JPH06169895A - Diagnostic system - Google Patents

Diagnostic system

Info

Publication number
JPH06169895A
JPH06169895A JP4323212A JP32321292A JPH06169895A JP H06169895 A JPH06169895 A JP H06169895A JP 4323212 A JP4323212 A JP 4323212A JP 32321292 A JP32321292 A JP 32321292A JP H06169895 A JPH06169895 A JP H06169895A
Authority
JP
Japan
Prior art keywords
distribution
magnetic field
current
voltage
spatial power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4323212A
Other languages
Japanese (ja)
Other versions
JP2796478B2 (en
Inventor
Yoshifuru Saitou
斎藤兆古
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Research Development Corp of Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Development Corp of Japan filed Critical Research Development Corp of Japan
Priority to JP4323212A priority Critical patent/JP2796478B2/en
Publication of JPH06169895A publication Critical patent/JPH06169895A/en
Application granted granted Critical
Publication of JP2796478B2 publication Critical patent/JP2796478B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To identify an abnormal portion by determining the distribution of electrical and magnetic field sources and spatial power from electrical and magnetic field distribution measured on the surface of an object to be inspected, and comparing the obtained results with corresponding distribution in a normal case. CONSTITUTION:A magnetic sensor 1 for detecting magnetic field distribution on the surface of an object to be inspected is provided, together with a sensor 2 for detecting potential or electrical field distribution. Also, a magnetic field source distribution calculation means 3a calculates magnetic field source distribution from the detected magnetic field distribution, A voltage source distribution calculation means 3b calculates voltage source distribution from the detected potential or electrical field distribution. A spatial power distribution calculation means 3c calculates spatial power distribution, on the basis of the inner product of the calculated magnetic field distribution and voltage source distribution. In this case, the electrical field source is a time differential about an electrical dipole, and the voltage source is a physical quantity defined by the product of a current dipole and a resistor. A data processing device 3 is equipped with a comparison means 3e for making a comparison between data 3d in normal state and at least one of the calculated magnetic field source distribution, voltage source distribution source and spatial power distribution, and can identify an abnormal portion as a result of the comparison. According to this construction, a heart can be diagnosed more accurately.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は被検査体表面で測定され
る電界、磁界分布から電界、磁界源の分布、空間パワー
の分布を求め、正常な場合の分布と比較することによ
り、異常部位を特定して診断、検査する診断装置に関す
るものである。
BACKGROUND OF THE INVENTION The present invention finds an electric field, a magnetic field source distribution, and a spatial power distribution from an electric field and a magnetic field distribution measured on the surface of an object to be inspected, and compares the distribution with a normal case to detect an abnormal portion. The present invention relates to a diagnostic device that identifies, diagnoses, and inspects.

【0002】[0002]

【従来の技術】従来、非破壊検査法として、被検査体に
通電して電圧分布を測定し、電圧分布の相違から内部に
キズがあるか否かを検査する電気ポテンシャル法、被検
査体に対して電圧を印加して電流を流したとき形成され
る磁界分布を非接触で測定し、磁界分布からキズの有無
を検査する方法などが知られている。
2. Description of the Related Art Conventionally, as a non-destructive inspection method, an electric potential method for inspecting an inside of an object to be inspected by energizing the object to be inspected and measuring a voltage distribution, There is known a method in which a magnetic field distribution formed when a voltage is applied and a current is applied thereto is measured in a non-contact manner and the presence or absence of a flaw is inspected from the magnetic field distribution.

【0003】また、被検査体が生体の場合、神経活動は
電荷の移動、すなわち電流によって行われているため体
表面には電圧が現れる。この電圧を測定して診断する例
としては、例えば、心臓の上から電圧を測定することに
より得られる心電図、頭部で電圧を測定することにより
得られる脳波分布等が知られている。
In the case where the body to be inspected is a living body, a voltage appears on the body surface because nerve activity is carried out by the movement of electric charges, that is, electric current. As examples of measuring and diagnosing this voltage, for example, an electrocardiogram obtained by measuring the voltage from above the heart, an electroencephalogram distribution obtained by measuring the voltage at the head, and the like are known.

【0004】[0004]

【発明が解決しようとする課題】ところで、例えば生体
計測において、脳波分布の測定は、計測する媒質が誘電
体と抵抗が混在しており、特に頭蓋骨の導電率が高いた
めに内部で起こっている現象を捉えにくく、脳波分布測
定だけでは正確な測定ができないということが指摘さ
れ、同様に、心電図だけでは波形分析を行える程度であ
り、心臓内部の細かい状況を知ることができないという
ことが指摘がされている。このように、従来知られてい
る非破壊測定方法では被検査体内部の正確な状況を把握
することは困難であり、信頼性の高い診断、検査をする
ことはできなかった。
By the way, in biomedical measurement, for example, the measurement of the electroencephalogram distribution occurs inside because the medium to be measured is a mixture of a dielectric and a resistance, and in particular the skull has a high electrical conductivity. It has been pointed out that it is difficult to capture the phenomenon, and accurate measurement cannot be performed only by measuring the EEG distribution, and similarly, it is pointed out that waveform analysis can be performed only by the electrocardiogram, and it is not possible to know the detailed situation inside the heart. Has been done. As described above, it is difficult to grasp the accurate situation inside the object to be inspected by the conventionally known nondestructive measurement method, and it is not possible to perform highly reliable diagnosis and inspection.

【0005】本発明は上記課題を解決するためのもの
で、表面に現れる磁界分布、電位または電界分布を測定
することにより、被検査体内部の磁界源分布、電圧源分
布、電力発生分布を求めて内部状況を正確に把握し、信
頼性の高い診断、検査をすることができる診断装置を提
供することを目的とする。
The present invention is intended to solve the above-mentioned problems. The magnetic field distribution, the voltage source distribution, and the power generation distribution inside the object to be inspected are obtained by measuring the magnetic field distribution, the potential or the electric field distribution appearing on the surface. It is an object of the present invention to provide a diagnostic device capable of accurately ascertaining the internal situation and performing highly reliable diagnosis and inspection.

【0006】[0006]

【課題を解決するための手段】本発明の診断装置は、図
1に示すように、被検査対象の表面の磁界分布を検出す
る磁気センサ1と、電位または電界分布を検出するセン
サ2と、検出された磁界分布から磁界源分布を算出する
磁界源分布算出手段3a、検出された電位または電界分
布から電圧源分布を算出する電圧源分布算出手段3b、
算出した磁界源分布と電圧源分布の内積をとって空間パ
ワー分布を算出する空間パワー分布算出手段3cを有す
るデータ処理装置3とを備えたことを特徴としており、
さらに、データ処理装置3は、正常時データ3dと、算
出した磁界源分布、電圧源分布、空間パワー分布のうち
少なくとも一つとを比較する比較手段3eを備え、比較
結果により異常部位を特定できるようになっており、ま
た、算出した磁界源分布、電圧源分布、空間パワー分
布、比較結果等は表示装置4a、プリンタ4b等からな
る出力装置4により出力することができる。
As shown in FIG. 1, a diagnostic apparatus according to the present invention comprises a magnetic sensor 1 for detecting a magnetic field distribution on a surface of an object to be inspected, and a sensor 2 for detecting a potential or electric field distribution. Magnetic field source distribution calculating means 3a for calculating a magnetic field source distribution from the detected magnetic field distribution, voltage source distribution calculating means 3b for calculating a voltage source distribution from the detected potential or electric field distribution,
And a data processing device 3 having a spatial power distribution calculating means 3c for calculating a spatial power distribution by taking an inner product of the calculated magnetic field source distribution and voltage source distribution.
Further, the data processing device 3 includes a comparison unit 3e that compares the normal data 3d with at least one of the calculated magnetic field source distribution, voltage source distribution, and spatial power distribution, so that the abnormal portion can be specified by the comparison result. In addition, the calculated magnetic field source distribution, voltage source distribution, spatial power distribution, comparison result, and the like can be output by the output device 4 including the display device 4a, the printer 4b, and the like.

