JPH06173012A - Gaseous mixed cleaning composition - Google Patents

Gaseous mixed cleaning composition

Info

Publication number
JPH06173012A
JPH06173012A JP32967992A JP32967992A JPH06173012A JP H06173012 A JPH06173012 A JP H06173012A JP 32967992 A JP32967992 A JP 32967992A JP 32967992 A JP32967992 A JP 32967992A JP H06173012 A JPH06173012 A JP H06173012A
Authority
JP
Japan
Prior art keywords
gas
sio
clf
film
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32967992A
Other languages
Japanese (ja)
Other versions
JP2885589B2 (en
Inventor
Isamu Mori
勇 毛利
Tadashi Fujii
正 藤井
Yoshiyuki Kobayashi
義幸 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP32967992A priority Critical patent/JP2885589B2/en
Publication of JPH06173012A publication Critical patent/JPH06173012A/en
Application granted granted Critical
Publication of JP2885589B2 publication Critical patent/JP2885589B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To easily remove an SiO2 film sticking to the inside of a reactor and an incompletely decomposed product, of alkoxysilane deposited in the reactor and piping by using a compsn. prepd. by mixing gaseous HF with gaseous ClF3 within a specified range. CONSTITUTION:A gaseous mixture of gaseous HF with gaseous ClF3, is prepd. as a mixed cleaning compsn. so as to satisfy the inequality (where (a) is the concn. (vol.%) of ClF3, (b) is the concn. (vol.%) of HF and P is the internal pressure (Torr) of a system). A device for forming a silicon oxide film is cleaned with the gaseous mixture. An SiO2 film sticking to parts at a high temp. is rapidly removed by a reaction with the ClF3 and an incompletely decomposed product of alkoxysilane (starting material) deposited in a low temp. parts such as piping and the flange of a reactor is removed by a reaction with the HF.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、アルコキシシランを原
料として用いたシリコン酸化膜形成装置の反応器内部、
冶具に付着したSiO2 膜と反応器内部、冶具、該装置
に接続した配管内に堆積したアルコキシシランの非完全
分解物を除去する混合クリーニングガス組成物に関す
る。
The present invention relates to the inside of a reactor of a silicon oxide film forming apparatus using alkoxysilane as a raw material,
The present invention relates to a mixed cleaning gas composition for removing an SiO 2 film attached to a jig, the inside of a reactor, a jig, and a non-complete decomposition product of alkoxysilane deposited in a pipe connected to the device.

【0002】[0002]

【従来の技術とその解決しようとする課題】アルコキシ
シランを原料として用い、CVD(熱CVD、プラズマ
CVD)によりSiO2 を堆積させる場合、温度が高い
(400〜900℃)反応器壁には主にアルコキシシラ
ンが完全に分解したSiO2 が、温度が低い(400℃
以下)反応器壁、該装置冶具、配管内部にはアルコキシ
シランが不完全に分解したC、H、O、Siを成分中に
含有する化合物が多量に付着する。この様な物が多量に
堆積すると反応器内のパーティクル発生の原因となった
り、配管のつまりにより反応系の圧力が変動する等の現
象が起こり正常な反応条件の維持が困難になる。従っ
て、これらの付着物を随時除去しなければならない。
2. Description of the Related Art When alkoxysilane is used as a raw material and SiO 2 is deposited by CVD (thermal CVD, plasma CVD), the temperature is high (400 to 900 ° C.) on the reactor wall. SiO 2 with completely decomposed alkoxysilane has a low temperature (400 ° C
Below) A large amount of a compound containing C, H, O, and Si in which the alkoxysilane is incompletely decomposed adheres to the reactor wall, the apparatus jig, and the inside of the pipe. Accumulation of such a large amount of particles causes generation of particles in the reactor, and the phenomenon that the pressure of the reaction system fluctuates due to clogging of the pipes and the like, making it difficult to maintain normal reaction conditions. Therefore, these deposits must be removed from time to time.

【0003】現状のこれら堆積物の除去法としては、装
置を解体し人力により擦り取る方法、フッ化水素酸等の
強酸水溶液により除去する湿式洗浄法等が一般的に行わ
れている。しかし、これらの方法では装置の解体、組
立、冶具取り出し等の煩雑な作業を必要とするため作業
に長時間を要するという欠点がある。また、反応室内に
付着したSiO2 膜をクリーニングする方法としてはN
3 によるプラズマクリーニングが行われている。しか
し、この方法ではプラズマ雰囲気外はクリーニングでき
ず、配管中は当然クリーニングできない。また、プラズ
マを発生させる装置を有していない成膜装置はクリーニ
ングできない。
As a current method of removing these deposits, a method of disassembling the apparatus and rubbing it by manpower, a wet cleaning method of removing it with a strong acid aqueous solution such as hydrofluoric acid, and the like are generally performed. However, these methods have a disadvantage that it takes a long time to perform the complicated work such as disassembling, assembling and taking out a jig. Further, as a method for cleaning the SiO 2 film adhered in the reaction chamber, N
Plasma cleaning with F 3 is being performed. However, this method cannot clean the outside of the plasma atmosphere, and naturally cannot clean the inside of the piping. Further, a film forming apparatus that does not have a device for generating plasma cannot be cleaned.

【0004】一方、F2 、ClF3 、フッ化水素酸蒸気
を用いたプラズマレスクリーニングも考えられるが、F
2 やClF3 を用いると反応器内部のSiO2 膜は除去
できるが、配管中のアルコキシシラン非完全分解物と接
触させるとSiO2 組成の粉体を生じ反応装置内のパー
ティクルが増加する。また、フッ化水素酸蒸気を用いる
と配管や反応器の材質であるステンレス等の金属や石英
への損傷が激しく好ましくない。
On the other hand, plasma rescreening using F 2 , ClF 3 and hydrofluoric acid vapor is also conceivable.
If 2 or ClF 3 is used, the SiO 2 film inside the reactor can be removed, but when it is brought into contact with the incompletely decomposed product of alkoxysilane in the pipe, a powder of SiO 2 composition is produced and the number of particles in the reactor increases. Further, when hydrofluoric acid vapor is used, the metal such as stainless steel and quartz, which are the materials of the pipes and the reactor, are severely damaged, which is not preferable.

【0005】さらにフッ化水素を用いたプラズマレスク
リーニングも考えられる。この方法であれば装置材料に
損傷を与えることなく配管中の付着物を完全に除去でき
るが、反応器内部に付着したSiO2 膜に対するエッチ
ング速度が非常に遅く、反応器内部のSiO2 膜を除去
する方法としては実用的ではない。
Further, plasma re-screening using hydrogen fluoride can be considered. With this method, the deposits in the piping can be completely removed without damaging the material of the equipment, but the etching rate for the SiO 2 film deposited inside the reactor is very slow, and the SiO 2 film inside the reactor can be removed. It is not practical to remove it.

