharging such a large amount of power at one time is
The deterioration of the battery is promoted, and it takes a long time to recharge the battery.

【0005】本発明は、このような実情に鑑み、EHC
への必要以上の電力供給を防止し、該EHCの溶損を防
止すると共に、EHCへの供給電力を必要最小電力とす
ることで、電力消費量を最小限にとどめてバッテリの長
寿命化並びに充電時間の短縮を図ることを目的とする。
The present invention has been made in view of the above circumstances, and the EHC
Power supply to the EHC is prevented, and the EHC is prevented from being melted and damaged, and the power supply to the EHC is set to the required minimum power, thereby minimizing the power consumption and extending the life of the battery. The purpose is to shorten the charging time.

【0006】[0006]

【課題を解決するための手段】このため、本発明は、図
1に示すように、触媒担体が金属製で、これへの通電に
より加熱可能なEHCを排気通路に設置した内燃機関の
排気浄化装置において、機関運転状態を検出する運転状
態検出手段と、排気温度を検出する排気温度検出手段
と、該電気加熱式触媒の温度を検出する触媒温度検出手
段と、該電気加熱式触媒への通電時の供給電力を機関運
転状態、排気温度、触媒温度及び単位時間当たりの該触
媒温度の上昇率に基づいて制御する電力可変手段とを、
設ける構成とする。
Therefore, according to the present invention, as shown in FIG. 1, the exhaust gas purification of an internal combustion engine in which the catalyst carrier is made of metal and EHC that can be heated by energizing it is installed in the exhaust passage. In the apparatus, an operating state detecting means for detecting an engine operating state, an exhaust temperature detecting means for detecting an exhaust gas temperature, a catalyst temperature detecting means for detecting a temperature of the electrically heated catalyst, and an electricity supply to the electrically heated catalyst. An electric power variable means for controlling the electric power supplied at the time based on the engine operating state, the exhaust temperature, the catalyst temperature and the rate of increase of the catalyst temperature per unit time,
The configuration is provided.

【0007】また、電力可変手段を、始動時に触媒温度
が所定値以下であると判定されたとき供給電力を最大と
し、始動後は該供給電力を単位時間当たりの該触媒温度
の上昇率に基づいて制御する構成としてもよい。また、
前記電力可変手段における触媒温度の上昇率を、排気流
量並びに触媒温度と排気温度との差に基づいて決定され
る基準上昇率との比較により制御するようにしてもよ
い。
Further, the electric power varying means maximizes the electric power supplied when the catalyst temperature is judged to be equal to or lower than a predetermined value at the time of starting, and after starting the electric power is based on the rate of increase of the catalyst temperature per unit time. It may be configured to be controlled by. Also,
The rate of increase of the catalyst temperature in the electric power varying means may be controlled by comparison with a reference rate of increase determined based on the exhaust flow rate and the difference between the catalyst temperature and the exhaust temperature.

【0008】また、図2に示すように、触媒担体が金属
製で、これへの通電により加熱可能なEHCを排気通路
に設置すると共に、排気通路に2次空気を供給する2次
空気供給手段を設けた内燃機関の排気浄化装置におい
て、機関運転状態を検出する運転状態検出手段と、排気
温度を検出する排気温度検出手段と、該電気加熱式触媒
の温度を検出する触媒温度検出手段と、2次空気供給手
段による2次空気の供給量を機関運転状態、排気温度、
触媒温度及び単位時間当たりの該触媒温度の上昇率に基
づいて制御する2次空気供給量制御手段とを、設ける構
成としてもよい。
Further, as shown in FIG. 2, the catalyst carrier is made of metal, and an EHC which can be heated by energizing the catalyst carrier is installed in the exhaust passage and a secondary air supply means for supplying secondary air to the exhaust passage. In the exhaust gas purification apparatus for an internal combustion engine, the operating state detecting means for detecting the engine operating state, the exhaust temperature detecting means for detecting the exhaust temperature, the catalyst temperature detecting means for detecting the temperature of the electrically heated catalyst, The amount of secondary air supplied by the secondary air supply means is set to the engine operating state, exhaust temperature,
A secondary air supply amount control means for controlling based on the catalyst temperature and the rate of increase of the catalyst temperature per unit time may be provided.

【0009】[0009]

【作用】始動時及び始動後に触媒活性が十分に高くなる
まで必要とするEHC電力は、暖機後再始動時の場合
(図3で例えばEHC温度T3 から始動する場合)、E
HC温度及び排気温度が高いので、冷間始動時の場合
(図3で例えばEHC温度T 1 から始動する場合)より
小さく、それでもEHCは十分な早さで昇温する。
[Function] The catalytic activity is sufficiently high at and after starting.
EHC power required up to is for restarting after warm-up
(For example, in FIG. 3, the EHC temperature T3When starting from), E
In case of cold start because HC temperature and exhaust temperature are high
(For example, in FIG. 3, the EHC temperature T 1When starting from)
Small, yet the EHC heats up fast enough.