【0007】[0007]

【作用】本発明の診断プロセスについて説明すると、座
標系は2次元では、x,yの平面位置座標と電磁界源ベ
クトルの角度θの(x,y,θ)の3次元座標であり、
3次元では、x,y,zの空間位置座標と、電磁界源ベ
クトルのx−y平面からの角度θとy−z平面からの角
度φの(x,y,z,θ,φ)の5次元座標である。シ
ステム方程式は、局所で測定されるn個の電磁界のベク
トルまたはポテンシャルをu1 ,u2 ,……,un とす
れば、既知ベクトルはUは、(上添字T は転置を示す) U=[u1 ,u2 ,……,un T と書ける。また、電磁界源ベクトルの存在し得る空間を
角度も含めてm個の領域に分割したとすれば、この中で
任意の位置i点に位置する電磁界源と既知ベクトルUの
関係を与える位置ベクトルをdi とすると、 di =[G1i,G2i,……,GniT と書ける。ここで、di の要素G1i,G2i,……,Gni
はグリーン関数で決まり、任意の位置i点での電磁界源
ベクトルの大きさをαi とすれば、ベクトルUはベクト
ルdi (i=1〜m)の線形結合からなるため、システ
ム方程式は となる。
To explain the diagnostic process of the present invention, the coordinate system in two dimensions is a three-dimensional coordinate of (x, y, θ) of the plane position coordinate of x, y and the angle θ of the electromagnetic field source vector.
In three dimensions, the spatial position coordinates of x, y, z, and (x, y, z, θ, φ) of the angle θ from the xy plane and the angle φ from the yz plane of the electromagnetic field source vector It is a five-dimensional coordinate. System equations, u 1 vector or potential of the n electromagnetic field measured at the local, u 2, ......, if u n, known vector U is (denotes the transpose superscript T) U = [u 1, u 2, ......, u n] written as T. If the space in which the electromagnetic field source vector can exist is divided into m areas including the angle, a position that gives a relation between the electromagnetic field source located at an arbitrary position i and a known vector U in this area. If the vector is d i, it can be written that d i = [G 1i , G 2i , ..., G ni ] T. Here, the elements G 1i , G 2i , ..., G ni of d i
Is determined by the Green's function, and if the magnitude of the electromagnetic field source vector at an arbitrary point i is α i , the vector U is a linear combination of the vectors d i (i = 1 to m), so the system equation is Becomes

【0008】次に、パターンマッチングを行う。一般に
未知数の数mは式の数nより多く解αi (i=1〜m)
は一意的にシステム方程式から求められないので、次の
ことを仮定する。 電磁界の大きさαi (i=1〜m)を単位値“1”と
し、大きさはこの単位の角度も含めた空間的集中度合で
近似する。 最初の最も支配的な電磁界源の位置は既知ベクトルU
と位置ベクトルdi (i=1〜m)のパターンの一致を
次式で最大値をとる点とする。 γ=UT i /[‖U‖‖di ‖],i=1〜m, ここで、最大値のパターン一致指数をγh とする。‖‖
はベクトルのノルムを示す。 第2番目の支配的な電磁界源の位置は最初の電磁界源
の位置hをパイロットポイント(即ち、αh =1)とし
て、次式で最大値のパターン一致指数γをとる点とす
る。 γj =UT (dh +dj )/[‖U‖‖dh +d
j ‖],j=1〜m,j≠h ここで、最大値のパターン一致指数をγg とする。 同様にして最大値パターン一致指数γh とγg をとる
点をパイロットポイント(αh =1,αg =1)とし
て、残りの距離ベクトルdk (k=1〜1m,k≠h,
k≠g)についてパターン一致指数γk を計算する。こ
のような過程を全体でm回実行する。
Next, pattern matching is performed. Generally, the number m of unknowns is greater than the number n of equations, and the solution α i (i = 1 to m)
Cannot be uniquely determined from the system equations, so assume the following. The magnitude α i (i = 1 to m) of the electromagnetic field is set as a unit value “1”, and the magnitude is approximated by the degree of spatial concentration including the angle of this unit. The position of the first and most dominant electromagnetic field source is the known vector U
And the pattern of the position vector d i (i = 1 to m) coincides with each other, and the maximum value is obtained by the following equation. γ = U T d i / [ ‖U‖‖d i ‖], i = 1 to m, where the pattern matching index of the maximum value and gamma h. ‖‖
Indicates the norm of the vector. The position of the second dominant electromagnetic field source is a point where the position h of the first electromagnetic field source is used as a pilot point (that is, α h = 1) and the maximum pattern matching index γ is obtained by the following equation. γ j = U T (d h + d j ) / [‖U‖‖d h + d
j ∥], j = 1 to m, j ≠ h where γ g is the maximum pattern matching index. Similarly, with the points having the maximum value pattern matching indices γ h and γ g as pilot points (α h = 1 and α g = 1), the remaining distance vector d k (k = 1 to 1 m, k ≠ h,
Compute the pattern matching index γ k for k ≠ g). This process is executed m times in total.

【0009】各ステップで得られた(角度を含めた)
空間座標上のm点のパターン一致指数を加算平均し、正
規化した近似解、αi [‖di ‖/‖U‖](i=1〜
m)を実空間座標(2次元ではx−y平面、3次元では
x−y−z空間)で合成して正規化した近似電磁界源ベ
クトルを得る。ここで、正規化された近似解で距離ベク
トルのノルム‖di ‖がαi (i=1〜m)との積とな
ることは、電磁界分布の測定点に接近する電磁界源ほど
正確に求められることを意味する。
Obtained at each step (including angle)
A pattern matching index at m points on the spatial coordinates is added and averaged to obtain a normalized approximate solution, α i [‖d i ‖ / ‖U‖] (i = 1 to 1
m) is combined in real space coordinates (xy plane in two dimensions and xyz space in three dimensions) to obtain a normalized approximate electromagnetic field source vector. Here, the fact that the norm ‖d i ‖ of the distance vector in the normalized approximate solution is a product of α i (i = 1 to m) is more accurate for the electromagnetic field source closer to the measurement point of the electromagnetic field distribution. Means required to.

【0010】実際の計算では、m点まで求めるのに多
くの計算時間が必要とされるため、各ステップの最大値
を取るパターン一致指数が以前のそれより増加する限り
距離ベクトルの追加を行い、減少した時点までで打ち切
って得られる結果で比較的良い結果が短時間で得られ
る。
In actual calculation, since it takes a lot of calculation time to obtain up to m points, distance vectors are added as long as the pattern matching index taking the maximum value of each step increases from the previous one. A relatively good result can be obtained in a short time by the results obtained by terminating the process until the time when the number decreases.

【0011】得られた磁界源(電流双極子)分布と電
圧源(電圧双極子)分布の内積をとることによって空間
パワー分布を得る。 異常のないときの電流双極子分布、電圧双極子分布、
空間パワー分布をあらかじめ求め、これらの少なくとも
1つについて被検査対象について求めたものと比較し、
異常の有無、異常部位の特定を行う。
The spatial power distribution is obtained by taking the inner product of the obtained magnetic field source (current dipole) distribution and voltage source (voltage dipole) distribution. Current dipole distribution, voltage dipole distribution when there is no abnormality,
Spatial power distribution is obtained in advance, and at least one of these is compared with that obtained for the object to be inspected,
Presence / absence of abnormality and identification of abnormal area.