【0006】そのため、アルコキシシランを用いてSi
2 膜を成膜する装置の反応器内部に付着したSiO2
膜と配管中もしくは反応器中に堆積したアルコキシシラ
ンの非完全分解物を装置材料に損傷を与えることなく、
装置の解体等の煩雑な作業を必要とすることなく簡便に
かつ同時に除去する方法が望まれている。
[0006] Therefore, using alkoxysilane, Si
SiO 2 attached inside the reactor of the apparatus for forming the O 2 film
Incomplete decomposition products of alkoxysilane deposited in the membrane and piping or in the reactor without damaging the equipment materials,
There is a demand for a simple and simultaneous removal method that does not require complicated operations such as disassembling the apparatus.

【0007】[0007]

【課題を解決するための手段】本発明者らは鋭意検討の
結果、特定の範囲にあるHFガスとClF3 ガスを含む
混合クリーニングガス組成物を用いることにより、アル
コキシシランを原料とするSiO2 成膜装置をクリーニ
ングする方法を見出した。
Means for Solving the Problems As a result of intensive studies by the present inventors, by using a mixed cleaning gas composition containing HF gas and ClF 3 gas in a specific range, SiO 2 using alkoxysilane as a raw material can be used. A method of cleaning the film forming apparatus has been found.

【0008】すなわち、本発明は、一般式(I)That is, the present invention has the general formula (I)

【0009】[0009]

【数2】 [Equation 2]

【0010】で示す範囲のHFガスとClF3 ガスを含
む混合クリーニングガス組成物を提供するものである。
本発明において、原料として使用されるアルコキシシラ
ンは、一般式が (RO)n SiX4-n または(RO)n SiR'4-n 〔式中のXはハロゲン原子、RとR’はそれぞれ独立し
てアルキル基、アリール基、グリシドキシアルキル基、
アクリロキシアルキル基、メタクリロキシアルキル基、
またはビニル基を示し、nは0または1〜4の整数であ
る。〕で表される化合物であって、例えばモノメトキシ
トリクロロシラン、ジメトキシジクロロシラン、トリメ
トキシモノクロロシラン、モノエトキシトリクロロシラ
ン、ジエトキシジクロロシラン、トリエトキシモノクロ
ロシラン、モノアリロキシトリクロロシラン、ジアリロ
キシジクロロシラン、モノメトキシトリフロロシラン、
ジメトキシジフロロシラン、トリメトキシモノフロロシ
ラン、モノエトキシトリフロロシラン、ジエトキシジフ
ロロシラン、トリエトキシモノフロロシラン、モノアリ
ロキシトリフロロシラン、ジアリロキシジフロロシラ
ン、テトラメトキシシラン、テトラエトキシシラン、テ
トラプロポキシシラン、テトラブトキシシラン、モノメ
チルトリメトキシシラン、モノエチルトリメトキシシラ
ン、モノエチルトリエトキシシラン、モノエチルトリエ
トキシシラン、モノエチルトリブトキシシラン、モノフ
ェニルトリメトキシシラン、モノフェニルトリエトキシ
シラン、ジメチルジメトキシシラン、ジエチルジエトキ
シシラン、ジフェニルジメトキシシラン、ジフェニルジ
エトキシシラン、ジエチルジブトキシシラン、ビニルメ
チルジメトキシシラン、ビニルエチルジエトキシシラ
ン、ビニルトリメトキシシラン、ビニルトリエトキシシ
ラン、ビニルトリブトキシシラン、γ−アクリロキシプ
ロピルトリメトキシシラン、γ−アクリロキシプロピル
トリエトキシシラン、β−メタクリロキシエチルトリメ
トキシシラン、β−メタクリロキシエチルトリエトキシ
シラン、β−グリシロキシエチルトリメトキシシラン、
β−グリシロキシエチルトリエトキシシラン、γ−プロ
ピルトリメトキシシラン、γ−グリシドキシプロピルト
リエトキシシラン等が挙げられる。
The present invention provides a mixed cleaning gas composition containing HF gas and ClF 3 gas in the range indicated by.
In the present invention, the alkoxysilane used as a raw material has a general formula of (RO) n SiX 4-n or (RO) n SiR ′ 4-n [wherein X is a halogen atom and R and R ′ are independent of each other. An alkyl group, an aryl group, a glycidoxyalkyl group,
Acryloxyalkyl group, methacryloxyalkyl group,
Alternatively, it represents a vinyl group, and n is 0 or an integer of 1 to 4. ] A compound represented by, for example, monomethoxytrichlorosilane, dimethoxydichlorosilane, trimethoxymonochlorosilane, monoethoxytrichlorosilane, diethoxydichlorosilane, triethoxymonochlorosilane, monoallyloxytrichlorosilane, diaryloxydiene Chlorosilane, monomethoxytrifluorosilane,
Dimethoxydifluorosilane, trimethoxymonofluorosilane, monoethoxytrifluorosilane, diethoxydifluorosilane, triethoxymonofluorosilane, monoallyloxytrifluorosilane, diaryloxydifluorosilane, tetramethoxysilane, tetraethoxysilane , Tetrapropoxysilane, tetrabutoxysilane, monomethyltrimethoxysilane, monoethyltrimethoxysilane, monoethyltriethoxysilane, monoethyltriethoxysilane, monoethyltributoxysilane, monophenyltrimethoxysilane, monophenyltriethoxysilane, Dimethyldimethoxysilane, diethyldiethoxysilane, diphenyldimethoxysilane, diphenyldiethoxysilane, diethyldibutoxysilane, vinylmethyldimethoxysilane , Vinylethyldiethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, vinyltributoxysilane, γ-acryloxypropyltrimethoxysilane, γ-acryloxypropyltriethoxysilane, β-methacryloxyethyltrimethoxysilane, β -Methacryloxyethyltriethoxysilane, β-glycyloxyethyltrimethoxysilane,
β-glycyloxyethyltriethoxysilane, γ-propyltrimethoxysilane, γ-glycidoxypropyltriethoxysilane and the like can be mentioned.