【0010】従って、EHCの温度をTcとすると、始
動時(t=0)の昇温速度dTc/dtが目標値となる
ように、始動時EHC供給電力を制御することにより、
EHC供給電力を最小限に抑えて、バッテリの電力消費
の低減を図ることが可能となる。ヒータに通電すること
によりEHCを加熱しているが、該EHCに係る熱収支
は図4に示すようになる。即ち、該ヒータからEHCに
熱量Wが与えられると、Q1がEHCの昇温に使われ、
残りのQ2が排気の温度上昇に供される。
Therefore, assuming that the temperature of EHC is Tc, the EHC supply electric power at the time of starting is controlled so that the temperature rising rate dTc / dt at the time of starting (t = 0) becomes a target value.
It is possible to reduce the power consumption of the battery by minimizing the EHC supply power. The EHC is heated by energizing the heater, and the heat balance of the EHC is as shown in FIG. That is, when the amount of heat W is given to the EHC from the heater, Q1 is used to raise the temperature of the EHC,
The remaining Q2 is used for raising the temperature of the exhaust gas.

【0011】W=Q1+Q2 …… ここで、EHCの昇温速度dTc/dtはQ1に比例す
ることとなる。 Q1=Wc・dTc/dt …… , 但しWcは比
例定数 またQ2はガス量と、EHCと排気の温度差によってほ
ぼ決まっている。ここで、排気量と排気温度、及びEH
C温度が決まると、EHC昇温温度は決まることとな
る。即ち、排気流量M、排気の比熱をCg、ヒータから
EHCに電力を供給する前の排気温度をTgi、ヒータか
らEHCに電力を供給した後の排気温度をTgo、EHC
と排気との間の熱伝達率をh、EHCの排気に対する触
媒総表面積をScとすると、次式のようになる。
W = Q1 + Q2 ... Here, the temperature rising rate dTc / dt of EHC is proportional to Q1. Q1 = Wc · dTc / dt, where Wc is a proportional constant and Q2 is almost determined by the gas amount and the temperature difference between EHC and exhaust. Here, the exhaust volume, exhaust temperature, and EH
When the C temperature is decided, the EHC temperature rising temperature is decided. That is, the exhaust gas flow rate M, the specific heat of the exhaust gas Cg, the exhaust gas temperature before supplying electric power from the heater to the EHC is Tgi, and the exhaust temperature after supplying electric power from the heater to the EHC is Tgo, EHC
Let h be the heat transfer coefficient between the exhaust gas and the exhaust gas, and Sc be the total surface area of the catalyst for the EHC exhaust gas.

【0012】 Q2=(Tgo−Tgi)・Cg・M/2 =〔Tc−(Tgo+Tgi)/2〕・h・Sc …… 従って、,,式より該EHCへの通電時の供給電
力を制御することが可能となる。また、始動時にEHC
温度Tcが所定値以下であると判定されたときには、ま
ず供給電力を最大とし、始動後は該供給電力を単位時間
当たりの該触媒温度の上昇率に基づいて制御する構成と
すると、昇温に係る時間を短縮することが可能となる。
Q2 = (Tgo−Tgi) · Cg · M / 2 = [Tc− (Tgo + Tgi) / 2] · h · Sc Therefore, the electric power supplied to the EHC at the time of energization is controlled from the equation. It becomes possible. Also, when starting, EHC
When it is determined that the temperature Tc is equal to or lower than the predetermined value, first, the supply power is maximized, and after the start, the supply power is controlled based on the rate of increase in the catalyst temperature per unit time. It is possible to shorten the time required.

【0013】また、運転状態、排気温度Tg、及びEH
C温度Tcに応じて、そのときの基準とするEHC基準
昇温速度δTrを設定する。そして、実際の昇温速度d
Tc/dtを前記EHC基準昇温速度δTrとの比較に
より制御する。また、運転状態、排気温度Tg、EHC
温度Tc及び触媒温度上昇率に基づいて2次空気供給量
を制御する。
The operating condition, exhaust temperature Tg, and EH
According to the C temperature Tc, the EHC reference temperature rising rate δTr which is the reference at that time is set. Then, the actual heating rate d
Tc / dt is controlled by comparison with the EHC reference temperature rising rate δTr. In addition, operating conditions, exhaust temperature Tg, EHC
The secondary air supply amount is controlled based on the temperature Tc and the catalyst temperature increase rate.

【0014】これらより、失火による未燃HCのため等
で、急激な温度上昇がある場合、通電を停止し焼損を防
止する。また、電力消費量を最小限に止めて、バッテリ
の長寿命化並びに充電時間の短縮化を図る。
From the above, when there is a rapid temperature rise due to unburned HC due to misfire, energization is stopped to prevent burnout. In addition, the amount of power consumption is minimized to extend the life of the battery and shorten the charging time.

【0015】[0015]

【実施例】以下に本発明の実施例を説明する。図5は本
発明の第1実施例のシステム構成を示している。内燃機
関1の排気通路2にEHC3が設置されている。EHC
3は、触媒を金属製の担体(メタル担体)に担持させ
て、このメタル担体を排気入口及び出口を有するコンバ
ータ容器内に収納してなり、その外部にメタル担体への
通電のための一対の電極4a,4bを突設してある。
尚、メタル担体は、例えばステンレス製の波板と平板と
を交互に積層して排気の流れ方向に多数の通路が形成さ
れるようにしてある。
EXAMPLES Examples of the present invention will be described below. FIG. 5 shows the system configuration of the first embodiment of the present invention. An EHC 3 is installed in the exhaust passage 2 of the internal combustion engine 1. EHC
Reference numeral 3 denotes a catalyst which is carried on a metal carrier (metal carrier), and the metal carrier is housed in a converter container having an exhaust inlet and an outlet, and a pair of external electrodes for energizing the metal carrier. Electrodes 4a and 4b are provided so as to project.
In the metal carrier, for example, stainless corrugated plates and flat plates are alternately laminated to form a large number of passages in the exhaust flow direction.