【0012】[0012]

【実施例】以下、本発明についてより詳細に説明する。
理解を容易にするために、磁界分布を測定して電流分布
を求める方法について説明する。解析モデルとして、図
2(a)に示すように、任意の断面形状をもつ導体に電
流が均一に電流密度Jで分布しているとき、導体の周辺
磁界分布の測定から導体の断面形状を求める例について
考えると、電流密度Jが断面積Δsを流れているものと
すると、断面積Δs上の電流iは i=ΔsJ で与えられる。したがって、図2(b)に示すように、
図2(a)の二次元断面をΔsの微小面に分割し、図2
(c)に示すように、電流iが各微小面を流れて導体の
断面形状の形に分布した解析モデルを考える。このと
き、図2(c)の電流iの分布を求めれば、図2(a)
の導体断面形状が求められることになる。図2(c)の
電流はすべて同じ大きさとしているため、不均一な電流
分布問題にこの解析モデルを適用した場合、電流密度が
高い部分は大きな形状、電流密度が低い部分は小さな形
状で表されることになり、得られる解析結果は導体の断
面形状ではなく、導体断面上の電流分布を表すことにな
る。
The present invention will be described in more detail below.
In order to facilitate understanding, a method of measuring a magnetic field distribution and obtaining a current distribution will be described. As an analytical model, as shown in FIG. 2A, when the current is evenly distributed at the current density J in a conductor having an arbitrary cross-sectional shape, the cross-sectional shape of the conductor is obtained from the measurement of the magnetic field distribution around the conductor. Considering an example, assuming that the current density J flows in the cross-sectional area Δs, the current i on the cross-sectional area Δs is given by i = ΔsJ. Therefore, as shown in FIG.
The two-dimensional cross section of FIG. 2A is divided into minute surfaces of Δs, and
As shown in (c), consider an analytical model in which a current i flows through each minute surface and is distributed in the shape of a conductor cross section. At this time, if the distribution of the current i in FIG.
The cross-sectional shape of the conductor is required. Since all the currents in FIG. 2 (c) have the same magnitude, when this analytical model is applied to the problem of non-uniform current distribution, the areas with high current density have large shapes and the areas with low current density have small shapes. As a result, the obtained analysis result represents not the cross-sectional shape of the conductor but the current distribution on the cross-section of the conductor.

【0013】次に、図2に示す電流iの分布を磁界分布
を測定することにより求めることを考える。図3に示す
ように、測定面a−bからx11の距離に位置する電流i
1 による測定点1と2における磁界H11とH12(測定面
a−bに垂直な磁界成分)は、 H11=i1 〔y11/{2π(x11 2 +y11 2 )}〕 ……(1a) H12=i1 〔y12/{2π(x11 2 +y12 2 )}〕 ……(1b) で与えられる。(1a)式と(1b)式をまとめて書く
と、 U=i1 X ……(2a) U=〔H11,H12T (上添字T は転置) ……(2b) X1 =1/(2π)〔y11/(x11 2 +y11 2 ), y12/(x11 2 +y12 2 )〕T ……(2c) となる。したがって、測定点の数をn、磁界源となる電
流の入力点数をmとすれば(2a)式は、 となる。ここで、UとXk はn次の列ベクトルとなる。
更に、Uの要素は(2b)式のH11,H12などであり、
また、Xk の要素は(2c)式右辺の要素に対応するも
のである。
Next, let us consider how to obtain the distribution of the current i shown in FIG. 2 by measuring the magnetic field distribution. As shown in FIG. 3, the current i located at the distance of x 11 from the measurement surface ab
Measurement points 1 by 1 and the magnetic field H 11 in the 2 and H 12 (perpendicular magnetic field component in the measurement plane a-b) is, H 11 = i 1 [y 11 / {2π (x 11 2 + y 11 2)} ] ... (1a) H 12 = i 1 [y 12 / {2π (x 11 2 + y 12 2 )}] (1b) When formula (1a) and formula (1b) are written together, U = i 1 X ...... (2a) U = [H 11 , H 12 ] T (the upper subscript T is transposed) …… (2b) X 1 = 1 / (2π) [y 11 / (x 11 2 + y 11 2 ), y 12 / (x 11 2 + y 12 2 )] T (2c). Therefore, assuming that the number of measurement points is n and the number of input points of the current that is the magnetic field source is m, equation (2a) is Becomes Here, U and X k are column vectors of order n.
Further, the elements of U are H 11 and H 12 in the equation (2b),
The element of X k corresponds to the element on the right side of the expression (2c).

【0014】いま行列の要素が列ベクトルXk からなる
n行m列の係数行列をCnmとすれば、(3)式は次の形
にも表される。 U=CnmI ……(4) ここで、Iはm次の列ベクトルである。すなわち、 I=〔i1,2,……,im T ……(5) で与えられる。
Now, letting C nm be the coefficient matrix of n rows and m columns in which the elements of the matrix consist of the column vector X k , equation (3) can also be expressed in the following form. U = C nm I (4) where I is a column vector of order m. That, I = [i 1, i 2, ......, i m ] is given by T ...... (5).

【0015】(3)式または(4)式が、被検査対象の
表面で測定された磁界分布から電流分布を求める問題
(逆問題)のシステム方程式であり、一般に測定点(既
知点または式)の数nは電流の入力点(未知数)の数m
より少なく、 n<m ……(6) であるため、電流のベクトルIを一意的に求めることは
不可能である。このため逆問題では何らかの拘束条件を
見出し解の一意的なものを求めるか、拘束条件を与えず
システム方程式を満足する解のすべてを求め、物理的に
意味のある解のみを採用するかなど、何らかの工夫が必
要となる。
The equation (3) or (4) is a system equation of the problem (inverse problem) of obtaining the current distribution from the magnetic field distribution measured on the surface of the object to be inspected, and generally the measurement point (known point or expression). N is the number of current input points (unknown) m
Since it is less, and n <m (6), it is impossible to uniquely obtain the current vector I. Therefore, in the inverse problem, some constraint condition should be found to find a unique solution, or all solutions satisfying the system equation without constraint condition should be obtained, and only physically meaningful solutions should be adopted. Some kind of ingenuity is required.

【0016】次に、本発明におけるシステム方程式の解
法について説明する。 (a)単一入力の推定 (3)式のベクトルUのノルム を求め、このノルムuN を用いてベクトルUを U´=(1/uN )U ……(8) と正規化する。ここで(7)式右辺のuj はベクトルU
のj行の要素を示す。
Next, a method of solving the system equation in the present invention will be described. (A) Single-input estimation Norm of vector U in equation (3) And the vector U is normalized to U ′ = (1 / u N ) U (8) using this norm u N. Here, u j on the right side of the equation (7) is the vector U
The element of the j-th row of is shown.