【0011】本発明においては(I)式の比率範囲内に
あるHFガスとClF3 ガスの混合ガスを用いて該装置
のクリーニングを行うことにより該装置の反応器中や配
管中に堆積したSiO2 膜とアルコキシシラン非完全分
解物を完全に除去することができる。すなわち、温度が
高い部分(400〜900℃)に付着しているSiO 2
膜をClF3 で速やかに反応除去し、配管や反応器フラ
ンジ部等の低温部(400℃以下)に堆積したアルコキ
シシランの非完全分解物をHFで反応除去するものであ
る。この場合、混合比率の上限値は、圧力に依存する。
一方、(I)式の比率範囲を越える濃度でClF3 を添
加したガスでクリーニングを行った場合、アルコキシシ
ラン非完全分解物を完全に除去できず、残査を生じるた
め反応器中のパーティクル増加の原因となるため良質な
SiO2 膜を形成することができなくなる。
In the present invention, within the ratio range of the formula (I)
HF gas and ClF3Device using mixed gas of gas
By cleaning the inside of the reactor and
SiO deposited in the tube2Membrane and incomplete alkoxysilane
The debris can be completely removed. That is, the temperature is
SiO adhered to the high part (400-900 ° C) 2
Membrane ClF3To quickly remove the reaction with a pipe or reactor
Arcoki deposited in low temperature areas (400 ° C or less)
A non-complete decomposition product of silane is removed by reaction with HF.
It In this case, the upper limit of the mixing ratio depends on the pressure.
On the other hand, if the concentration exceeds the ratio range of formula (I), ClF3With
When cleaning with the added gas,
Incomplete decomposition of orchids could not be completely removed, resulting in residue.
As it causes increase of particles in the reactor,
SiO2It becomes impossible to form a film.

【0012】本発明においてはクリーニングガスとして
ClF3 とHFのみを用いても良いが、排ガス処理や供
給装置等のプロセス条件を考慮して適時N2 、Ar、H
e等の不活性ガスで反応ガスを希釈して用いてもよい。
また、希釈ガスとしては不活性ガス以外に、反応器壁に
付着した完全分解物であるSiO2 膜のエッチング速度
を向上させる目的でF2 等の他のフッ化物ガスや他のハ
ロゲンガス、酸素、水素等を添加してもよい。
In the present invention, only ClF 3 and HF may be used as the cleaning gas, but N 2 , Ar and H may be appropriately used in consideration of process conditions such as exhaust gas treatment and a supply device.
The reaction gas may be diluted with an inert gas such as e.
In addition to the inert gas as the diluent gas, other fluoride gas such as F 2 and other halogen gas, oxygen, etc. for the purpose of improving the etching rate of the SiO 2 film which is a completely decomposed product adhered to the reactor wall. , Hydrogen or the like may be added.

【0013】また、本発明において、クリーニングする
温度は堆積物の除去速度を考慮するとより高温の方がよ
い。従ってクリーニング温度は装置材料のClF3 に対
する耐蝕性を考慮して適時決定すれば良い。しかし、配
管を加温する場合、作業安全性から温度は100℃以下
が好ましい(但し、断熱材を用いる場合はこの限りでは
ない)。
In the present invention, the cleaning temperature is preferably higher considering the removal rate of deposits. Therefore, the cleaning temperature may be appropriately determined in consideration of the corrosion resistance of the device material to ClF 3 . However, when the pipe is heated, the temperature is preferably 100 ° C. or lower from the viewpoint of work safety (however, this is not the case when a heat insulating material is used).

【0014】次に、系内圧は特に限定されず、通常、常
圧ないし減圧が適用される。堆積物除去速度の面からは
高い方が好ましいが、装置構造等を考慮して適時選択す
ればよい。また、HF濃度は高い方が除去速度面からは
有利であるが、他の条件との関係を考慮して選択すれば
よい。例えば、クリーニング時の系内圧が100Torr〜
700Torrの場合、HF濃度は50vol%以下に窒素、ア
ルゴン等の不活性ガスで希釈し、空塔速度は0.1SL
M〜100SLMでクリーニングすることが好ましい。
但し、成膜装置の構造上100Torr以下の圧力でしかク
リーニングできない場合は、濃度1〜100vol%、空塔
速度0.1SLM〜100SLMの範囲でクリーニング
条件を選択してもよい。また、混合比はClF3 濃度は
高い方が良いが、堆積するSiO2 膜量、非完全分解物
量、装置条件、プロセス条件(時間、圧力、温度)を考
慮して(I)式の範囲内で適時選択すればよい。
Next, the system pressure is not particularly limited, and normal pressure or reduced pressure is usually applied. From the viewpoint of the deposit removal rate, it is preferable that it is high, but it may be appropriately selected in consideration of the device structure and the like. Further, a higher HF concentration is more advantageous in terms of removal rate, but it may be selected in consideration of the relationship with other conditions. For example, the system internal pressure during cleaning is 100 Torr
In case of 700 Torr, the HF concentration is diluted to 50 vol% or less with an inert gas such as nitrogen or argon, and the superficial velocity is 0.1 SL.
Cleaning with M-100 SLM is preferred.
However, when cleaning can be performed only at a pressure of 100 Torr or less due to the structure of the film forming apparatus, the cleaning conditions may be selected within a range of a concentration of 1 to 100 vol% and a superficial velocity of 0.1 SLM to 100 SLM. In addition, the higher the mixing ratio, the higher the ClF 3 concentration, but within the range of the formula (I) in consideration of the amount of deposited SiO 2 film, the amount of incomplete decomposition products, the equipment conditions, and the process conditions (time, pressure, temperature). You can select with time.

【0015】[0015]

【実施例】以下、本発明を実施例により具体的に説明す
るが、本発明はかかる実施例により限定されるものでは
ない。
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.

【0016】実施例1〜73、比較例1〜56 TEOS(テトラエトキシシラン)を原料とし熱CVD
(800℃)を行った装置の排気管中には透明硝子状の
物、半透明硝子状の物、白色カレット状の物が付着して
いた。この堆積物を蛍光X線分析装置、元素分析装置及
びICPを用いて元素分析したところ、各々の化合物は
何れもSi、C、H、Oを含有しておりその組成比か
ら、透明硝子状の物はSiCH123 、半透明硝子状の
物はSiCH102 、白色の物はSiC0.5 2 Oなる
組成であることがわかった。これらをHFガスと反応さ
せ、その反応生成物を同定したところH2 O、CH4
2、SiF4 が存在することを確認した。
Examples 1 to 73, Comparative Examples 1 to 56 Thermal CVD using TEOS (tetraethoxysilane) as a raw material.
Transparent glass-like substances, semi-transparent glass-like substances, and white cullet-like substances were attached to the exhaust pipe of the apparatus at (800 ° C.). When this deposit was subjected to elemental analysis using a fluorescent X-ray analyzer, an elemental analyzer and ICP, each of the compounds contained Si, C, H, and O It was found that the composition was SiCH 12 O 3 , the translucent glass-like material was SiCH 10 O 2 , and the white material was SiC 0.5 H 2 O. When these were reacted with HF gas and the reaction products were identified, H 2 O, CH 4 ,
It was confirmed that H 2 and SiF 4 were present.