【0016】EHC3の一方の電極4aはハーネス5に
よりバッテリ6の+端子に接続し、他方の電極4bはハ
ーネス7によりEHC電力可変装置8を介してバッテリ
6の−端子に接続してある。EHC電力可変装置8は、
スイッチング素子と可変抵抗器とを直列に接続してな
り、コントロールユニット9からの信号によるスイッチ
ング素子のON・OFFによって、EHC3への通電を
制御すると共に、パルスのデューティ比を可変(PMW
方式)とすることによって、EHC3への通電時の供給
電力を制御する。
One electrode 4a of the EHC 3 is connected to the positive terminal of the battery 6 by the harness 5, and the other electrode 4b is connected to the negative terminal of the battery 6 through the EHC power varying device 8 by the harness 7. The EHC power variable device 8 is
A switching element and a variable resistor are connected in series, and by turning on / off the switching element in response to a signal from the control unit 9, energization to the EHC 3 is controlled and the duty ratio of the pulse is changed (PMW).
Method) to control the electric power supplied to the EHC 3 during energization.

【0017】コントロールユニット9は、マイクロコン
ピュータを内蔵し、後述するフローチャートに従って、
EHC電力可変装置8を制御する。この制御のため、E
HC3にEHC温度センサ10が設けられ、EHC温度T
c(詳しくはEHC出口排温)がコントロールユニット
9に入力される。また、このコントロールユニット9は
内燃機関1の各種制御(燃料噴射制御、点火制御等)に
用いられるもので、内燃機関1に取付けられた各種セン
サから、機関冷却水温Tw、機関回転数Ne、負荷Tp
等の情報が入力されている。
The control unit 9 has a built-in microcomputer, and according to a flow chart described later,
The EHC power variable device 8 is controlled. Because of this control, E
EHC temperature sensor 10 is installed in HC3, and EHC temperature T
c (specifically, EHC outlet exhaust temperature) is input to the control unit 9. Further, the control unit 9 is used for various controls (fuel injection control, ignition control, etc.) of the internal combustion engine 1, and from various sensors attached to the internal combustion engine 1, the engine cooling water temperature Tw, the engine speed Ne, the load. Tp
Information such as is entered.

【0018】図6は、本第1実施例に係るEHC通電制
御のフローチャートであり、例えば所定時間τ毎に実行
されるものである。ステップ1(図にはS1と記してあ
る。以下同様)では、内燃機関1が始動されたか否かを
判定し、始動されていると判定されると、ステップ2以
降に進む。ステップ2では、EHC温度センサ10により
EHC温度Tcを検出する。
FIG. 6 is a flowchart of the EHC energization control according to the first embodiment, which is executed, for example, every predetermined time τ. In step 1 (denoted as S1 in the drawing; the same applies hereinafter), it is determined whether the internal combustion engine 1 has been started. If it is determined that the internal combustion engine 1 has been started, the process proceeds to step 2 and subsequent steps. In step 2, the EHC temperature sensor 10 detects the EHC temperature Tc.

【0019】ステップ3では、EHC温度Tcが例えば
メタル担体に担持させた触媒の活性化温度(400℃)
等の所定値T1よりも高いか低いかを判定し、低いと判
定された場合は、ステップ4に進む。ステップ4では、
いち早くEHC3の温度を上昇させて活性化する必要が
あるとして、EHC温度Tcの上昇をできるだけ早くす
るように、供給可能な最大電力WMAX で通電を開始す
る。これはEHC電力可変装置8を介して行う。
In step 3, the EHC temperature Tc is, for example, the activation temperature (400 ° C.) of the catalyst supported on the metal carrier.
It is determined whether it is higher or lower than a predetermined value T1 such as, and if it is determined to be lower, the process proceeds to step 4. In step 4,
Since it is necessary to quickly raise the temperature of the EHC 3 to activate it, energization is started with the maximum power W MAX that can be supplied so that the EHC temperature Tc rises as quickly as possible. This is done via the EHC power variable device 8.

【0020】ステップ5では、機関回転数Ne、負荷T
p、また再度EHC温度Tcを検出する。ステップ6で
は、EHC温度Tcと前記所定値T1との比較を再度行
い、Tc>T1と判断された場合は、EHC3は活性化
していると判断し、ステップ13に進んで、EHC3への
通電を停止する。
In step 5, the engine speed Ne and the load T
p, and the EHC temperature Tc is detected again. In step 6, the EHC temperature Tc is compared again with the predetermined value T1, and when it is determined that Tc> T1, it is determined that the EHC3 is activated, and the process proceeds to step 13 to energize the EHC3. Stop.