【0017】次に電流入力点kのベクトルXk に対して
も同様にノルムxkNと求め、ベクトルXk を正規化する。すなわち、 Xk ´=(1/xkN)Xk ……(10) とする。ここで、(9)式右辺のxjkははベクトルXk
のj行の要素を示す。(8)式のベクトルU´と、(1
0)式のベクトルXk ´間の角度(パターンのマッチン
グ)を次のCauchy-Schwarzの関係式で評価する。 ここで、γk は −1≦γk ≦1 ……(12) の値となる。|γk |=1のとき、ベクトルXk ´とU
´の間に角度が零となり、完全にパターンが一致するこ
とを意味する。従って電流入力点をk=1〜mとして与
えられた|γk |が最大となる入力点k=pが求められ
たとすれば、 uN U´=ip pNX´p ……(13) であるから、電流ip は ip =uN /xpN ……(14) として求められる。単一入力を求める場合は距離に基づ
いても角度に基づいても入力位置も電流の大きさを平均
的な意味で一意的に求められる。
Next, the norm x kN is similarly set for the vector X k at the current input point k. Then, the vector X k is normalized. That is, X k ′ = (1 / x kN ) X k (10) Here, x jk on the right side of the equation (9) is a vector X k.
The element of the j-th row of is shown. The vector U'of equation (8) and (1
The angle (vector matching) between the vectors X k ′ in the expression 0) is evaluated by the following Cauchy-Schwarz relational expression. Here, γ k has a value of −1 ≦ γ k ≦ 1 (12). When | γ k | = 1, the vectors X k ′ and U
The angle becomes zero between ′, which means that the patterns match perfectly. Thus the current input point given as k = 1~m | γ k | if the input point k = p which maximizes obtained, u N U'= i p x pN X'p ...... (13 ) it is because, the current i p is determined as i p = u N / x pN ...... (14). In the case of obtaining a single input, the magnitude of the current can be uniquely obtained in an average sense for the input position regardless of the distance or the angle.

【0018】(b)複数入力の推定 (bー1〕均一電流分布 図2にしたように、ある導体の断面に均一に電流が分布
して流れている場合を考える。この条件は静的な磁界系
で導体が均質である場合に成り立つ。具体的な例として
電流入力点k=1とk=3に等しい大きさの電流iが流
れているとする。この時、測定点のベクトルUは、 UはiX1 +iX3 ……(15) であるから、(15)式のノルムuN は、 となる。したがって正規化したベクトルU´は となり、正規化したベクトルU´は入力電流iの大きさ
に無関係となる。これに入力電流の大きさに関係なく入
力の位置だけを求めるパターンマッチング法が均一電流
分布で複数個の電流入力点を求める問題に有効であるこ
とを意味する。よって、各電流入力点のベクトルX
k (k=1〜m)に対して(9)式のノルムxkNを求
め、(10)式によってXk を正規化し、Xk ´を得
る。このようにして得られたベクトルXk ´とU´の間
の角度を(11)式のCauchy-Schwarzの関係式で評価す
る。その結果、最も支配的(|γk |が最も1に近い)
な電流入力点pが求められたとする。次にこの電流入力
点pに他の残りの電流入力点のベクトルを追加する。す
なわち、Xp (k) を、ベクトルXp にベクトルXk を加
えたベクトルとして、 Xp (k) =Xp +Xk (k=1〜m,k≠p) ……(18) を求める。ここで、Xp は最初の電流入力点pによるベ
クトルで、Xk の残りの電流入力点によるベクトルであ
る。(18)式のベクトルXp (k) のノルム を求め、ベクトルXp (k) を Xp (k) ´=(1/xpN (k) )Xp (k) ……(20) として正規化する。(20)式のXp (k) ´とノルムu
N で正規化されたベクトルU´間のパターンマッチング
をCauchy-Schwarzの関係式(11)で評価する。その結
果|γk |(k≠p)が最大となる電流入力点が第2番
目の電流入力点となる。以下同様にして逐次|γk |が
最大となる電流入力点を追加し、複数個の電流入力点が
求められる。従って、複数個の電流入力点がある場合、
パターンマッチング法によって電流入力点によるベクト
ルを追加することにより逐次入力電流位置を求めること
が可能である。しかし、このようにして入力電流を追加
した場合、電流の分布が相似形であれば、それらが測定
点に与えるフィールドパターンは同一のパターンとな
り、結果として形状は求められても大きさは一意的に求
められないことに注意しなければならない。これは円形
断面を持つ導体は、半径に無関係に同じパターンを周辺
に与えることからも明らかである。
(B) Estimation of multiple inputs (b-1) Uniform current distribution Let us consider a case where a current is evenly distributed in the cross section of a conductor as shown in Fig. 2. This condition is static. This is true when the conductor is homogeneous in the magnetic field system.As a concrete example, it is assumed that a current i having a magnitude equal to the current input points k = 1 and k = 3 is flowing. , U is iX 1 + iX 3 (15), the norm u N in equation (15) is Becomes Therefore the normalized vector U'is Therefore, the normalized vector U'is irrelevant to the magnitude of the input current i. This means that the pattern matching method that finds only the input position regardless of the magnitude of the input current is effective for the problem of finding a plurality of current input points with a uniform current distribution. Therefore, the vector X of each current input point
For k (k = 1 to m), the norm x kN of the equation (9) is obtained, and X k is normalized by the equation (10) to obtain X k ′. Thus assessing the angle between the obtained vectors X k 'and U'and (11) in Cauchy-Schwarz relationship of expression. As a result, the most dominant (| γ k | is closest to 1)
It is assumed that a different current input point p is obtained. Next, the vector of the other remaining current input points is added to this current input point p. That, X p and (k), as a vector obtained by adding the vector X k to a vector X p, determining the X p (k) = X p + X k (k = 1~m, k ≠ p) ...... (18) . Here, X p is the vector of the first current input point p, and the vector of the remaining current input points of X k . Norm of vector X p (k ) in equation (18) And the vector X p (k) is normalized as X p (k) '= (1 / x pN (k) ) X p (k) (20). In equation (20), X p (k) ′ and norm u
The pattern matching between the vectors U'normalized by N is evaluated by the Cauchy-Schwarz relational expression (11). As a result, the current input point at which | γ k | (k ≠ p) becomes the maximum becomes the second current input point. In the same manner, a current input point at which | γ k | becomes maximum successively is added to obtain a plurality of current input points. Therefore, if there are multiple current input points,
It is possible to sequentially find the input current position by adding the vector by the current input point by the pattern matching method. However, when the input current is added in this way, if the current distributions are similar, the field patterns that they give to the measurement points will be the same pattern, and even if the shape is obtained as a result, the size is unique. You have to be careful that you are not asked to. This is also clear from the fact that a conductor having a circular cross section gives the same pattern to the periphery regardless of the radius.

【0019】〔bー2〕不均一電流分布 導体が均一の媒体でない場合や表皮効果(時間変化のあ
る系で瞬間の電流分布と磁界分布を想定)のために、導
体断面の不均一な電流が分布している場合である。この
問題に前述の均一電流分布を前提とするパターンマッチ
ング法を適用し電流入力点を求めると、電流密度の大き
さが電流入力点の集中度合いで表されることとなる。す
なわち、電流入力点が集中する部分は電流密度が高く、
分散する部分は電流密度が低いものとして表される。こ
のようにして電流の巨視的な分布を推定することができ
る。
[B-2] Inhomogeneous current distribution Due to the case where the conductor is not a uniform medium and the skin effect (instantaneous current distribution and magnetic field distribution is assumed in a system that changes with time), an uneven current in the conductor cross section Is distributed. When the current matching point is obtained by applying the above-described pattern matching method assuming uniform current distribution to this problem, the magnitude of the current density is expressed by the concentration degree of the current input point. That is, the part where the current input points are concentrated has a high current density,
The dispersed portion is represented as having a low current density. In this way, the macroscopic distribution of current can be estimated.