【0017】これら3種のSi,C,H,Oを含む化合
物(TEOS非完全分解物)を各々別々のニッケル製ボ
ートにとり表1〜表8に示す条件でHFガス、ClF3
ガスの混合ガス雰囲気中で反応除去を試みた(総流量1
0SLM)。反応ガスは必要に応じてN2 で希釈して用
いた。その結果、図1に示す混合比率の領域内ではTE
OSの非完全分解物をクリーニング温度に係わらず完全
に反応除去できることが分かった。結果を図1〜図3に
示す(図中の○はクリーニング良好部分、×は不良部分
をそれぞれ示す)。
The compounds containing these three kinds of Si, C, H and O (TEOS incompletely decomposed products) were placed in separate nickel boats under the conditions shown in Tables 1 to 8 and HF gas and ClF 3 were used.
Attempted reaction removal in mixed gas atmosphere of gas (total flow rate 1
0SLM). The reaction gas was used after diluting it with N 2 as needed. As a result, within the mixing ratio region shown in FIG.
It was found that incomplete decomposition products of OS can be completely removed by reaction regardless of the cleaning temperature. The results are shown in FIGS. 1 to 3 (in the figure, ◯ indicates a good cleaning portion, and x indicates a defective portion).

【0018】尚、残査を元素分析したところC,Hをほ
とんど含まずSiO2 組成になっていた。
Elemental analysis of the residue revealed that it had a SiO 2 composition containing almost no C or H.

【0019】[0019]

【表1】 [Table 1]

【0020】[0020]

【表2】 [Table 2]

【0021】[0021]

【表3】 [Table 3]

【0022】[0022]

【表4】 [Table 4]

【0023】[0023]

【表5】 [Table 5]

【0024】[0024]

【表6】 [Table 6]

【0025】[0025]

【表7】 [Table 7]

【0026】[0026]

【表8】 [Table 8]

【0027】比較例57 上記3種のTEOS非完全分解物(100g)をClF
3 ガス(760Torr、100vol%、300℃)で反
応除去を試みたところ何れの非完全分解物も完全に反応
除去できず10〜25wt% の残査が残った。この残査を
元素分析したところSiO2 組成であった。
Comparative Example 57 The above three types of incompletely decomposed TEOS (100 g) were treated with ClF.
When three gases (760 Torr, 100 vol%, 300 ° C.) were tried to be removed by reaction, none of the incomplete decomposed products could be completely removed by reaction, and a residue of 10 to 25 wt% remained. Elemental analysis of this residue revealed a SiO 2 composition.

【0028】実施例74 モノフルオロトリエトキシシラン、テトラメトキシシラ
ンを熱分解したときに生じた非完全分解物を用いて、H
FガスとClF3 ガスの混合ガスもしくはHFガス、C
lF3 ガスとN2 ガスの混合ガスで反応除去試験を行っ
た結果を図4、図5に示した(図中の○はクリーニング
良好部分、×は不良部分をそれぞれ示す)。この結果よ
りTEOSの場合と同様に(I)式の混合比率の領域内
では完全に反応除去できることが分かった。
Example 74 Using a non-completely decomposed product produced when pyrolyzing monofluorotriethoxysilane and tetramethoxysilane, H
Mixed gas of F gas and ClF 3 gas or HF gas, C
The results of the reaction removal test performed with a mixed gas of 1F 3 gas and N 2 gas are shown in FIGS. 4 and 5 (in the drawings, ◯ indicates a good cleaning portion, and × indicates a defective portion). From this result, it was found that the reaction can be completely removed in the region of the mixing ratio of the formula (I) as in the case of TEOS.

【0029】実施例75 TEOSを原料とし熱CVDを行い、シリコンウエハ上
にSiO2 膜(約1μm )を堆積させた成膜装置(配管
中堆積物平均膜厚約0.1mm)にHFガス、ClF3
ガス、N2 ガスの混合ガスを総流量10SLM(HF1
0vol%、ClF 3 4vol%、N2 86vol%)、系内圧力7
60Torrで1時間流通させた。その後装置を解体
し、シリコンウエハ上のSiO2 膜厚と配管内部を観察
したところSiO2 膜、配管内堆積物共に完全に除去で
きていた。
Example 75 A silicon wafer was subjected to thermal CVD using TEOS as a raw material.
On SiO2Film forming device (pipe for depositing film (about 1 μm)
HF gas, ClF to the medium deposit average film thickness of about 0.1 mm)3
Gas, N2The total flow rate of mixed gas is 10 SLM (HF1
0 vol%, ClF 34vol%, N286 vol%), system pressure 7
It was distributed at 60 Torr for 1 hour. Then dismantle the device
On the silicon wafer2Observation of film thickness and inside of piping
I made SiO2Complete removal of both film and deposits in piping
I was coming.

【0030】実施例76 TEOSを原料とし熱CVDを行い、シリコンウエハ上
にSiO2 膜(約1μm )を堆積させた成膜装置(配管
中堆積物平均膜厚約0.1mm)にHFガス、ClF3
ガス、N2 ガスの混合ガスを総流量10SLM(HF1
0vol%、ClF 3 1vol%、N2 89vol%)、系内圧力7
60Torrで1時間流通させた。その後装置を解体
し、シリコンウエハ上のSiO2 膜厚と配管内部を観察
したところSiO2 膜、配管内堆積物共に完全に除去で
きていた。
Example 76 On a silicon wafer, thermal CVD was performed using TEOS as a raw material.
On SiO2Film forming device (pipe for depositing film (about 1 μm)
HF gas, ClF to the medium deposit average film thickness of about 0.1 mm)3
Gas, N2The total flow rate of mixed gas is 10 SLM (HF1
0 vol%, ClF 31vol%, N289vol%), system pressure 7
It was distributed at 60 Torr for 1 hour. Then dismantle the device
On the silicon wafer2Observation of film thickness and inside of piping
I made SiO2Complete removal of both film and deposits in piping
I was coming.

【0031】実施例77 TEOSを原料とし熱CVDを行い、シリコンウエハ上
にSiO2 膜(約1μm )を堆積させた成膜装置(配管
中堆積物平均膜厚約0.1mm)にHFガス、ClF3
ガス、N2 ガスの混合ガスを総流量10SLM(HF1
0vol%、ClF 3 9.75vol%、N2 80.25vol
%)、系内圧力760Torrで1時間流通させた。そ
の後装置を解体し、シリコンウエハ上のSiO2 膜厚と
配管内部を観察したところSiO2 膜、配管内堆積物共
に完全に除できていた。
Example 77 On a silicon wafer, thermal CVD was performed using TEOS as a raw material.
On SiO2Film forming device (pipe for depositing film (about 1 μm)
HF gas, ClF to the medium deposit average film thickness of about 0.1 mm)3
Gas, N2The total flow rate of mixed gas is 10 SLM (HF1
0 vol%, ClF 39.75vol%, N280.25vol
%) And the system pressure was 760 Torr for 1 hour. So
After dismantling the device, SiO on the silicon wafer2Film thickness and
When observing the inside of the pipe, SiO2Both membranes and deposits in piping
Was completely removed.