【0021】EHC温度Tcが前記所定値T1以下であ
ると判断された場合は、ステップ7に進み、予め定めた
マップ(図7及び図8)を参照して、機関回転数Neと
負荷Tpとから機関1より排出される排気の排気流量Q
gと排気温度Tgを求める。ここで、排気流量Qgは機
関回転数Ne及び負荷Tpの増大に伴って増大し、また
排気温度Tgは機関回転数Ne及び負荷Tpの増大に伴
って低温から高温に一端増大した後に、再び若干減少し
中温となる。尚、排気温度Tgは、基本的には高負荷・
高回転ほど高くなるのであるが、機関或いは車種毎に定
められた出力空燃比領域では空燃比をリッチとし、排気
温度の上昇を抑えているので、それに合わせて適合して
おく。
If it is determined that the EHC temperature Tc is less than or equal to the predetermined value T1, the process proceeds to step 7, and referring to a predetermined map (FIGS. 7 and 8), the engine speed Ne and the load Tp are compared. Exhaust flow rate Q of exhaust gas discharged from the engine 1 from
g and exhaust temperature Tg are obtained. Here, the exhaust gas flow rate Qg increases as the engine speed Ne and the load Tp increase, and the exhaust gas temperature Tg once increases from the low temperature to the high temperature as the engine speed Ne and the load Tp increase, and then slightly again. It decreases to medium temperature. The exhaust temperature Tg is basically high load
Although the higher the engine speed, the higher the engine speed, but the output air-fuel ratio range defined for each engine or vehicle type is set to a rich air-fuel ratio to suppress the rise in exhaust gas temperature.

【0022】続いてステップ8では、前記ステップ7で
求めた排気流量Qgと、EHC温度Tcと前記ステップ
7で求めた排気温度Tgとの温度差ΔT(=Tc−T
g)とから、やはり予め定めたマップ(図9)を参照し
て、EHC基準昇温速度δTrを決定する。ここで、E
HC基準昇温速度δTrは排気流量Qgの増大に伴って
減少し、また温度差Δの増大に伴って減少する。尚、E
HC基準昇温速度δTrは、前記式に示すように、高
負荷・高回転で排気流量Qgが大きくなるほど、また温
度差ΔTが大きくなるほど排気に奪われる熱量が多くな
るので、小さくなっている。即ち、排気からEHC3へ
の熱の流入が期待でき、排気への放熱が多くなるような
条件では、温度上昇速度を大きくしても無駄になるた
め、抑制するようにしている。
Then, at step 8, the temperature difference ΔT (= Tc-T) between the exhaust gas flow rate Qg obtained at step 7 and the EHC temperature Tc and the exhaust gas temperature Tg obtained at step 7 above.
Then, the EHC reference temperature increase rate δTr is determined by referring to (g) and also a predetermined map (FIG. 9). Where E
The HC reference temperature increase rate δTr decreases as the exhaust gas flow rate Qg increases, and also decreases as the temperature difference Δ increases. Incidentally, E
As shown in the above expression, the HC reference temperature increase rate δTr is smaller because the amount of heat absorbed by the exhaust increases as the exhaust gas flow rate Qg increases and the temperature difference ΔT increases under high load and high rotation. That is, under the condition that heat can be expected to flow from the exhaust gas to the EHC 3 and the heat radiation to the exhaust gas is increased, even if the temperature rising speed is increased, it is useless, so that it is suppressed.

【0023】ステップ9では、実際の昇温速度δTを演
算する。ここで、EHC温度Tcと当該ルーチンを前回
実行したときのEHC温度TcOLD との差を、サンプリ
ング時間τで除算した値を実際の昇温速度δTとする
(δT=(Tc−TcOLD )/τ)。ステップ10では、
ステップ9で求めた実際の昇温速度δTと、ステップ8
で決定したEHC基準昇温速度δTrとの差と所定値D
1との比較を行い、差が所定値D1より大きい場合、即
ち実際の昇温速度δTがEHC基準昇温速度δTrに対
して異なっている場合には、ステップ13に進み、EHC
3への通電を停止する。
In step 9, the actual heating rate δT is calculated. Here, a value obtained by dividing the difference between the EHC temperature Tc and the EHC temperature Tc OLD when the routine was last executed by the sampling time τ is set as an actual temperature rising rate δT (δT = (Tc-Tc OLD ) / τ). In step 10,
The actual temperature rising rate δT obtained in step 9 and step 8
The difference from the EHC reference temperature rising rate δTr determined in
If the difference is larger than the predetermined value D1, that is, if the actual temperature rising rate δT is different from the EHC reference temperature rising rate δTr, the routine proceeds to step 13, where EHC
Stop energizing 3.

【0024】差が所定値D1以下であると判定された場
合はステップ11に進み、実際の昇温速度δTとEHC基
準昇温速度δTrとの比較を行う。そして、実際の昇温
速度δTがEHC基準昇温速度δTrより小さいと判定
された場合は、ステップ5にもどり、供給可能な最大電
力WMAX でEHC3に通電を継続する。一方、実際の昇
温速度δTがEHC基準昇温速度δTr以上である(δ
T≧δTr)と判定された場合は、十分昇温がおこなわ
れているとして、ステップ12に進み、電力Wを次式に従
って低減する。
When it is determined that the difference is less than or equal to the predetermined value D1, the routine proceeds to step 11, where the actual temperature increase rate δT and the EHC reference temperature increase rate δTr are compared. When it is determined that the actual temperature increase rate δT is lower than the EHC reference temperature increase rate δTr, the process returns to step 5, and the EHC 3 is continuously energized with the maximum power W MAX that can be supplied. On the other hand, the actual heating rate δT is equal to or higher than the EHC reference heating rate δTr (δ
If it is determined that T ≧ δTr), it is determined that the temperature has been sufficiently raised, and the process proceeds to step 12 to reduce the electric power W according to the following equation.

