JPH06170700A - Milling tool having odd number of cutting edges and machining error measuring method/device for machining using this tool - Google Patents

Milling tool having odd number of cutting edges and machining error measuring method/device for machining using this tool

Info

Publication number
JPH06170700A
JPH06170700A JP35075892A JP35075892A JPH06170700A JP H06170700 A JPH06170700 A JP H06170700A JP 35075892 A JP35075892 A JP 35075892A JP 35075892 A JP35075892 A JP 35075892A JP H06170700 A JPH06170700 A JP H06170700A
Authority
JP
Japan
Prior art keywords
tool
machining
milling
cutting edges
cutting edge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP35075892A
Other languages
Japanese (ja)
Inventor
Toshiaki Yamane
俊明 山根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP35075892A priority Critical patent/JPH06170700A/en
Publication of JPH06170700A publication Critical patent/JPH06170700A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C5/00Milling-cutters
    • B23C5/02Milling-cutters characterised by the shape of the cutter
    • B23C5/10Shank-type cutters, i.e. with an integral shaft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2210/00Details of milling cutters
    • B23C2210/20Number of cutting edges
    • B23C2210/202Number of cutting edges three

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Milling Processes (AREA)
  • Machine Tool Sensing Apparatuses (AREA)

Abstract

PURPOSE:To easily and surely measure an amount of deflecting of a milling tool during rotation having an odd number of cutting edges. CONSTITUTION:By detecting a normal direction position of a machining surface, in a part symmetrical to a tool rotational center 7 relating to cutting edges 24 of a tool of passing through the machining surface synchronously with the point of time the cutting edge 24 of the tool passes through the machining surface, by a noncontact detecting device, a position of the cutting edge is detected to measure a shape error of the machining surface. A shape of the part symmetrical to the tool rotational center 7 relating to the cutting edge of the tool is set vertical to a straight line of connecting the cutting edge 24 to the tool rotational center 7.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、エンドミル等のフラ
イス工具を用いて側面削り又は段削りを行う際に、切削
力によって生ずる工具のたわみに起因する加工面の形状
誤差を、インプロセスで計測する方法および装置とそれ
に適したフライス工具に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention measures in-process the shape error of a machined surface due to the deflection of the tool caused by the cutting force when the side milling or the step milling is performed using a milling tool such as an end mill. And a milling tool suitable therefor.

【0002】[0002]

【従来の技術】NC切削加工において問題となるのは、
主に工作物表面の荒さと切削面の形状精度である。特に
図5に示すエンドミル4のようなフライス工具を用いて
側面削りや段削りを行う場合には、工具のたわみに起因
する加工面のうねりや傾きなどの形状誤差が大きな問題
となる。従来、NC工作機でエンドミル等のフライス工
具を用いて加工を行う場合には、あらかじめ荒加工を
し、その後少しずつ切込みを減らした仕上げ加工をして
形状精度を出すのが一般的であった。しかしこの方法は
熟練工の勘に頼る部分が多く、しかも何度かの試作と専
用の測定機を使用した計測が必要である。一方、前記の
ように工作物の形状精度が、工具のたわみに起因する加
工面のうねりや傾きであることに着目して、切削力によ
る工具たわみをシミュレーション計算で求める方法が提
案されている。
2. Description of the Related Art A problem in NC cutting is that
Mainly the roughness of the surface of the work and the shape accuracy of the cutting surface. In particular, when side milling or step milling is performed using a milling tool such as the end mill 4 shown in FIG. 5, shape errors such as waviness and inclination of the machined surface due to the deflection of the tool pose a serious problem. In the past, when machining was performed with an NC machine tool using a milling tool such as an end mill, it was common to perform rough machining in advance and then finish machining with gradually reducing the depth of cut to obtain shape accuracy. . However, this method often depends on the intuition of a skilled worker, and requires several trial productions and measurement using a dedicated measuring machine. On the other hand, as described above, a method has been proposed in which the shape precision of the workpiece is the waviness or inclination of the machined surface caused by the deflection of the tool, and the tool deflection due to the cutting force is obtained by simulation calculation.