【0032】比較例58 TEOSを原料とし熱CVDを行い、シリコンウエハ上
にSiO2 膜(約1μm )を堆積させた成膜装置(配管
中堆積物平均膜厚約0.1mm)にHFガス、ClF3
ガス、N2 ガスの混合ガスを総流量10SLM(HF1
0vol%、ClF 3 9.80vol%、N2 80.20vol
%)、系内圧力760Torrで1時間流通させた。そ
の後装置を解体し、シリコンウエハ上のSiO2 膜厚と
配管内部を観察したところSiO2 膜は完全に除去でき
ていたが、配管部に取り付けたトラップ中にSiO2
成の粉体状残査が残っていた(重量<1mg)。
Comparative Example 58 On a silicon wafer, thermal CVD was performed using TEOS as a raw material.
On SiO2Film forming device (pipe for depositing film (about 1 μm)
HF gas, ClF to the medium deposit average film thickness of about 0.1 mm)3
Gas, N2The total flow rate of mixed gas is 10 SLM (HF1
0 vol%, ClF 39.80vol%, N280.20vol
%) And the system pressure was 760 Torr for 1 hour. So
After dismantling the device, SiO on the silicon wafer2Film thickness and
When observing the inside of the pipe, SiO2The membrane can be completely removed
However, SiO was trapped in the trap attached to the piping.2set
A residual powdery residue remained (weight <1 mg).

【0033】実施例78 TEOSを原料とし熱CVDを行い、シリコンウエハ上
にSiO2 膜(約1μm )を堆積させた成膜装置(配管
中堆積物平均膜厚約0.1mm)にHFガス、ClF3
ガス、N2 ガスの混合ガスを総流量10SLM(HF2
0vol%、ClF 3 10vol%、N2 70vol%)、系圧力2
00Torrで1時間流通させた。その後装置を解体
し、シリコンウエハ上のSiO2 膜厚と配管内部を観察
したところSiO2 膜、配管内堆積物共に完全に除去で
きていた。
Example 78 A silicon wafer was subjected to thermal CVD using TEOS as a raw material.
On SiO2Film forming device (pipe for depositing film (about 1 μm)
HF gas, ClF to the medium deposit average film thickness of about 0.1 mm)3
Gas, N2The total flow rate of mixed gas is 10 SLM (HF2
0 vol%, ClF 310vol%, N270vol%), system pressure 2
It was circulated at 00 Torr for 1 hour. Then dismantle the device
On the silicon wafer2Observation of film thickness and inside of piping
I made SiO2Complete removal of both film and deposits in piping
I was coming.

【0034】実施例79 TEOSを原料とし熱CVDを行い、シリコンウエハ上
にSiO2 膜(約1μm )を堆積させた成膜装置(配管
中堆積物平均膜厚約0.1mm)にHFガス、ClF3
ガス、N2 ガスの混合ガスを総流量10SLM(HF2
0vol%、ClF 3 7vol%、N2 73vol%)、系内力10
0Torrで1時間流通させた。その後装置を解体し、
シリコンウエハ上のSiO2 膜厚と配管内部を観察した
ところSiO2 膜、配管内堆積物共に完全に除去できて
いた。
Example 79 On a silicon wafer, thermal CVD was performed using TEOS as a raw material.
On SiO2Film forming device (pipe for depositing film (about 1 μm)
HF gas, ClF to the medium deposit average film thickness of about 0.1 mm)3
Gas, N2The total flow rate of mixed gas is 10 SLM (HF2
0 vol%, ClF 37vol%, N273 vol%), system power 10
It was circulated for 1 hour at 0 Torr. Then dismantle the device,
SiO on silicon wafer2The film thickness and the inside of the pipe were observed
By the way SiO2Can completely remove both film and deposits in piping
I was there.

【0035】比較例59 TEOSを原料とし熱CVDを行い、シリコンウエハ上
にSiO2 膜(約1μm )を堆積させた成膜装置(配管
中堆積物平均膜厚約0.1mm)にHFガス、ClF3
ガス、N2 ガスの混合ガスを流量10SLM(HF20
vol%、ClF38vol%、N2 72vol%)、系内圧力10
0Torrで1時間流通させた。その後装置を解体し、
シリコンウエハ上のSiO2 膜厚と配管内部を観察した
ところSiO2 膜は完全に除去できていたが、配管部に
取り付けたトラップ中にSiO2組成の粉体状残査が残
っていた(重量<1mg)。
Comparative Example 59 TEOS was used as a raw material and thermal CVD was carried out to deposit a SiO 2 film (about 1 μm) on a silicon wafer. ClF 3
Gas and N 2 gas mixed gas at a flow rate of 10 SLM (HF20
vol%, ClF 3 8 vol%, N 2 72 vol%), system pressure 10
It was circulated for 1 hour at 0 Torr. Then dismantle the device,
Observation of the SiO 2 film thickness on the silicon wafer and the inside of the pipe showed that the SiO 2 film was completely removed, but a powdery residue of the SiO 2 composition remained in the trap attached to the pipe (weight). <1 mg).

【0036】実施例80 TEOSを原料とし熱CVDを行い、シリコンウエハ上
にSiO2 膜(約1μm )を堆積させた成膜装置(配管
中堆積物平均膜厚約0.1mm)にHFガス、ClF3
ガス、N2 ガスの混合ガスを総流量10SLM(HF8
0vol%、ClF 3 8.95vol%、N2 11.05vol
%)、系内圧力10Torrで1時間流通させた。その
後装置を解体し、シリコンウエハ上のSiO2 膜厚と配
管内部を観察したところSiO2 膜、配管内堆積物共に
完全に除去できていた。
Example 80 On a silicon wafer, thermal CVD was performed using TEOS as a raw material.
On SiO2Film forming device (pipe for depositing film (about 1 μm)
HF gas, ClF to the medium deposit average film thickness of about 0.1 mm)3
Gas, N2The total flow rate of mixed gas is 10 SLM (HF8
0 vol%, ClF 38.95vol%, N211.05vol
%) And the system pressure was 10 Torr for 1 hour. That
After dismantling the device, SiO on the silicon wafer2Film thickness and distribution
When the inside of the tube was observed, SiO2Both film and deposits in piping
It was completely removed.

【0037】実施例81 TEOSを原料とし熱CVDを行い、シリコンウエハ上
にSiO2 膜(約1μm )を堆積させた成膜装置(配管
中堆積物平均膜厚約0.1mm)にHFガス、ClF3
ガス、N2 ガスの混合ガスを総流量10SLM(HF5
0vol%、ClF 3 5.60vol%、N2 44.40vol
%)、系内圧力10Torrで1時間流通させた。その
後装置を解体し、シリコンウエハ上のSiO2 膜厚と配
管内部を観察したところSiO2 膜、配管内堆積物共に
完全に除去できていた。
Example 81 On a silicon wafer, thermal CVD was performed using TEOS as a raw material.
On SiO2Film forming device (pipe for depositing film (about 1 μm)
HF gas, ClF to the medium deposit average film thickness of about 0.1 mm)3
Gas, N2The total flow rate of mixed gas is 10 SLM (HF5
0 vol%, ClF 35.60vol%, N244.40vol
%) And the system pressure was 10 Torr for 1 hour. That
After dismantling the device, SiO on the silicon wafer2Film thickness and distribution
When the inside of the tube was observed, SiO2Both film and deposits in piping
It was completely removed.