【0025】W=W−(δT−δTr)×GAIN 但し、GAINは所定値である。尚、ステップ2及びステッ
プ5の部分が運転状態検出手段、排気温度検出手段及び
触媒温度検出手段に相当し、ステップ4及びステップ12
の部分が第3の電力可変手段に相当する。
W = W- (δT-δTr) × GAIN where GAIN is a predetermined value. The steps 2 and 5 correspond to the operating state detecting means, the exhaust temperature detecting means and the catalyst temperature detecting means, and the steps 4 and 12
The portion of corresponds to the third power varying means.

【0026】また、本実施例においては、排気温度Tg
を機関回転数Neと負荷Tpとからマップを用いて求め
ているが、他の実施例として、EHC3の上流側の排気
通路2及び下流側の排気通路2に、各々EHC3により
昇温される前の排気温度Tgi及びEHC3により昇温さ
れた後の排気温度Tgoを測定するための上流側排気温度
センサ及び下流側排気温度センサを設け、昇温前の排気
温度Tgi及び昇温後の排気温度Tgoを求めることにより
排気温度Tgを求めるようにしても良いことは勿論であ
る。尚、この場合には、実際の排気温度Tgi及びTgoを
検出することになり、排気温度Tgに関しては、上記実
施例に較べて精度が向上する。
Further, in the present embodiment, the exhaust temperature Tg
Is obtained from the engine speed Ne and the load Tp by using a map. As another embodiment, before the temperature is raised by the EHC 3 in the exhaust passage 2 on the upstream side and the exhaust passage 2 on the downstream side of the EHC 3, respectively. Of the exhaust gas temperature Tgi and the exhaust gas temperature Tgo after the temperature is raised by the EHC3. It goes without saying that the exhaust temperature Tg may be obtained by obtaining In this case, the actual exhaust temperatures Tgi and Tgo are detected, and the accuracy of the exhaust temperature Tg is improved as compared with the above embodiment.

【0027】即ち、以上説明したように、本第1実施例
によれば、始動後はいち早くEHC3の温度を上昇させ
て、該EHC3を活性化させ、その後は排気流量Qg、
排気温度Tg及びEHC温度Tcに基づいて、昇温速度
dTc/dtが目標値となるようにEHC供給電力を最
小限に制御しているので、EHC3の焼損を防止でき、
バッテリの電力消費の低減を図ることが可能となる。当
然、HC排出量も許容値を超えることなく最適制御され
る。
That is, as described above, according to the first embodiment, the temperature of the EHC 3 is quickly raised after the start-up to activate the EHC 3, and thereafter the exhaust flow rate Qg,
Based on the exhaust gas temperature Tg and the EHC temperature Tc, the EHC supply power is controlled to the minimum so that the temperature rising rate dTc / dt becomes the target value, so that the EHC 3 can be prevented from burning.
It is possible to reduce the power consumption of the battery. Naturally, the HC emission amount is also optimally controlled without exceeding the allowable value.

【0028】また、この場合は、早期に触媒の活性化が
図られ、HC排出量増大によるエミッション悪化を防止
することもできる。次に本発明に係る第2実施例につい
て説明する。図10は本発明の第2実施例のシステム構成
を示すが、図5に示した第1実施例のシステム構成と同
一構成要素には、同一符号を付して説明を省略する。
Further, in this case, the activation of the catalyst is achieved at an early stage, and it is possible to prevent the emission deterioration due to the increase of the HC emission amount. Next, a second embodiment according to the present invention will be described. FIG. 10 shows the system configuration of the second embodiment of the present invention. The same components as those of the system configuration of the first embodiment shown in FIG.

【0029】本第2実施例では、2次空気をEHC3上
流側の排気通路2に導入する2次空気供給手段20が設け
られている。この2次空気供給手段20は、電動エアポン
プ21等の空気供給源と、該電動エアポンプ21に接続され
ると共にEHC3上流側の排気通路2に連通接続される
2次空気供給管22とを含んで構成され、該電動エアポン
プ21からの吐出流量制御によって2次空気の供給量Qs
を制御できる。
In the second embodiment, the secondary air supply means 20 for introducing the secondary air into the exhaust passage 2 on the upstream side of the EHC 3 is provided. The secondary air supply means 20 includes an air supply source such as an electric air pump 21 and a secondary air supply pipe 22 connected to the electric air pump 21 and connected to the exhaust passage 2 on the upstream side of the EHC 3 for communication. The secondary air supply amount Qs is configured by controlling the discharge flow rate from the electric air pump 21.
Can be controlled.

【0030】尚、コントロールユニット9は、後述する
フローチャートに従って、EHC電力可変装置8を制御
すると共に、2次空気供給手段20の供給・遮断も制御す
る。次に図11を参照しつつ、本第2実施例に係るEHC
通電制御及び2次空気供給手段20の供給制御について説
明するが、図6に示したフローチャートと同一の作用を
奏するステップについては、同一ステップ番号を付して
説明を省略する。
The control unit 9 controls the EHC power variable device 8 and also controls the supply / interruption of the secondary air supply means 20 according to a flow chart described later. Next, referring to FIG. 11, the EHC according to the second embodiment
The energization control and the supply control of the secondary air supply means 20 will be described. However, steps having the same operations as those in the flowchart shown in FIG.