【0020】(c)3次元問題 3次元の電流成分には、図4(a)に示すようにx軸方
向の成分を含むものと、図4(b)に示すようにy軸方
向の成分を含むものとがある。いま、y軸上の測定点で
y−z平面に法線方向の磁界HnaとHnbを考えた時、い
ずれの磁界もx−yの平面に垂直なz方向に電流の方向
が一致した時、それらの大きさは最大となる。従って Hna=(i/2π){ΔY/(ΔX2 +ΔY2 )} sinα ……(21a) Hnb=(i/2π){ΔY/(ΔX2 +ΔY2 )} cosβ ……(21b) と書ける。これらは3次元問題に局所的に2次元のモデ
ルを適用した場合、得られる結果は2次元モデルを最も
適合する成分を主成分として抽出することを意味する。
従って、3次元空間を互いに直交する方向に2次元モデ
ルに分解し、各部分に2次元モデルを適用した得られた
結果を組合わせることで3次元問題の電分布を評価する
ことができる。
(C) Three-dimensional problem Three-dimensional current components include those in the x-axis direction as shown in FIG. 4 (a) and those in the y-axis direction as shown in FIG. 4 (b). Some include. Now, considering the magnetic fields H na and H nb in the normal direction to the yz plane at the measurement point on the y axis, both magnetic fields have the same current direction in the z direction perpendicular to the xy plane. Sometimes, their size is maximum. Therefore, H na = (i / 2π) {ΔY / (ΔX 2 + ΔY 2 )} sinα (21a) H nb = (i / 2π) {ΔY / (ΔX 2 + ΔY 2 )} cosβ (21b) Can write These means that when a two-dimensional model is locally applied to a three-dimensional problem, the result obtained is to extract the two-dimensional model with the most suitable component as the main component.
Therefore, the electric distribution of the three-dimensional problem can be evaluated by decomposing the three-dimensional space into two-dimensional models in directions orthogonal to each other and combining the results obtained by applying the two-dimensional model to each part.

【0021】次に、被検査体の表面の磁界分布、電位ま
たは電界分布を測定することにより、磁界源(電流双極
子)、電圧源(電圧双極子)を求め、これから空間パワ
ー分布を求めることについて説明する。なお、電流双極
子は電気双極子の時間微分、電圧双極子は電流双極子と
抵抗の積で定義される物理量とする。
Next, the magnetic field source (current dipole) and voltage source (voltage dipole) are obtained by measuring the magnetic field distribution, potential or electric field distribution on the surface of the object to be inspected, and the spatial power distribution is obtained from this. Will be described. The current dipole is a time derivative of the electric dipole, and the voltage dipole is a physical quantity defined by the product of the current dipole and the resistance.

【0022】電磁界系の問題の多くは、次の式に示すポ
アソン型の方程式を解くことに帰する。 λ▽2 ψ=−σ ……(23) ここで、λ、ψおよびσは、それぞれ媒質のパラメー
タ、ポテンシャルまたはフィールド、ソースの密度を表
している。ここで、Green 関数G=1/(4π|r|)
を用いること、(23)式の積分系として次式が得られ
る。 ψ=∫〔σ/(4π|r|λ)〕dv ……(24) 導体中に電流が流れている場合、(23)式中のλ、φ
およびσはそれぞれ伝導率k〔S/m〕、電位φ
〔V〕、電荷密度の時間微分−∂ρ/∂t〔C/m
3S)〕に相当する。(24)式により電位φは φ=−∫〔(∂ρ/∂t)/4π|r|k)〕dv ……(25) となる。(25)式を微小な空間に離散化すると、 となる。ここで、(26)式の各項は次式の通りであ
る。
Most of the problems of the electromagnetic field system are attributed to solving the Poisson type equation shown in the following equation. λ∇ 2 ψ = −σ (23) Here, λ, ψ and σ represent the parameter of the medium, the potential or field, and the density of the source, respectively. Here, Green function G = 1 / (4π | r |)
Is used, the following equation is obtained as the integral system of the equation (23). ψ = ∫ [σ / (4π | r | λ)] dv (24) When current flows in the conductor, λ and φ in the equation (23)
And σ are conductivity k [S / m] and potential φ, respectively.
[V], time derivative of charge density −∂ρ / ∂t [C / m
3 S)]. According to the equation (24), the potential φ becomes φ = −∫ [(∂ρ / ∂t) / 4π | r | k)] dv (25). When the equation (25) is discretized into a minute space, Becomes Here, each term of Formula (26) is as follows.

【0023】 U=〔φ1 , φ2 , ……φn T αi =−〔(∂ρi /∂t)/ΔVi =PUi, i=1〜m di =〔1/(4π)〕〔(ni ・ a1a, /r1i),(ni ・ a2a, /r2i) ・・・(ni ・ ana, /rni)〕 n:測定点数 m:分割個数:v=ΔV1 +ΔV2 +・・・+ΔVm ……(27) (27)式中のαi (=Pvi〔Vm〕)ni ,aijおよ
びrij(i=1〜m,j=1〜n)はそれぞれ電圧双極
子、電圧双極子方向の単位ベクトル、ソースポイントか
ら測定点方向の単位ベクトル、ソースポイントと測定点
間の距離である。さらに導体表面の磁界ベクトルEはス
カラーポテンシャルφのgradientをとることで得られる
(E=−▽φ)。
U = [φ 1, φ 2, ... φ n ] T α i = − [(∂ρ i / ∂t) / ΔV i = P Ui, i = 1 to m d i = [1 / ( 4π)] [(n i · a 1a, / r 1i ), (n i · a 2a, / r 2i ) ... (n i · a na, / r ni )] n: number of measurement points m: number of divisions : V = ΔV 1 + ΔV 2 + ... + ΔV m (27) α i (= P vi [Vm]) n i , a ij and r ij (i = 1 to m, j) in the equation (27). = 1 to n) are a voltage dipole, a unit vector in the direction of the voltage dipole, a unit vector in the direction of the measurement point from the source point, and a distance between the source point and the measurement point, respectively. Further, the magnetic field vector E on the conductor surface is obtained by taking the gradient of the scalar potential φ (E = − ▽ φ).

【0024】次にBiot-Ssvart の法則により磁界系のシ
ステム方程式は(26)式と同様になる。ここで、それ
ぞれのパラメータは、 U=〔H1 ,H2 ,・・Hn T αi =Ji ΔV1 =P1i, i=1〜m di =〔1/(4π)〕〔(ni ×a1i/r1i 2 ),(ni ×a2i/r2i 2 ) ・・・(ni ×ani/rni 2 )〕T ……(28) となる。
Next, the system equation of the magnetic field system becomes similar to the equation (26) according to the Biot-Ssvart law. Here, the respective parameters are U = [H 1 , H 2 , ... H n ] T α i = J i ΔV 1 = P 1 i , i = 1 to m d i = [1 / (4π)] [ (n i × a 1i / r 1i 2), a (n i × a 2i / r 2i 2) ··· (n i × a ni / r ni 2) ] T ...... (28).

【0025】(28)式において、Ji ΔV1 (=P1i
〔Am〕,i=1〜m)は電流双極子、Ji は微小堆積
ΔV1 における電流密度、H1 ,H2 ,……Hn は測定
磁界であり、その他のパラメータは(27)式中のもの
と同様である。ここで注意しなければならないことは、
電圧双極子のシステムではスカラー量が測定され、その
基底ベクトルdi (i=1〜m)は内積で構成される
が、電流双極子のシステムではベクトル量が測定され、
その基底ベクトルdi (i=1〜m)は外積で構成され
ることである。さらに一般的に測定領域あるいは有限の
表面領域であり、推定対象領域は堆積であるため、両方
のシステムにおいて測定点数nと分割個数mの間で次の
ような関係式が成り立つ。
In equation (28), J i ΔV 1 (= P 1i
[Am], i = 1 to m) is a current dipole, J i is a current density in the minute deposition ΔV 1 , H 1 , H 2 , ... H n is a measured magnetic field, and other parameters are expressed by the equation (27). Similar to the one inside. The important thing to note here is
In the voltage dipole system, the scalar quantity is measured, and its basis vector d i (i = 1 to m) is composed of the inner product, while in the current dipole system, the vector quantity is measured,
The basis vector d i (i = 1 to m) is composed of outer products. Furthermore, since it is generally a measurement region or a finite surface region and the estimation target region is deposition, the following relational expression holds between the number of measurement points n and the number of divisions m in both systems.