【0038】比較例60 TEOSを原料とし熱CVDを行い、シリコンウエハ上
にSiO2 膜(約1μm )を堆積させた成膜装置(配管
中堆積物平均膜厚約0.1mm)にHFガス、ClF3
ガス、N2 ガスの混合ガスを流量10SLM(HF50
vol%、ClF36vol%、N2 44vol%)、系内圧力10
Torrで1時間流通させた。その後装置を解体し、シ
リコンウエハ上のSiO2 膜厚と配管内部を観察したと
ころSiO2 膜は完全に除去できていたが、配管部に取
り付けたトラップ中にSiO2 組成の粉体状残査が残っ
ていた(重量<1mg)。
COMPARATIVE EXAMPLE 60 TEOS was used as a raw material and thermal CVD was carried out to deposit a SiO 2 film (about 1 μm) on a silicon wafer. ClF 3
Gas and N 2 gas mixed gas at a flow rate of 10 SLM (HF50
vol%, ClF 3 6 vol%, N 2 44 vol%), system pressure 10
It was circulated for 1 hour at Torr. After that, the device was disassembled, and the SiO 2 film thickness on the silicon wafer and the inside of the pipe were observed. As a result, the SiO 2 film was completely removed. However, the powdery residue of the SiO 2 composition remained in the trap attached to the pipe part. Remained (weight <1 mg).

【0039】実施例82 TEOSを原料とし熱CVDを行い、シリコンウエハ上
にSiO2 膜(約1μm )を堆積させた成膜装置(配管
中堆積物平均膜厚約0.1mm)にHFガス、ClF3
ガス、N2 ガスの混合ガスを総流量10SLM(HF9
0vol%、ClF 3 3.20vol%、N2 6.80vol%)、
系内圧力1Torrで2時間流通させた。その後装置を
解体し、シリコンウエハ上のSiO2 膜厚と配管内部を
観察したところSiO2 膜、配管内堆積物共に完全に除
去できていた。
Example 82 On a silicon wafer, thermal CVD was performed using TEOS as a raw material.
On SiO2Film forming device (pipe for depositing film (about 1 μm)
HF gas, ClF to the medium deposit average film thickness of about 0.1 mm)3
Gas, N2The total flow rate of mixed gas is 10 SLM (HF9
0 vol%, ClF 33.20vol%, N26.80vol%),
It was circulated for 2 hours at a system pressure of 1 Torr. Then the device
Disassembled, SiO on the silicon wafer2The film thickness and the inside of the pipe
Observed SiO2Completely removes both film and deposits in piping
It was gone.

【0040】比較例61 TEOSを原料とし熱CVDを行い、シリコンウエハ上
にSiO2 膜(約1μm )を堆積させた成膜装置(配管
中堆積物平均膜厚約0.1mm)にHFガス、ClF3
ガス、N2 ガスの混合ガスを総流量10SLM(HF9
0vol%、ClF 3 4vol%、N2 6vol%)、系内圧力1T
orrで2時間流通させた。その後装置を解体し、シリ
コンウエハ上のSiO2 膜厚と配管内部を観察したとこ
ろSiO 2 膜は完全に除去できていたが、配管部に取り
付けたトラップ中にSiO2 組成の粉体状残査が残って
いた(重量<1mg)。
Comparative Example 61 On a silicon wafer, thermal CVD was performed using TEOS as a raw material.
On SiO2Film forming device (pipe for depositing film (about 1 μm)
HF gas, ClF to the medium deposit average film thickness of about 0.1 mm)3
Gas, N2The total flow rate of mixed gas is 10 SLM (HF9
0 vol%, ClF 34vol%, N26vol%), system pressure 1T
It was circulated at orr for 2 hours. Then dismantle the device and
SiO on conwafer2The film thickness and the inside of the pipe were observed.
SiO 2The membrane was completely removed, but
SiO in the attached trap2The powdery residue of the composition remains
(Weight <1 mg).

【0041】実施例83 モノフルオロトリエトキシシランを原料とし熱CVDを
行い、シリコンウエハ上にSiO2 膜(約1μm )を堆
積させた成膜装置(配管中堆積物平均膜厚約0.1m
m)にHFガス、ClF3 ガス、N2 ガスの混合ガスを
総流量10SLM(HF90vol%、ClF3 3.20vo
l%、N2 6.80vol%)、系内圧力1Torrで2時間
流通させた。その後装置を解体し、シリコンウエハ上の
SiO2 膜厚と配管内部を観察したところSiO2 膜、
配管内堆積物共に完全に除去できていた。
Example 83 A film forming apparatus in which thermal CVD was performed using monofluorotriethoxysilane as a raw material and a SiO 2 film (about 1 μm) was deposited on a silicon wafer (average film thickness of deposits in a pipe was about 0.1 m).
m) mixed gas of HF gas, ClF 3 gas and N 2 gas at a total flow rate of 10 SLM (HF 90 vol%, ClF 3 3.20 vo).
1%, N 2 6.80 vol%) and the system pressure was 1 Torr. Then the device was disassembled, SiO 2 film was observed with the piping and SiO 2 film thickness on a silicon wafer,
The deposits in the pipe could be completely removed.

【0042】比較例62 モノフルオロトリエトキシシランを原料とし熱CVDを
行い、シリコンウエハ上にSiO2 膜(約1μm )を堆
積させた成膜装置(配管中堆積物平均膜厚約0.1m
m)にHFガス、ClF3 ガス、N2 ガスの混合ガスを
総流量10SLM(HF90vol%、ClF3 4vol%、N
2 6vol%)、系内圧力1Torrで2時間流通させた。
その後装置を解体し、シリコンウエハ上のSiO2 膜厚
と配管内部を観察したところSiO2 膜は完全に除去で
きていが、配管部に取り付けたトラップ中にSiO2
成の粉体状残査が残っていた(重量<1mg)。
Comparative Example 62 A film forming apparatus in which thermal CVD was performed using monofluorotriethoxysilane as a raw material and an SiO 2 film (about 1 μm) was deposited on a silicon wafer (average film thickness of deposit in pipe: about 0.1 m)
m) mixed gas of HF gas, ClF 3 gas and N 2 gas at a total flow rate of 10 SLM (HF 90 vol%, ClF 3 4 vol%, N
2 6 vol%), was passed through for 2 hours at system pressure 1 Torr.
After that, the device was disassembled, and the SiO 2 film thickness on the silicon wafer and the inside of the pipe were observed. As a result, the SiO 2 film was completely removed, but powdery residue of the SiO 2 composition was found in the trap attached to the pipe part. It remained (weight <1 mg).

【0043】実施例84 モノフルオロトリエトキシシランを原料とし熱CVDを
行い、シリコンウエハ上にSiO2 膜(約1μm )を堆
積させた成膜装置(配管中堆積物平均膜厚約0.1m
m)にHFガス、ClF3 ガス、N2 ガスの混合ガスを
総流量10SLM(HF20vol%、ClF3 19.45
vol%、N2 60.55vol%)、系内圧力760Torr
で1時間流通させた。その後装置を解体し、シリコンウ
エハ上のSiO2 膜厚と配管内部を観察したところSi
2 膜、配管内堆積物共に完全に除去できていた。
Example 84 A film-forming apparatus in which thermal CVD was performed using monofluorotriethoxysilane as a raw material to deposit a SiO 2 film (about 1 μm) on a silicon wafer (average film thickness of deposits in a pipe was about 0.1 m).
m) is a mixed gas of HF gas, ClF 3 gas, and N 2 gas at a total flow rate of 10 SLM (HF 20 vol%, ClF 3 19.45).
vol%, N 2 60.55 vol%), system pressure 760 Torr
It was distributed for 1 hour. After that, the device was disassembled, and the SiO 2 film thickness on the silicon wafer and the inside of the pipe were observed.
Both the O 2 film and the deposit in the pipe could be completely removed.

【0044】比較例63 モノフルオロトリエトキシシランを原料とし熱CVDを
行い、シリコンウエハ上にSiO2 膜(約1μm )を堆
積させた成膜装置(配管中堆積物平均膜厚約0.1m
m)にHFガス、ClF3 ガス、N2 ガスの混合ガスを
総流量10SLM(HF20vol%、ClF3 20vol%、
2 60vol%)、系内圧力760Torrで2時間流通
させた。その後装置を解体し、シリコンウエハ上のSi
2 膜厚と配管内部を観察したところSiO2 膜は完全
に除去できていたが、配管部に取り付けたトラップ中に
SiO2 組成の粉体状残査が残っていた(重量<1m
g)。
Comparative Example 63 A film-forming apparatus (average film thickness of deposits in pipes of about 0.1 m) was obtained by depositing a SiO 2 film (about 1 μm) on a silicon wafer by thermal CVD using monofluorotriethoxysilane as a raw material.
m) is a mixed gas of HF gas, ClF 3 gas, and N 2 gas at a total flow rate of 10 SLM (HF 20 vol%, ClF 3 20 vol%,
N 2 60 vol%) and the system pressure was 760 Torr for 2 hours. After that, the device was disassembled and Si on the silicon wafer was
When the O 2 film thickness and the inside of the pipe were observed, the SiO 2 film was completely removed, but a powdery residue of SiO 2 composition remained in the trap attached to the pipe part (weight <1 m.
g).

【0045】実施例85 テトラメトキシシランを原料とし熱CVDを行い、シリ
コンウエハ上にSiO 2 膜(約1μm )を堆積させた成
膜装置(配管中堆積物平均膜厚約0.1mm)にHFガ
ス、ClF3 ガス、N2 ガスの混合ガスを総流量10S
LM(HF90vol%、ClF3 3.20vol%、N2 6.
80vol%)、系内圧力1Torrで2時間流通させた。
その後装置を解体し、シリコンウエハ上のSiO2 膜厚
と配管内部を観察したところSiO2 膜、配管内堆積物
共に完全に除去できていた。
Example 85 Tetramethoxysilane was used as a raw material and thermal CVD was performed to
SiO on conwafer 2Formed by depositing a film (about 1 μm)
HF gas is applied to the membrane device (average thickness of the deposit in the pipe is about 0.1 mm).
Su, ClF3Gas, N2Total flow rate of mixed gas is 10S
LM (HF90vol%, ClF33.20vol%, N26.
And 80% by volume, and the system pressure was 1 Torr for 2 hours.
After that, the device is disassembled, and SiO on the silicon wafer is2Film thickness
When the inside of the pipe was observed, SiO2Membrane, pipe deposit
Both were completely removed.

【0046】比較例64 テトラメトキシシランを原料とし熱CVDを行い、シリ
コンウエハ上にSiO 2 膜(約1μm )を堆積させた成
膜装置(配管中堆積物平均膜厚約0.1mm)にHFガ
ス、ClF3 ガス、N2 ガスの混合ガスを総流量10S
LM(HF90vol%、ClF3 4vol%、N2 6vol%)、
系内圧力1Torrで2時間流通させた。その後装置を
解体し、シリコンウエハ上のSiO2 膜厚と配管内部を
観察したところSiO2 膜は完全に除去できていたが、
配管部に取り付けたトラップ中にSiO2 組成の粉体状
残査が残っていた(重量<1mg)。
Comparative Example 64 Thermal CVD was performed using tetramethoxysilane as a raw material to
SiO on conwafer 2Formed by depositing a film (about 1 μm)
HF gas is applied to the membrane device (average thickness of the deposit in the pipe is about 0.1 mm).
Su, ClF3Gas, N2Total flow rate of mixed gas is 10S
LM (HF90vol%, ClF34vol%, N26vol%),
It was circulated for 2 hours at a system pressure of 1 Torr. Then the device
Disassembled, SiO on the silicon wafer2The film thickness and the inside of the pipe
Observed SiO2The film was completely removed,
SiO in the trap attached to the pipe2Composition of powder
Residue remained (weight <1 mg).

【0047】実施例86 テトラメトキシシランを原料とし熱CVDを行い、シリ
コンウエハ上にSiO 2 膜(約1μm )を堆積させた成
膜装置(配管中堆積物平均膜厚約0.1mm)にHFガ
ス、ClF3 ガス、N2 ガスの混合ガスを総流量10S
LM(HF20vol%、ClF3 19.45vol%、N2
0.55vol%)、系内圧力760Torrで1時間流通
させた。その後装置を解体し、シリコンウエハ上のSi
2 膜厚と配管内部を観察したところSiO2 膜、配管
内堆積物共に完全に除去できていた。
Example 86 Thermal CVD was performed using tetramethoxysilane as a raw material to obtain silicon.
SiO on conwafer 2Formed by depositing a film (about 1 μm)
HF gas is applied to the membrane device (average thickness of the deposit in the pipe is about 0.1 mm).
Su, ClF3Gas, N2Total flow rate of mixed gas is 10S
LM (HF20vol%, ClF319.45vol%, N26
0.55vol%), system pressure 760Torr for 1 hour
Let After that, the device was disassembled and Si on the silicon wafer was
O2When the film thickness and the inside of the pipe were observed, SiO2Membrane, piping
The internal deposits were completely removed.