【0031】ステップ3では、EHC温度Tcが例えば
メタル担体に担持させた触媒の活性化温度(400℃)
等の所定値T1よりも高いか低いかを判定し、低いと判
定された場合は、ステップ21に進む。ステップ21では、
例えば始動時冷却水温TW0 によって決定されたEHC
電力W0 で通電を開始する。
In step 3, the EHC temperature Tc is, for example, the activation temperature (400 ° C.) of the catalyst supported on the metal carrier.
It is determined whether it is higher or lower than a predetermined value T1 such as, and if it is determined to be lower, the process proceeds to step 21. In step 21,
For example, EHC determined by the starting coolant temperature TW 0
Energization is started with electric power W 0 .

【0032】そしてステップ22では、いち早くEHC3
の温度を上昇させて活性化する必要があるとして、EH
C温度Tcの上昇をできるだけ早くするように、供給可
能な2次空気流量Qsを最大2次空気流量QMAX で供給
を開始する。これは電動エアポンプ21の吐出流量制御を
介して行う。ステップ23では、EHC温度Tcと前記所
定値T1との比較を再度行い、Tc>T1と判断された
場合は、EHC3は活性化していると判断し、ステップ
26に進んで、EHC3への通電を停止すると共に、2次
空気供給手段20の作動を停止する。
Then, in step 22, EHC3 is swiftly released.
It is necessary to activate by raising the temperature of
The supply of the secondary air flow rate Qs is started at the maximum secondary air flow rate Q MAX so as to increase the C temperature Tc as quickly as possible. This is performed via the discharge flow rate control of the electric air pump 21. In step 23, the EHC temperature Tc is compared again with the predetermined value T1, and when it is judged that Tc> T1, it is judged that the EHC3 is activated,
In step 26, the power supply to the EHC 3 is stopped and the operation of the secondary air supply means 20 is stopped.

【0033】ステップ24では、ステップ9で求めた実際
の昇温速度δTと、ステップ8で決定したEHC基準昇
温速度δTrとの差と所定値D1との比較を行い、差が
所定値D1とより大きい場合、即ち実際の昇温速度δT
がEHC基準昇温速度δTrに対して異なっている場合
には、ステップ26に進んで、EHC3への通電を停止す
ると共に、2次空気供給手段20の作動を停止する。
In step 24, the difference between the actual temperature increase rate δT obtained in step 9 and the EHC reference temperature increase rate δTr determined in step 8 is compared with a predetermined value D1, and the difference is the predetermined value D1. If it is larger, that is, the actual heating rate δT
Is different from the EHC reference temperature rising rate δTr, the routine proceeds to step 26, where the energization to the EHC 3 is stopped and the operation of the secondary air supply means 20 is stopped.

【0034】差が所定値D1以下であると判定された場
合はステップ11に進み、実際の昇温速度δTとEHC基
準昇温速度δTrとの比較を行う。そして、実際の昇温
速度δTがEHC基準昇温速度δTrより小さいと判定
された場合は、ステップ5にもどり、供給可能な最大2
次空気流量QMAX で2次空気の供給を開始を継続する。
When it is determined that the difference is less than or equal to the predetermined value D1, the routine proceeds to step 11, where the actual temperature increase rate δT and the EHC reference temperature increase rate δTr are compared. When it is determined that the actual temperature rising rate δT is lower than the EHC reference temperature rising rate δTr, the procedure returns to step 5 and the maximum supplyable amount is 2
Continue supplying secondary air at the secondary air flow rate Q MAX .

【0035】一方ステップ11において、実際の昇温速度
δTがEHC基準昇温速度δTr以上である(δT≧δ
Tr)と判定された場合は、十分昇温が行われていると
して、ステップ25に進み、2次空気流量Qsをを次式に
従って低減する。 Qs=Qs−(δT−δTr)×GAIN 但し、GAINは所定値である。
On the other hand, in step 11, the actual heating rate δT is equal to or higher than the EHC reference heating rate δTr (δT ≧ δ
If it is determined to be Tr), it is determined that the temperature has been sufficiently raised, and the routine proceeds to step 25, where the secondary air flow rate Qs is reduced according to the following equation. Qs = Qs− (δT−δTr) × GAIN where GAIN is a predetermined value.

【0036】尚、ステップ2及びステップ5の部分が運
転状態検出手段、排気温度検出手段及び触媒温度検出手
段に相当し、ステップ22及びステップ25の部分が2次空
気供給量制御手段に相当する。即ち、以上説明したよう
に、本第2実施例によっても、始動後はいち早くEHC
3の温度を上昇させて、該EHC3を活性化させ、その
後は排気流量Qg、排気温度Tg及びEHC温度Tcに
基づいて、昇温速度dTc/dtが目標値となるように
2次空気供給量を最小限に制御しているので、EHC3
の焼損を防止でき、バッテリの電力消費の低減を図るこ
とが可能となる。
The steps 2 and 5 correspond to the operating state detecting means, the exhaust temperature detecting means and the catalyst temperature detecting means, and the steps 22 and 25 correspond to the secondary air supply amount controlling means. That is, as described above, according to the second embodiment, the EHC is the earliest after the start.
3 to activate the EHC3, and thereafter, based on the exhaust gas flow rate Qg, the exhaust gas temperature Tg, and the EHC temperature Tc, the secondary air supply amount is adjusted so that the temperature rising rate dTc / dt becomes a target value. Is controlled to the minimum, so EHC3
It is possible to prevent the burnout of the battery and reduce the power consumption of the battery.