【0003】しかし、この工具たわみをシミュレーショ
ン計算で求める方法は、複雑な曲面を切削するような場
合では現実と合わないことが多い。すなわち、エンドミ
ル加工のように断続切削を行う場合には、工作物と工具
の切れ刃の接触する位置の変化により、工具が一回転す
る間にもその切削力の大きさと方向が刻々と変化する。
工具のたわみはこの切削力により発生するため、たわみ
の大きさや形も回転中に変動する。加工面の形状精度
は、工具の切れ刃が仕上げ面を通った時の工具のたわみ
によって決定される。このことはアップカットでもダウ
ンカットでも同じである。したがって、加工誤差をイン
プロセスで求めるためには、切れ刃が仕上げ面を通った
瞬間に、その位置でどれだけ工具たわみがあったかを知
らなければならない。従来、側面切作中のエンドミルの
工具先端でこのたわみ量を計測する手法として、特殊な
形状の工具とストロボカメラを使用したものが存在す
る。(例えば、不二越技報 vol.37 No.1.1981 参照)。
また同じく側面切削の場合エンドミルの一部に鋼製のリ
ングをはめ、この部分に歪み計を内蔵した板バネを当て
てたわみを測定する実験が行われている。(例えば、機
械振興協会技術研究所「加工技術データファイル」204F
00参照)。しかるに、これら従来の工具たわみ測定技術
は、回転中の工具が工作物と接触していない場所のたわ
み量を測定することは可能であったが、全体にわたって
たわみ形状を求めることは不可能であり、またインプロ
セスで工作物の加工誤差制御に適用することも不可能で
あった。このようなことから、回転中のフライス工具の
たわみ量を容易かつ確実に測定することができ、インプ
ロセスでの工作物の加工制御に適用させることができる
技術の開発が望まれている。
However, the method of obtaining the tool deflection by simulation calculation often does not match the reality when cutting a complicated curved surface. That is, when performing intermittent cutting like end milling, the magnitude and direction of the cutting force change momentarily even during one rotation of the tool due to the change in the contact position between the workpiece and the cutting edge of the tool. .
Since the bending of the tool is generated by this cutting force, the size and shape of the bending also change during rotation. The shape accuracy of the machined surface is determined by the deflection of the tool when the cutting edge of the tool passes through the finished surface. This is the same for up cut and down cut. Therefore, in order to obtain the machining error in-process, it is necessary to know how much the tool has deflected at the position when the cutting edge passes through the finished surface. Conventionally, as a method for measuring the amount of deflection at the tool tip of an end mill during side cutting, there is a method using a specially shaped tool and a flash camera. (For example, see Fujikoshi Technical Report vol.37 No.1.1981).
Similarly, in the case of side cutting, a steel ring is attached to a part of the end mill, and a deflection is measured by applying a leaf spring with a built-in strain gauge to this part. (For example, Machinery Promotion Association Technical Research Institute "Processing Technology Data File" 204F
00). However, while these conventional tool deflection measurement techniques were able to measure the deflection amount at the place where the rotating tool was not in contact with the workpiece, it was not possible to obtain the deflection shape over the whole area. Moreover, it was impossible to apply it to the machining error control of the workpiece in-process. For this reason, it is desired to develop a technique capable of easily and reliably measuring the amount of deflection of the milling tool during rotation and being applied to machining control of a workpiece in-process.