【0026】 m>>n ……(29) (26)式はベクトルuがベクトルdi (i=1〜m)
の線形結合が表されることを示している。よって(2
6)式は と変形できる。よって(30)式の第1のグループの解
は次のようになる。
M >> n (29) In the equation (26), the vector u is the vector d i (i = 1 to m).
It is shown that a linear combination of is represented. Therefore (2
6) is Can be transformed. Therefore, the solution of the first group of equation (30) is as follows.

【0027】 〔U/|U|〕T 〔d1/|d1 |],〔U/|U|〕T 〔d2/|d2 |],…… …〔U/|U|〕T 〔dh /|dh |],〔U/|U|〕T 〔dm /|dm |] ……(31a) もしγh =〔U/|U|〕T 〔dh /|dh |〕が最大
値をとるとすると、第2のグループの解はdh をパイロ
ットとして次のようになる。
[U / | U |] T [d 1 / | d 1 |], [U / | U |] T [d 2 / | d 2 |], ... [U / | U |] T [D h / | d h |], [U / | U |] T [d m / | d m |] (31a) If γ h = [U / | U |] T [d h / | d If h |] takes a maximum value, the solution of the second group is as follows with d h as a pilot.

【0028】 〔U/|U|〕T 〔dh +d1 )/|dh +d1 |〕, 〔U/|U|〕T 〔dh +d2 )/|dh +d2 |〕,…,1, …,〔U/|U|〕T 〔dh +dm )/|dh +dm |〕 ……(31b) 同様の過程を内積すなわちγのピーク値が得られるまで
繰り返し、その結果(26)式の一般解として α1 〔|d1|/|U|〕≒〔U/|U|〕T {〔d1/|d1 |] +〔dh +d1 )/|dh +d1 |〕+……} α2 〔|d2|/|U|〕≒〔U/|U|〕T {〔d2/|d2 |] +〔dh +d2 )/|dh +d2 |〕+……} ………………………… αh 〔|d h |/|U|〕≒{〔U/|U|〕T {〔dh / |dh |] +1+1+……} ………………………… αm 〔|d m |/|U|〕≒〔U/|U|〕T {〔dm / |dm |] +〔dh +dm )/|dh +dm |〕+……} ……(32) が得られる。
[U / | U |] T [d h + d 1 ) / | d h + d 1 |], [U / | U |] T [d h + d 2 ) / | d h + d 2 |], ... , 1,…, [U / | U |] T [d h + d m ) / | d h + d m |] (31b) The same process is repeated until the inner product, that is, the peak value of γ is obtained. As a general solution of the equation (26), α 1 [| d 1 | / | U |] ≈ [U / | U |] T {[d 1 / | d 1 |] + [d h + d 1 ) / | d h + D 1 |] + ……} α 2 [| d 2 | / | U |] ≈ [U / | U |] T {[d 2 / | d 2 |] + [d h + d 2 ) / | d h + D 2 |] + ……} ………………………… α h [| d h | / | U |] ≈ {[U / | U |] T {[d h / | d h |] + 1 + 1 + ……} ………………………… α m [| d m | / | U |] ≈ [U / | U |] T {[d m / | d m |] + [d h + d m ) / | d h + d m |] + ...} (32) is obtained.

【0029】このようにして磁界から電流双極子分布
が、電位または電界から電圧双極子分布が得られ、それ
ぞれ独立した結果の内積を得ることによって空間パワー
分布が得られる。
In this way, the current dipole distribution is obtained from the magnetic field, and the voltage dipole distribution is obtained from the potential or the electric field, and the spatial power distribution is obtained by obtaining the inner product of the independent results.

【0030】次に、本発明を適用した第1の検証例とし
て、立法体上面の6×6=36個の電圧測定点から電圧
双極子法を用いて電圧を推定した結果を図5(a)、立
法体上面から5mm離れた面で6×6=36個の面に垂
直な磁界を測定し電流双極子法により電流分布を推定し
た結果を図5(b)、電圧双極子と電流双極子間の内積
をとって得た空間パワー分布を求めた結果を図5(c)
に、また正解の電流分布を図5(d)にそれぞれ示す。
Next, as a first verification example to which the present invention is applied, the result of estimating the voltage from the 6 × 6 = 36 voltage measurement points on the upper surface of the cube by the voltage dipole method is shown in FIG. ), A magnetic field perpendicular to 6 × 6 = 36 planes is measured at a plane 5 mm away from the upper surface of the cubic body, and the current distribution is estimated by the current dipole method. The result is shown in FIG. 5B, voltage dipole and current dipole. Figure 5 (c) shows the result of the spatial power distribution obtained by taking the inner product between the offspring.
And the correct current distribution is shown in FIG. 5 (d).

【0031】第2の検証例として、立法体上面の6×6
=36個の電圧測定点から電圧双極子法を用いて電圧を
推定した結果を図6(a)、立法体上面から5mm離れ
た面で6×6=36個の面に垂直な磁界を測定し電流双
極子法により電流分布を推定した結果を図6(b)、電
圧双極子と電流双極子間の内積をとって得た空間パワー
分布を求めた結果を図6(c)に、また正解の電流分布
を図6(d)にそれぞれ示す。
As a second verification example, 6 × 6 on the upper surface of the cubic body is used.
Fig. 6 (a) shows the results of estimating the voltage from the = 36 voltage measurement points using the voltage dipole method, and measures the magnetic field perpendicular to the 6 x 6 = 36 planes 5 mm away from the upper surface of the cube. 6 (b) shows the result of estimating the current distribution by the current dipole method, and FIG. 6 (c) shows the result of obtaining the spatial power distribution obtained by taking the inner product between the voltage dipole and the current dipole. The correct current distribution is shown in FIG.

【0032】第3の検証例として、立法体上面の6×6
=36個の電圧測定点から電圧双極子法を用いて電圧を
推定した結果を図7(a)、立法体上面から5mm離れ
た面で6×6=36個の面に垂直な磁界を測定し電流双
極子法により電流分布を推定した結果を図7(b)、電
圧双極子と電流双極子間の内積をとって得た空間パワー
分布を求めた結果を図7(c)に、また正解の電流分布
を図7(d)にそれぞれ示す。
As a third verification example, 6 × 6 on the upper surface of the cube is used.
= 36 results from estimating the voltage from 36 voltage measurement points using the voltage dipole method. Measure the magnetic field perpendicular to the 6 x 6 = 36 planes on the surface 5 mm away from the upper surface of the cube. Fig. 7 (b) shows the result of estimating the current distribution by the current dipole method, and Fig. 7 (c) shows the result of obtaining the spatial power distribution obtained by taking the inner product between the voltage dipole and the current dipole. The correct current distributions are shown in FIG.