【0037】[0037]

【発明の効果】以上説明したように本発明によれば、始
動後はいち早くEHCを活性化させるためにEHCの温
度を上昇させて、その後は排気流量Qg、排気温度Tg
及びEHC温度Tcに基づいて、昇温速度dTc/dt
が目標値となるように、EHC供給電力を最小限に制御
したり、また2次空気供給量を最小限に制御したので、
EHCの焼損を防止でき、バッテリの電力消費の低減を
も図ることが可能となるという効果がえられ、またEH
C供給電力の最適化と節約によるバッテリ長寿命化も図
ることが可能となる。
As described above, according to the present invention, the temperature of the EHC is raised in order to quickly activate the EHC after the engine is started, and thereafter the exhaust flow rate Qg and the exhaust temperature Tg are increased.
And the temperature rising rate dTc / dt based on the EHC temperature Tc
Since the EHC supply power is controlled to the minimum and the secondary air supply amount is controlled to the minimum so that
It is possible to prevent the EHC from being burnt out, and to reduce the power consumption of the battery.
It is also possible to extend the battery life by optimizing and saving C power supply.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の構成を示す機能ブロック図FIG. 1 is a functional block diagram showing the configuration of the present invention.

【図2】 本発明の構成を示す機能ブロック図FIG. 2 is a functional block diagram showing the configuration of the present invention.

【図3】 作用を説明する図FIG. 3 is a diagram for explaining the operation

【図4】 作用を説明する図FIG. 4 is a diagram for explaining the operation.

【図5】 本発明の第1実施例を示すシステム構成図FIG. 5 is a system configuration diagram showing a first embodiment of the present invention.

【図6】 同上実施例の作用を説明するフローチャートFIG. 6 is a flowchart for explaining the operation of the above embodiment.

【図7】 排気流量Qgに係る特性図FIG. 7 is a characteristic diagram relating to an exhaust flow rate Qg.

【図8】 排気温度Tgに係る特性図FIG. 8 is a characteristic diagram related to exhaust temperature Tg.

【図9】 EHC基準昇温速度δTrに係る特性図FIG. 9 is a characteristic diagram relating to EHC reference temperature rising rate δTr.

【図10】 本発明の第2実施例を示すシステム構成図FIG. 10 is a system configuration diagram showing a second embodiment of the present invention.

【図11】 同上実施例の作用を説明するフローチャートFIG. 11 is a flowchart for explaining the operation of the above embodiment.

【符号の説明】[Explanation of symbols]

1 内燃機関 2 排気通路 3 電気加熱式触媒(EHC) 8 EHC電力可変装置 9 コントロールユニット 10 EHC温度センサ 20 2次空気供給手段 DESCRIPTION OF SYMBOLS 1 Internal combustion engine 2 Exhaust passage 3 Electric heating type catalyst (EHC) 8 EHC electric power variable device 9 Control unit 10 EHC temperature sensor 20 Secondary air supply means