【0004】この課題を解決するために、偶数枚数の切
れ刃を持つフライス工具を用いて側面削り又は段削りを
行う場合のみにおいては、フライス工具の切れ刃が加工
面を通過するときに、切れ刃の反対側の切れ刃の刃先
の、仕上げ面の法線方向位置を非接触の検出装置で検出
することにより、切れ刃の位置を検出し、インプロセス
で加工面の形状誤差を計測する測定手法が開発されてい
る(特願平4−34221)。図5はその概要を示すも
ので、1はこの発明の加工誤差計測方法を用いた加工誤
差測定装置である。変位計2はエンドミル4に対向して
配置されている。エンドミル4は工作機械の主軸頭5の
チャック6に取付けられており、チャック6の周囲にチ
ャック6の回転中心7と同心状に変位計ホルダー8が配
置されている。変位計ホルダー8はチャック6の外側に
位置していて、チャック6の回転中心7に関して回転可
能であり、図7に示すように、常に加工している切れ刃
の反対側の切れ刃の位置を検出するものである。
In order to solve this problem, only when the side milling or the step milling is performed using a milling tool having an even number of cutting edges, when the cutting edges of the milling tool pass through the working surface, A measurement that detects the position of the cutting edge by detecting the position of the cutting edge on the opposite side of the blade in the normal direction of the finished surface with a non-contact detection device, and measures the shape error of the processing surface in-process A method has been developed (Japanese Patent Application No. 4-34221). FIG. 5 shows an outline thereof, and 1 is a processing error measuring device using the processing error measuring method of the present invention. The displacement meter 2 is arranged so as to face the end mill 4. The end mill 4 is attached to a chuck 6 of a spindle head 5 of a machine tool, and a displacement gauge holder 8 is arranged around the chuck 6 concentrically with a rotation center 7 of the chuck 6. The displacement gauge holder 8 is located outside the chuck 6 and is rotatable about a rotation center 7 of the chuck 6, and as shown in FIG. It is something to detect.

【0005】[0005]

【発明が解決しようとする課題】特願平4−34221
の測定手法は、ある切れ刃が加工面を生成しているとき
に、その工具の回転中心に対して反対側に位置する切れ
刃が加工している点の法線上にあるために、加工してい
る切れ刃の反対側の切れ刃の位置を検出することで、加
工中している切れ刃の位置を検出し、加工面の形状誤差
を計測しようという計測手法であるが、そのために加工
している切れ刃の反対側の位置に切れ刃が存在する偶数
枚数の切れ刃をもつフライス工具にしか適用できない。
したがって、工具や被加工物の材質、剛性、生産性等の
観点で優れる奇数枚数の切れ刃をもったフライス工具を
用いることができないという問題があった。そこで本発
明は、奇数枚数の切れ刃をもつ回転中のフライス工具の
たわみ量を容易かつ確実に計測することができ、又、そ
の測定結果をインプロセスで工作物の加工精度制御に反
映させることを可能とする、奇数枚数の切れ刃をもつフ
ライス工具を用いた加工の加工誤差計測方法および装置
とそれに適したフライス工具を提供することを目的とす
るものである。
[Problems to be Solved by the Invention] Japanese Patent Application No. 4-34221
The method of measurement is that when a certain cutting edge is generating a machining surface, the cutting edge located on the opposite side to the center of rotation of the tool is on the normal line of the machining point. It is a measurement method that detects the position of the cutting edge that is being machined by detecting the position of the cutting edge on the opposite side of the cutting edge that is being processed, and measures the shape error of the machined surface. Applicable only to milling tools with an even number of cutting edges, where there is a cutting edge on the opposite side of the cutting edge.
Therefore, there is a problem that it is not possible to use a milling tool having an odd number of cutting edges, which is excellent in terms of material, rigidity, productivity, etc. of a tool or a workpiece. Therefore, the present invention can easily and reliably measure the amount of deflection of a rotating milling tool having an odd number of cutting edges, and reflect the measurement result in-process on the machining accuracy control of the workpiece. It is an object of the present invention to provide a machining error measuring method and device for machining using a milling tool having an odd number of cutting edges, and a milling tool suitable for it.

【0006】[0006]

【課題を解決するための手段】本発明は、奇数枚数の切
れ刃を持つフライス工具を用いて側面削り、又は段削り
を行う際において、工具の切れ刃が加工面を通過する時
点に同期して、工具の加工面を通過している切れ刃に対
して工具回転中心に対称な部分の、加工面の法線方向位
置を非接触型の検出装置で検出することにより、切れ刃
の位置を検出し、加工面の形状誤差を計測することを特
徴とするものである。またその工具の切れ刃に対し工具
回転中心に対称な部分の形状を、前記切れ刃と前記工具
回転中心を結ぶ直線に垂直とするものである。
SUMMARY OF THE INVENTION The present invention, when performing side milling or step milling with a milling tool having an odd number of cutting edges, synchronizes with the time when the cutting edges of the tool pass through the working surface. Position of the cutting edge is detected by the non-contact type detection device, which detects the position of the cutting surface that is symmetric with respect to the cutting edge passing through the machining surface of the tool, in the normal direction of the machining surface. It is characterized by detecting and measuring the shape error of the machined surface. Further, the shape of the portion symmetrical with respect to the cutting edge of the tool with respect to the tool rotation center is perpendicular to the straight line connecting the cutting edge and the tool rotation center.

【0007】[0007]

【作用】上記手段により、加工中の切れ刃の180度反
対位置に切れ刃が存在しない奇数枚数の切れ刃を有する
工具であっても、工作物と工具刃先が接触するタイミン
グで、工具直径方向の反対側の側面位置を測定すること
で加工面の形状誤差が計測される。
By the above means, even in the case of a tool having an odd number of cutting edges which does not exist at a position 180 degrees opposite to the cutting edge being machined, the tool diametric The shape error of the machined surface is measured by measuring the side surface position on the opposite side of.

【0008】[0008]

【実施例】以下、この発明の実施例を説明する。本発明
は図1に示すように、従来の装置に同期装置3を付加し
たものである。同期装置3は図示しない工具の回転検出
器からの信号を得て、変位計に測定タイミング信号を送
るものである。具体的には、工具の回転検出器をパルス
ジェネレータとし、パルス列信号で受取るようにし、加
工を開始する前に何パルス毎に、あるいは原点位置から
何パルスの時に工具の切れ刃面が仕上面を加工するかを
予め同期データとして持っておき、受け取ったパルス数
がその同期データと一致した場合に変位計に測定タイミ
ング信号を送るようにする。変位計2が測定するのは、
エンドミル4の工作物10の加工面生成部位14の半径
方向の反対側に位置する部分(外側側面12)となる。
Embodiments of the present invention will be described below. The present invention, as shown in FIG. 1, is such that a synchronizing device 3 is added to a conventional device. The synchronizing device 3 obtains a signal from a rotation detector of a tool (not shown) and sends a measurement timing signal to the displacement meter. Specifically, the rotation detector of the tool is a pulse generator, and it receives pulse train signals so that the cutting edge surface of the tool produces a finished surface every few pulses before starting the machining or at the number of pulses from the origin position. Whether or not to process is stored in advance as synchronization data, and when the number of received pulses matches the synchronization data, a measurement timing signal is sent to the displacement meter. Displacement meter 2 measures
It is a portion (outer side surface 12) located on the opposite side in the radial direction of the machined surface generation portion 14 of the workpiece 10 of the end mill 4.