【0033】図5〜図7の結果から電圧双極子法は3次
元的に広がる電圧分布を示し、対称的に電流双極子法は
2次元方向に広がる電流分布を示すことが分かる。この
両者の差は次のように考えられる。電圧双極子法は、既
知数としてスカラー量を用いており、その基底ベクトル
は内積で構成されている。さらに電圧双極子法は本来
(27)式中の湧き出し電流−(∂ρi /∂t)ΔVi
(i=1〜m)を仮定して成立している。また、その結
果は真の電流分布ではなく、発散性をもつ電圧分布であ
る。これらの事実は解が3次元的な広がりをもつ特徴を
反映している。一方、電流双極子法は、既知数としてベ
クトル量を用いており、その基底ベクトルは外積で構成
されている。よってその解はrotationalな特徴を持つ電
流分布である。
From the results of FIGS. 5 to 7, it can be seen that the voltage dipole method shows a voltage distribution that spreads three-dimensionally, and the current dipole method shows a current distribution that spreads symmetrically in two dimensions. The difference between the two is considered as follows. The voltage dipole method uses a scalar quantity as a known number, and its basis vector is composed of an inner product. Furthermore, the voltage dipole method is essentially the source current − (∂ρ i / ∂t) ΔV i in equation (27).
It is established assuming (i = 1 to m). Also, the result is not a true current distribution but a divergent voltage distribution. These facts reflect the characteristic that the solution has a three-dimensional spread. On the other hand, the current dipole method uses a vector quantity as a known number, and its basis vector is composed of outer products. Therefore, the solution is a current distribution with a rotational characteristic.

【0034】以上のことから測定磁界の垂直成分より電
流双極子法で計算すると、測定面に平行にながれる電流
分布が求められ、一方測定面上の電位より電圧双極子法
で計算すると、発散性の電圧分布が求められ、3次元的
に広がる電流分布に対して有効であると考えられる。こ
のように電圧双極子法、電流双極子法両方からある曖昧
さをもった解パターンが得られるが、ここで、図5
(c)と図5(d)、図6(c)と図6(d)および図
7(c)と図7(d)をそれぞれ比較してみると、正解
の電流分布の近傍にパワー分布がよく集中していること
が分かる。特に測定面に近いほど正確であることも分か
る。したがって、図5(c)や図6(c)や図7(c)
の空間パワー分布から最も信頼性のある電流分布が得ら
れることが分かる。
From the above, when the current dipole method is used to calculate from the vertical component of the measured magnetic field, the current distribution that runs parallel to the measurement surface is obtained, and when the voltage dipole method is used to calculate from the potential on the measurement surface, the divergence is obtained. It is considered that this is effective for the three-dimensionally spreading current distribution. In this way, a solution pattern with some ambiguity can be obtained from both the voltage dipole method and the current dipole method.
Comparing (c) and FIG. 5 (d), FIG. 6 (c) and FIG. 6 (d), and FIG. 7 (c) and FIG. 7 (d), respectively, a power distribution near the correct current distribution is obtained. It turns out that is well concentrated. In particular, it can be seen that the closer to the measurement surface, the more accurate. Therefore, FIG. 5 (c), FIG. 6 (c), and FIG. 7 (c)
It can be seen that the most reliable current distribution can be obtained from the spatial power distribution of.

【0035】次に、本発明を適用して心臓疾患を診断し
た例について図8、図9により説明する。図8(a)、
図8(b)および図8(c)はそれぞれ健常者の心電図
から電圧双極子法を用いて推定した電圧分布、同一健常
者の心磁図から電流双極子を用いて推定した電流分布、
それら両者の内積をとった空間パワー分布である。
Next, an example in which the present invention is applied to diagnose a heart disease will be described with reference to FIGS. FIG. 8 (a),
8 (b) and 8 (c) are voltage distributions estimated from the electrocardiogram of a healthy subject using the voltage dipole method, current distributions estimated from the magnetocardiogram of the same healthy subject using current dipoles, respectively.
The spatial power distribution is the inner product of the two.

【0036】一方図9(a)、図9(b)および図9
(c)はそれぞれの疾患(PulmonaryStenosis)のある
人の心電図から電圧双極子法を用いて推定した電圧分
布、同一患者の心磁図から電流双極子法を用いて推定し
た電流分布、それらの両者の内積をとった空間パワー分
布である。
On the other hand, FIG. 9 (a), FIG. 9 (b) and FIG.
(C) is a voltage distribution estimated from the electrocardiogram of a person with each disease (Pulmonary Stenosis) using the voltage dipole method, a current distribution estimated from the magnetocardiogram of the same patient using the current dipole method, and both of them. It is the spatial power distribution that is the inner product.

【0037】図8(a)、図8(b)、図9(a)、図
9(b)より電圧および電流双極子法では結果を評価す
る際にコントラストを上げるためパターンマッチング指
数γのある一定値以上を表示しなければならないが、図
8(c)および図9(c)の空間パワー分布の図はその
ような作業を省略することができ、正常な心臓と疾患の
ある心臓の決定的な差を明らかにすることができる。こ
のように心電図と心磁図を組み合わせ、電圧分布、電流
分布、空間パワー分布を求めることにより心臓のより正
確な診断が可能となる。
8 (a), 8 (b), 9 (a) and 9 (b), the voltage and current dipole method has a pattern matching index γ for increasing the contrast when evaluating the result. Although it is necessary to display a certain value or more, the spatial power distribution diagrams of FIGS. 8 (c) and 9 (c) can omit such work, and can determine a normal heart and a diseased heart. Differences can be clarified. Thus, by combining the electrocardiogram and the magnetocardiogram to obtain the voltage distribution, the current distribution, and the spatial power distribution, more accurate diagnosis of the heart becomes possible.

【0038】[0038]

【発明の効果】以上のように本発明によれば、電圧双極
子法、電流双極子法によりある曖昧さをもって電圧分
布、電流分布が得られ、さらに、電圧分布、電流分布よ
りこれらの内積をとって空間パワー分布を得られ、これ
らを総合的にみることにより信頼性のある診断を行うこ
とが可能となる。
As described above, according to the present invention, the voltage distribution and the current distribution can be obtained with certain ambiguity by the voltage dipole method and the current dipole method, and the inner product of these can be obtained from the voltage distribution and the current distribution. The spatial power distribution can be obtained, and it is possible to make a reliable diagnosis by comprehensively looking at these.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の診断装置の構成を示す図である。FIG. 1 is a diagram showing a configuration of a diagnostic device of the present invention.

【図2】 解析モデルを示す図である。FIG. 2 is a diagram showing an analysis model.

【図3】 磁界測定から電流分布を求める方法を説明す
る図である。
FIG. 3 is a diagram illustrating a method of obtaining a current distribution from a magnetic field measurement.

【図4】 3次元問題を説明する図である。FIG. 4 is a diagram illustrating a three-dimensional problem.

【図5】 第1の検証例における電圧分布、電流分布、
空間パワー分布、正解電流分布を示す図である。
FIG. 5 shows a voltage distribution, a current distribution in the first verification example,
It is a figure which shows a spatial power distribution and a correct current distribution.

【図6】 第2の検証例における電圧分布、電流分布、
空間パワー分布、正解電流分布を示す図である。
FIG. 6 shows a voltage distribution and a current distribution in the second verification example.
It is a figure which shows a spatial power distribution and a correct current distribution.

【図7】 第3の検証例における電圧分布、電流分布、
空間パワー分布、正解電流分布を示す図である。
FIG. 7 shows a voltage distribution, a current distribution in a third verification example,
It is a figure which shows a spatial power distribution and a correct current distribution.

【図8】 健常者の心臓の電圧分布、電流分布、空間パ
ワー分布を示す図である。
FIG. 8 is a diagram showing a voltage distribution, a current distribution, and a spatial power distribution of the heart of a healthy person.

【図9】 疾患者の心臓の電圧分布、電流分布、空間パ
ワー分布を示す図である。
FIG. 9 is a diagram showing a voltage distribution, a current distribution, and a spatial power distribution of a heart of a diseased person.