【0048】比較例65 テトラメトキシシランを原料とし熱CVDを行い、シリ
コンウエハ上にSiO 2 膜(約1μm )を堆積させた成
膜装置(配管中堆積物平均膜厚約0.1mm)にHFガ
ス、ClF3 ガス、N2 ガスの混合ガスを総流量10S
LM(HF20vol%、ClF3 20vol%、N2 60vol
%)、系内圧力760Torrで2時間流通させた。そ
の後装置を解体し、シリコンウエハ上のSiO2 膜厚と
配管内部を観察したところSiO2 膜は完全に除去でき
ていたが、配管部に取り付けたトラップ中にSiO2
成の粉体状残査が残っていた(重量<1mg)。
Comparative Example 65 Using tetramethoxysilane as a raw material, thermal CVD was performed to obtain silicon.
SiO on conwafer 2Formed by depositing a film (about 1 μm)
HF gas is applied to the membrane device (average thickness of the deposit in the pipe is about 0.1 mm).
Su, ClF3Gas, N2Total flow rate of mixed gas is 10S
LM (HF20vol%, ClF320vol%, N260 vol
%) And the system pressure was 760 Torr for 2 hours. So
After dismantling the device, SiO on the silicon wafer2Film thickness and
When observing the inside of the pipe, SiO2The membrane can be completely removed
However, SiO was trapped in the trap attached to the piping.2set
A residual powdery residue remained (weight <1 mg).

【0049】[0049]

【発明の効果】HFガスとClF3 ガスを含む本発明の
クリーニングガス組成物は、薄膜形成装置、治具、配管
等の解体を行うことなく、付着、堆積したアルコキシシ
ランの非完全分解物やSiO2 を容易にクリーニング処
理できるものである。
INDUSTRIAL APPLICABILITY The cleaning gas composition of the present invention containing HF gas and ClF 3 gas can be used to remove incompletely decomposed products of alkoxysilane deposited or deposited without disassembling thin film forming equipment, jigs, pipes and the like. SiO 2 can be easily cleaned.

【図面の簡単な説明】[Brief description of drawings]

【図1】TEOS非完全分解物(25℃)のクリーニン
グにおける系内圧力とガス混合比の関係を示す。
FIG. 1 shows the relationship between the system pressure and the gas mixing ratio in the cleaning of TEOS incomplete decomposition products (25 ° C.).

【図2】TEOS非完全分解物(100℃)のクリーニ
ングにおける系内圧力とガス混合比の関係を示す。
FIG. 2 shows the relationship between the system internal pressure and the gas mixing ratio in cleaning TEOS incomplete decomposition products (100 ° C.).

【図3】TEOS非完全分解物(200℃)のクリーニ
ングにおける系内圧力とガス混合比の関係を示す。
FIG. 3 shows the relationship between the system internal pressure and the gas mixing ratio in the cleaning of TEOS incomplete decomposition products (200 ° C.).

【図4】モノフルオロトリエトキシシラン非完全分解物
(25℃)のクリーニングにおける系内圧力とガス混合
比の関係を示す。
FIG. 4 shows the relationship between the system internal pressure and the gas mixing ratio in the cleaning of incompletely decomposed monofluorotriethoxysilane (25 ° C.).

【図5】テトラメトキシシラン非完全分解物(25℃)
のクリーニングにおける系内圧力とガス混合比の関係を
示す。
FIG. 5: Incomplete decomposition product of tetramethoxysilane (25 ° C)
The relation between the system internal pressure and the gas mixture ratio in the cleaning is shown.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 一般式(I) 【数1】 で示す範囲のHFガスとClF3 ガスを含む混合クリー
ニングガス組成物。
1. The general formula (I): A mixed cleaning gas composition containing HF gas and ClF 3 gas in the range shown in FIG.
JP32967992A 1992-12-09 1992-12-09 Mixed cleaning gas composition Expired - Lifetime JP2885589B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32967992A JP2885589B2 (en) 1992-12-09 1992-12-09 Mixed cleaning gas composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32967992A JP2885589B2 (en) 1992-12-09 1992-12-09 Mixed cleaning gas composition

Publications (2)

Publication Number Publication Date
JPH06173012A true JPH06173012A (en) 1994-06-21
JP2885589B2 JP2885589B2 (en) 1999-04-26

Family

ID=18224057

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32967992A Expired - Lifetime JP2885589B2 (en) 1992-12-09 1992-12-09 Mixed cleaning gas composition

Country Status (1)

Country Link
JP (1) JP2885589B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6095158A (en) * 1997-02-06 2000-08-01 Lam Research Corporation Anhydrous HF in-situ cleaning process of semiconductor processing chambers

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6095158A (en) * 1997-02-06 2000-08-01 Lam Research Corporation Anhydrous HF in-situ cleaning process of semiconductor processing chambers

Also Published As

Publication number Publication date
JP2885589B2 (en) 1999-04-26

Similar Documents

Publication Publication Date Title
JP3433392B2 (en) Cleaning gas and cleaning method for vacuum processing apparatus
JP3400293B2 (en) CVD apparatus and cleaning method thereof
JP3855081B2 (en) CVD apparatus equipped with fluorine gas cleaning mechanism and method of cleaning CVD apparatus with fluorine gas
KR100335174B1 (en) Cleaning gas
JP2904723B2 (en) Cleaning gas
KR20190133012A (en) Dry etching method or dry cleaning method
JPH06173012A (en) Gaseous mixed cleaning composition
JP2856613B2 (en) Cleaning method for incomplete decomposition products of alkoxysilane
JP4320389B2 (en) CVD chamber cleaning method and cleaning gas used therefor
JP2776700B2 (en) Cleaning method of ammonium silicofluoride
JP3025156B2 (en) Cleaning method for film forming equipment
JP3007032B2 (en) Gas cleaning method for tungsten and tungsten compound film forming apparatus
JPH0799174A (en) Cleaning method for thin-film forming apparatus
JP3117069B2 (en) Cleaning method for incomplete decomposition products of alkoxysilane
JP2842744B2 (en) Cleaning method for epitaxial growth equipment
JP2776713B2 (en) Mixed cleaning gas composition
JP3770718B2 (en) Method for cleaning substrate to which ammonium fluoride is adhered
JPH1197434A (en) Film deposition equipment, cleaning method thereof, and film deposition therewith
JP2812838B2 (en) Cleaning method for thin film forming apparatus
JP3152386B2 (en) Cleaning method for tantalum oxide manufacturing equipment
JP2003144905A (en) Gas cleaning method
JP2003218100A (en) Mixture cleaning gas composition
US20040173569A1 (en) Cleaning gas and etching gas
JPH0633054A (en) Method for cleaning ammonium chloride
JP3555737B2 (en) Cleaning gas

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090212

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090212

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100212

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20100212

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110212

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110212

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120212

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120212

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120212

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 14

EXPY Cancellation because of completion of term