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】触媒担体が金属製で、これへの通電により
加熱可能な電気加熱式触媒を排気通路に設置した内燃機
関の排気浄化装置において、機関運転状態を検出する運
転状態検出手段と、排気温度を検出する排気温度検出手
段と、該電気加熱式触媒の温度を検出する触媒温度検出
手段と、該電気加熱式触媒への通電時の供給電力を機関
運転状態、排気温度、触媒温度及び単位時間当たりの該
触媒温度の上昇率に基づいて制御する電力可変手段と
を、設けたことを特徴とする内燃機関の排気浄化装置。
1. An operating state detecting means for detecting an engine operating state in an exhaust gas purifying apparatus for an internal combustion engine, wherein a catalyst carrier is made of metal and an electrically heated catalyst which can be heated by energizing the catalyst carrier is installed in an exhaust passage, Exhaust temperature detecting means for detecting the exhaust temperature, catalyst temperature detecting means for detecting the temperature of the electrically heated catalyst, and power supplied to the electrically heated catalyst when the power is supplied to the engine operating state, exhaust temperature, catalyst temperature and An exhaust gas purifying apparatus for an internal combustion engine, comprising: an electric power varying means for controlling based on an increase rate of the catalyst temperature per unit time.
【請求項2】電力可変手段は、始動時に触媒温度が所定
値以下であると判定されたとき供給電力を最大とし、始
動後は該供給電力を単位時間当たりの該触媒温度の上昇
率に基づいて制御する構成としたことを特徴とする請求
項1記載の内燃機関の排気浄化装置。
2. The power varying means maximizes the supplied power when it is determined that the catalyst temperature is equal to or lower than a predetermined value at the time of starting, and after the starting, the supplied power is based on the rate of increase of the catalyst temperature per unit time. The exhaust gas purifying apparatus for an internal combustion engine according to claim 1, wherein the exhaust gas purifying apparatus is configured to be controlled by the following.
【請求項3】前記触媒温度の上昇率は、排気流量並びに
触媒温度と排気温度との差に基づいて決定される基準上
昇率との比較により制御されることを特徴とする請求項
1記載の内燃機関の排気浄化装置。
3. The increase rate of the catalyst temperature is controlled by comparison with a reference increase rate that is determined based on the exhaust gas flow rate and the difference between the catalyst temperature and the exhaust temperature. Exhaust gas purification device for internal combustion engine.
【請求項4】触媒担体が金属製で、これへの通電により
加熱可能な電気加熱式触媒を排気通路に設置すると共
に、排気通路に2次空気を供給する2次空気供給手段を
設けた内燃機関の排気浄化装置において、機関運転状態
を検出する運転状態検出手段と、排気温度を検出する排
気温度検出手段と、該電気加熱式触媒の温度を検出する
触媒温度検出手段と、2次空気供給手段による2次空気
の供給量を機関運転状態、排気温度、触媒温度及び単位
時間当たりの該触媒温度の上昇率に基づいて制御する2
次空気供給量制御手段とを、設けたことを特徴とする内
燃機関の排気浄化装置。
4. An internal combustion engine in which a catalyst carrier is made of metal, an electrically heated catalyst which can be heated by energizing the catalyst carrier is installed in an exhaust passage, and secondary air supply means for supplying secondary air to the exhaust passage is provided. In an engine exhaust gas purification apparatus, an operating state detecting means for detecting an engine operating state, an exhaust temperature detecting means for detecting an exhaust temperature, a catalyst temperature detecting means for detecting a temperature of the electrically heated catalyst, and a secondary air supply. The secondary air supply amount by the means is controlled based on the engine operating state, the exhaust temperature, the catalyst temperature, and the rate of increase of the catalyst temperature per unit time.
An exhaust gas purification device for an internal combustion engine, comprising: a secondary air supply amount control means.
JP4327706A 1992-12-08 1992-12-08 Exhaust emission control device for internal combustion engine Pending JPH06173663A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4327706A JPH06173663A (en) 1992-12-08 1992-12-08 Exhaust emission control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4327706A JPH06173663A (en) 1992-12-08 1992-12-08 Exhaust emission control device for internal combustion engine

Publications (1)

Publication Number Publication Date
JPH06173663A true JPH06173663A (en) 1994-06-21

Family

ID=18202078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4327706A Pending JPH06173663A (en) 1992-12-08 1992-12-08 Exhaust emission control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JPH06173663A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8775051B2 (en) 2010-04-28 2014-07-08 Denso Corporation Apparatus for diagnosing temperature state of carrier of catalyst converter
US8925301B2 (en) 2011-02-01 2015-01-06 Toyota Jidosha Kabushiki Kaisha Vehicle and method for controlling catalyst device in temperature
US9200552B2 (en) 2010-04-28 2015-12-01 Denso Corporation Apparatus for controlling supply power to conductive carrier of catalyst converter
KR20220057257A (en) * 2020-10-29 2022-05-09 세종공업 주식회사 A Electric Heated Catalyst temperature control method under cold starting for construction machine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8775051B2 (en) 2010-04-28 2014-07-08 Denso Corporation Apparatus for diagnosing temperature state of carrier of catalyst converter
US9200552B2 (en) 2010-04-28 2015-12-01 Denso Corporation Apparatus for controlling supply power to conductive carrier of catalyst converter
US8925301B2 (en) 2011-02-01 2015-01-06 Toyota Jidosha Kabushiki Kaisha Vehicle and method for controlling catalyst device in temperature
KR20220057257A (en) * 2020-10-29 2022-05-09 세종공업 주식회사 A Electric Heated Catalyst temperature control method under cold starting for construction machine

Similar Documents

Publication Publication Date Title
JP3322098B2 (en) Exhaust gas purification device for internal combustion engine
US5814283A (en) Exhaust purifier of internal combustion engine
JP2861628B2 (en) Exhaust gas purification device
US5388402A (en) Secondary air supply control system for internal combustion engines
JP3602612B2 (en) Idle speed control device for internal combustion engine
US6050086A (en) Exhaust emission control apparatus for internal combustion engine
JP3602613B2 (en) Exhaust gas purification device for internal combustion engine
JPH08296429A (en) Exhaust emission control device for internal combustion engine
JPH04276111A (en) Power supply of catalyzer with heater
JP4072249B2 (en) Operation method of internal combustion engine
JPH06173663A (en) Exhaust emission control device for internal combustion engine
JP3206148B2 (en) Exhaust gas purification device for internal combustion engine
JP2003065027A (en) Control device for exhaust air temperature sensor for internal combustion engine
JP2833376B2 (en) Electric control device for electrothermal catalyst
JP3458570B2 (en) Engine exhaust purification device
JPH06146864A (en) Exhaust emission control device for internal combustion engine
JP3006367B2 (en) Exhaust gas purification device for internal combustion engine
JPH09228868A (en) Intake air quantity controller of internal combustion engine
EP4159983B1 (en) Control method and control device for internal combustion engine
JPS61116652A (en) Heater controller for oxygen sensor
JP2845004B2 (en) Exhaust gas purification device for internal combustion engine
JP3077457B2 (en) Catalyst warm-up device for internal combustion engine
JPH11229861A (en) Exhaust secondary air control device
JPH0711942A (en) Electro-heating type catalystic converter
JPH0711946A (en) Exhaust emission control device for internal combustion engine