【0009】つぎにこのように構成された加工誤差検出
装置を使用して工作物の形状誤差を検出する操作を説明
する。エンドミルが工作物に接触して工作物を切削する
とき、図2に示すようにエンドミルがたわんで工作物に
削り残し部分が生じた場合または削り過ぎが生じた場合
(図示せず)に、この削り残し部分又は削り過ぎ部分
(図示せず)が形状誤差となる。変位計2はエンドミル
4の外側側面12を観察する。エンドミルの半径方向に
変形がないとすると変位計2が検出した変位計2と外側
側面12との距離に、外側側面12からエンドミル刃先
までの長さを加えたものが工作物の加工面生成部までの
距離である。こうして加工面の法線方向から非接触型の
変位計2で加工中のエンドミル4の位置を測定する。同
期装置からの信号により、変位計の視線の高さにおいて
刃先が加工面を生成している時点に同期して、その時の
エンドミル4の外側側面12の位置を測定する。エンド
ミルの剛性は半径方向に十分大きく工具径方向の変形は
軸方向のたわみに比べて無視できるため、この測定値の
切削中の値と空転中の値との差がこの加工面の工具たわ
みに起因する加工誤差になって残ることになる。こうし
て工具の切れ刃が加工面を生成する時点に同期して工具
側面位置を検出することによって、奇数枚数の切れ刃を
もつフライス工具を用いて加工を行う際にも工作物の加
工面のインプロセス加工誤差測定が可能になる。
Next, the operation of detecting the shape error of the workpiece by using the processing error detecting device thus constructed will be described. When the end mill comes into contact with the work piece and cuts the work piece, when the end mill bends to cause an uncut portion on the work piece or overcutting (not shown) as shown in FIG. The uncut portion or the excessively cut portion (not shown) causes a shape error. The displacement meter 2 observes the outer side surface 12 of the end mill 4. If there is no deformation in the radial direction of the end mill, the distance between the displacement gauge 2 and the outer side surface 12 detected by the displacement gauge 2 plus the length from the outer side surface 12 to the end mill cutting edge is the machined surface generation part of the workpiece. Is the distance to. In this way, the position of the end mill 4 during processing is measured by the non-contact type displacement gauge 2 from the direction normal to the processing surface. The position of the outer side surface 12 of the end mill 4 at that time is measured in synchronism with the time when the cutting edge generates a machining surface at the height of the line of sight of the displacement meter by a signal from the synchronizing device. The rigidity of the end mill is sufficiently large in the radial direction and the deformation in the radial direction of the tool can be ignored compared to the deflection in the axial direction.Therefore, the difference between the measured value during cutting and the value during idling is due to the tool deflection on this machining surface. The resulting machining error will remain. In this way, by detecting the side surface position of the tool in synchronism with the time when the cutting edge of the tool generates the machining surface, even when machining is performed using a milling tool having an odd number of cutting edges, Process processing error measurement becomes possible.

【0010】以下、この発明の実施にあたり最適な形状
のフライス工具について説明する。図3において、21
はこの発明の形状をもったフライス工具の断面図であ
る。切れ刃24に対し回転中心22に関して対称な部分
25を含む工具側面が、切れ刃と切れ刃に対し工具回転
中心に対称な部分を結ぶ直線48に垂直であり、位置検
出器の測定範囲46となっている。この発明のフライス
工具を用いた加工においては、従来工具の場合(図6参
照)と比較して、図4に示すように、加工面41に対し
て垂直・水平両方向のたわみが生じている場合でも、位
置検出器の測定範囲46が、加工面に平行であるため
に、加工面に平行な方向に生じたたわみ45に起因する
測定誤差が生じないことがわかる。
A milling tool having an optimum shape for carrying out the present invention will be described below. In FIG. 3, 21
FIG. 4 is a sectional view of a milling tool having the shape of the present invention. A side surface of the tool including a portion 25 symmetrical about the rotation center 22 with respect to the cutting edge 24 is perpendicular to a straight line 48 connecting the cutting edge and a portion symmetrical about the tool rotation center with respect to the cutting edge, and a measurement range 46 of the position detector. Has become. In the machining using the milling tool of the present invention, as compared with the case of the conventional tool (see FIG. 6), as shown in FIG. 4, when the machining surface 41 is deflected in both vertical and horizontal directions. However, it can be seen that the measurement range 46 of the position detector is parallel to the machined surface, so that the measurement error due to the deflection 45 generated in the direction parallel to the machined surface does not occur.

【0011】[0011]

【発明の効果】以上述べたように、本発明によれば、奇
数枚数の切れ刃をもつフライス工具を用いた加工におけ
る精度のよい加工誤差計測が可能となる。
As described above, according to the present invention, it is possible to accurately measure a machining error in machining using a milling tool having an odd number of cutting edges.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の加工誤差計測装置の概念を示す図であ
る。
FIG. 1 is a diagram showing a concept of a processing error measuring device of the present invention.

【図2】エンドミルが工作物に接触した状態を示す縦断
面図である。
FIG. 2 is a vertical cross-sectional view showing a state where the end mill is in contact with a workpiece.

【図3】本発明のフライス工具を示す図である。FIG. 3 shows a milling tool according to the present invention.

【図4】本発明のフライス工具の作用を説明する図であ
る。
FIG. 4 is a view for explaining the action of the milling tool of the present invention.

【図5】加工誤差計測装置の斜視説明図である。FIG. 5 is a perspective explanatory view of a processing error measuring device.

【図6】従来のフライス工具の作用を説明する図であ
る。
FIG. 6 is a diagram illustrating the operation of a conventional milling tool.

【図7】従来の加工誤差計測装置の概念を示す図であ
る。
FIG. 7 is a diagram showing a concept of a conventional processing error measuring device.

【符号の説明】[Explanation of symbols]

1 加工誤差測定装置 2 変位計 3 同期装置 4 エンドミル 5 主軸頭 6 チャック 7 回転中心 8 変位計ホルダー 9 視線 10 工作物 11 たわみのない状態の加工面 12 外側側面 13 同期信号 14 加工面生成部位 21 エンドミル 22 回転中心 24 切れ刃 25 切れ刃に対し回転中心に関し対称な部分 26 非接触位置検出装置の測定点 27 測定された加工面形状誤差 28 測定誤差 29 実際の加工面形状誤差(=加工面垂直方向のエン
ドミルのたわみ) 40 非接触位置検出装置の測定軸 41 たわみのない状態の加工面 42 たわみのない状態のエンドミル 43 たわみのない状態の回転中心 44 たわみのない状態の切れ刃に対し回転中心に関し
対称な部分 45 加工面水平方向のエンドミルのたわみ 46 非接触位置検出装置の測定範囲 48 切れ刃と切れ刃に対し工具回転中心に対称な部分
を結ぶ直線
1 Machining error measuring device 2 Displacement meter 3 Synchronizing device 4 End mill 5 Spindle head 6 Chuck 7 Center of rotation 8 Displacement holder 9 Line of sight 10 Work piece 11 Machining surface without deflection 12 Outer side surface 13 Synchronous signal 14 Machining surface generation part 21 End mill 22 Center of rotation 24 Cutting edge 25 Symmetrical part with respect to the center of rotation with respect to the cutting edge 26 Measurement point of non-contact position detection device 27 Measured machining surface shape error 28 Measurement error 29 Actual machining surface shape error (= machining surface vertical 40 Deflection of the end mill in the direction) 40 Measuring axis of the non-contact position detector 41 Machining surface without deflection 42 End mill without deflection 43 Rotation center without deflection 44 Rotation center with respect to the cutting edge without deflection Symmetric part with respect to 45 45 Deflection of end mill in horizontal direction of machined surface 46 Line to the constant range 48 cutting edge and cutting edge connecting the symmetrical parts to the tool rotation center

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 奇数枚数の切れ刃をもつフライス工具を
用いて側面削り又は段削りを行う場合において、前記フ
ライス工具の切れ刃が加工面を通過する時点を検出し、
それに同期して前記フライス工具の前記切れ刃に対し工
具回転中心に対称な部分の前記加工面の法線方向位置を
非接触型の検出装置で検出することにより、前記切れ刃
の位置を検出し、加工面の形状誤差を計測することを特
徴とする奇数枚数の切れ刃をもつフライス工具を用いた
加工の加工誤差計測方法。
1. When side milling or step milling is performed using a milling tool having an odd number of cutting edges, the time when the cutting edges of the milling tool pass through the machining surface is detected,
In synchronization with it, the position of the cutting edge is detected by detecting the position in the normal direction of the processing surface of the portion symmetrical to the tool rotation center with respect to the cutting edge of the milling tool with a non-contact type detection device. , A method for measuring a machining error of a machining using a milling tool having an odd number of cutting edges, which is characterized by measuring a shape error of a machining surface.
【請求項2】 奇数枚数の切れ刃をもつフライス工具を
用いて側面削り又は段削りを行う場合の加工誤差を計測
する装置において、 前記フライス工具の切れ刃が加工面を通過する時点を検
出する手段と、 前記通過する時点に同期して前記フライス工具の前記切
れ刃に対し工具回転中心に対称な部分の前記加工面の法
線方向位置を非接触で検出する手段と、を設けたことを
特徴とする奇数枚数の切れ刃をもつフライス工具を用い
た加工の加工誤差計測装置。
2. A device for measuring a machining error when side milling or step milling is performed by using a milling tool having an odd number of cutting edges, and detecting a time point when the cutting edges of the milling tool pass through a machining surface. Means, and means for detecting, in a non-contact manner, the position in the normal direction of the machining surface of a portion symmetrical to the tool rotation center with respect to the cutting edge of the milling tool in synchronization with the passing time, A machining error measuring device for machining using a milling tool with an odd number of cutting edges.
【請求項3】 奇数枚数の切れ刃をもつフライス工具に
おいて、切れ刃に対し工具回転中心に対称な部分の形状
を、前記切れ刃と前記工具回転中心を結ぶ直線に垂直と
することを特徴とする奇数枚数の切れ刃をもつフライス
工具。
3. A milling tool having an odd number of cutting edges, wherein a shape of a portion symmetrical with respect to the cutting edges about the tool rotation center is perpendicular to a straight line connecting the cutting edges and the tool rotation center. A milling tool with an odd number of cutting edges.
JP35075892A 1992-12-03 1992-12-03 Milling tool having odd number of cutting edges and machining error measuring method/device for machining using this tool Pending JPH06170700A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35075892A JPH06170700A (en) 1992-12-03 1992-12-03 Milling tool having odd number of cutting edges and machining error measuring method/device for machining using this tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35075892A JPH06170700A (en) 1992-12-03 1992-12-03 Milling tool having odd number of cutting edges and machining error measuring method/device for machining using this tool

Publications (1)

Publication Number Publication Date
JPH06170700A true JPH06170700A (en) 1994-06-21

Family

ID=18412669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35075892A Pending JPH06170700A (en) 1992-12-03 1992-12-03 Milling tool having odd number of cutting edges and machining error measuring method/device for machining using this tool

Country Status (1)

Country Link
JP (1) JPH06170700A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102785129A (en) * 2012-07-30 2012-11-21 广东工业大学 On-line detection method of curved surface machining precision of complex part
CN110064783A (en) * 2019-04-22 2019-07-30 深圳市圆梦精密技术研究院 Milling machine tool

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102785129A (en) * 2012-07-30 2012-11-21 广东工业大学 On-line detection method of curved surface machining precision of complex part
CN110064783A (en) * 2019-04-22 2019-07-30 深圳市圆梦精密技术研究院 Milling machine tool

Similar Documents

Publication Publication Date Title
CN104368886B (en) The processing method of cutting element and wire electric discharge machine
US4802285A (en) Method and apparatus for ascertaining the radial location of a new wheel profile to be produced by a reprofiling operation
Yandayan et al. In-process dimensional measurement and control of workpiece accuracy
CN111492199B (en) Method and device for measuring a rolling tool
US20100111630A1 (en) Tool and tool correction method
US6732009B2 (en) Machining error correction method adapted for numerically controlled machine tool and grinding machine using the same
JP2007257606A (en) Method for correcting tool alignment error
Ryabov et al. Laser displacement meter application for milling diagnostics
JP2001030141A (en) Thin pipe machining method and its device
JPH06170700A (en) Milling tool having odd number of cutting edges and machining error measuring method/device for machining using this tool
JP4545501B2 (en) Tool centering method and tool measuring method
JPH05272958A (en) Automatic detection method and detector for rotation center position by flat substrate and three sensors
KR20190133888A (en) Method and system for detecting chatter using acceleration sensor
JP2007054930A (en) Positioning method and device for tool
JPH08229776A (en) Nc machine tool provided with function of measuring edge point position displacement of tool
JP2766963B2 (en) Machining error measuring method and machining error measuring device for machining using milling tool
JPH10309653A (en) Method for detecting displacement of cutting edge position, machine tool provided with cutting edge position displacement detecting function, and tool holder for machine tool
JPH0323297B2 (en)
Hinduja et al. Assessment of force-induced errors in CNC turning
RU2344918C1 (en) Method for determination of metal-cutting machine accuracy
JPH05285792A (en) Controlling method for numerical control machining utilizing supersonic wave
Szafarczyk et al. Automatic measurement and correction of workpiece diameter on NC centre lathe
Masuko et al. New automatic control system of NC machine tool for high working accuracy
JPS629807A (en) Center height measuring device for cutting tool
JPH0349851A (en) On-machine measuring device