【符号の説明】[Explanation of symbols]

1…磁気センサ1、2…電位または電界分布を検出する
センサ、3…データ処理装置、3a…磁界源分布算出手
段、3b…電圧源分布算出手段、3c…空間パワー分布
算出手段、3d…正常時データ3d、3e…比較手段、
3…出力装置、3a…表示装置、3b…プリンタ。
DESCRIPTION OF SYMBOLS 1 ... Magnetic sensor 1, 2 ... Sensor which detects electric potential or electric field distribution, 3 ... Data processing device, 3a ... Magnetic field source distribution calculation means, 3b ... Voltage source distribution calculation means, 3c ... Spatial power distribution calculation means, 3d ... Normal Time data 3d, 3e ... Comparison means,
3 ... Output device, 3a ... Display device, 3b ... Printer.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 被検査対象の表面の磁界分布、及び電位
または電界分布を検出する検出手段と、検出された磁界
分布から磁界源分布を算出する磁界源分布算出手段と、
検出された電位または電界分布から電圧源分布を算出す
る電圧源分布算出手段と、算出した磁界源分布と電圧源
分布の内積をとって空間パワー分布を算出する空間パワ
ー分布算出手段とを備えた診断装置。
1. A detection means for detecting a magnetic field distribution and a potential or electric field distribution on a surface of an object to be inspected, and a magnetic field source distribution calculation means for calculating a magnetic field source distribution from the detected magnetic field distribution,
A voltage source distribution calculating means for calculating a voltage source distribution from the detected potential or electric field distribution, and a spatial power distribution calculating means for calculating a spatial power distribution by taking an inner product of the calculated magnetic field source distribution and voltage source distribution are provided. Diagnostic device.
【請求項2】 請求項1記載の装置において、さらに磁
界源分布、電圧源分布、空間パワー分布のうち、少なく
とも一つについて正常な状態で求めた結果と、測定算出
した結果とを比較する比較手段とを備え、比較結果によ
り異常部位を特定するようにしたことを特徴とする診断
装置。
2. The apparatus according to claim 1, further comprising comparing a result obtained in a normal state with respect to at least one of a magnetic field source distribution, a voltage source distribution, and a spatial power distribution with a measured and calculated result. And a means for identifying an abnormal part based on a comparison result.
【請求項3】 請求項1または2記載の装置において、
さらに算出結果または比較結果を出力する出力手段とを
備えたことを特徴とする診断装置。
3. The device according to claim 1, wherein
A diagnostic device further comprising an output means for outputting a calculation result or a comparison result.
JP4323212A 1992-12-02 1992-12-02 Diagnostic device Expired - Fee Related JP2796478B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4323212A JP2796478B2 (en) 1992-12-02 1992-12-02 Diagnostic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4323212A JP2796478B2 (en) 1992-12-02 1992-12-02 Diagnostic device

Publications (2)

Publication Number Publication Date
JPH06169895A true JPH06169895A (en) 1994-06-21
JP2796478B2 JP2796478B2 (en) 1998-09-10

Family

ID=18152296

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4323212A Expired - Fee Related JP2796478B2 (en) 1992-12-02 1992-12-02 Diagnostic device

Country Status (1)

Country Link
JP (1) JP2796478B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015119818A (en) * 2013-12-24 2015-07-02 学校法人金沢工業大学 Biological magnetic field analyzing device, biological magnetic field analyzing system, biological magnetic field analyzing method, and biological magnetic field analyzing program
JP2017009421A (en) * 2015-06-22 2017-01-12 Jfeスチール株式会社 Method of measuring current
WO2017187791A1 (en) * 2016-04-28 2017-11-02 国立大学法人神戸大学 Measurement device and measurement method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5752436A (en) * 1980-09-12 1982-03-27 Mochida Pharm Co Ltd Brain wave data treating method
JPS59131330A (en) * 1983-09-14 1984-07-28 武者 利光 Display apparatus of body surface potential
JPS61228826A (en) * 1985-04-01 1986-10-13 赤松 則男 Electrocardiograph
JPH031839A (en) * 1989-05-31 1991-01-08 Shimadzu Corp Brain magnetism measuring apparatus
JPH04236942A (en) * 1991-01-18 1992-08-25 Shimadzu Corp Analyzing method of living body active current source

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5752436A (en) * 1980-09-12 1982-03-27 Mochida Pharm Co Ltd Brain wave data treating method
JPS59131330A (en) * 1983-09-14 1984-07-28 武者 利光 Display apparatus of body surface potential
JPS61228826A (en) * 1985-04-01 1986-10-13 赤松 則男 Electrocardiograph
JPH031839A (en) * 1989-05-31 1991-01-08 Shimadzu Corp Brain magnetism measuring apparatus
JPH04236942A (en) * 1991-01-18 1992-08-25 Shimadzu Corp Analyzing method of living body active current source

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015119818A (en) * 2013-12-24 2015-07-02 学校法人金沢工業大学 Biological magnetic field analyzing device, biological magnetic field analyzing system, biological magnetic field analyzing method, and biological magnetic field analyzing program
JP2017009421A (en) * 2015-06-22 2017-01-12 Jfeスチール株式会社 Method of measuring current
WO2017187791A1 (en) * 2016-04-28 2017-11-02 国立大学法人神戸大学 Measurement device and measurement method
JPWO2017187791A1 (en) * 2016-04-28 2019-02-28 国立大学法人神戸大学 Measuring device and measuring method
US11366079B2 (en) 2016-04-28 2022-06-21 National University Corporation Kobe University Measurement device and measurement method

Also Published As

Publication number Publication date
JP2796478B2 (en) 1998-09-10

Similar Documents

Publication Publication Date Title
Mosher et al. Recursive MUSIC: a framework for EEG and MEG source localization
Petković et al. Lorentz force evaluation: A new approximation method for defect reconstruction
Lütkenhöner Magnetoencephalography and its Achilles' heel
Barone et al. Numerical sensitivity analysis of a variational data assimilation procedure for cardiac conductivities
JP6745509B2 (en) Observation method and equipment
JP2796478B2 (en) Diagnostic device
Ireland et al. Towards magnetic detection electrical impedance tomography: data acquisition and image reconstruction of current density in phantoms and in vivo
Kim et al. Influence of conductivity tensors on the scalp electrical potential: study with 2-D finite element models
Saotome et al. Crack identification in metallic materials
Beadle et al. Assessing heart disease using a novel magnetocardiography device
JP7426955B2 (en) Magnetic sensor and inspection equipment
Huang et al. Development of advanced signal processing and source imaging methods for superparamagnetic relaxometry
Sekihara et al. Beamspace dual signal space projection (bDSSP): a method for selective detection of deep sources in MEG measurements
He et al. A combined regularization algorithm for electrical impedance tomography system using rectangular electrodes array
Hazim et al. Magnetoencephalography phantom comparison and validation: Hospital Universiti Sains Malaysia (HUSM) requisite
JP7473114B2 (en) External field response distribution visualization device and external field response distribution visualization method
Krieger et al. Referee consensus: A platform technology for nonlinear optimization
US11402198B2 (en) Information processing device, biological information measurement device, and computer-readable medium
Bruno et al. A FDM anisotropic formulation for EEG simulation
Greene et al. A comparison of probe geometries for neuronal localization
JP4639350B2 (en) A method for estimating the position and orientation of current dipoles.
De Melis et al. Discussion of current distribution of exercise 3D MCG using an inhomogeneous human volume conductor
Supek et al. Spatio‐temporal modeling of neuromagnetic data: II. Multi‐source resolvability of a MUSIC‐based location estimator
Koga et al. Quantitative performance assessments for neuromagnetic imaging systems
Kajihara et al. Moving mesh method for reconstructing some spread sources in the brain

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080626

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees