JPH06169798A - Device for measuring lactic acid and method using the same - Google Patents

Device for measuring lactic acid and method using the same

Info

Publication number
JPH06169798A
JPH06169798A JP4327057A JP32705792A JPH06169798A JP H06169798 A JPH06169798 A JP H06169798A JP 4327057 A JP4327057 A JP 4327057A JP 32705792 A JP32705792 A JP 32705792A JP H06169798 A JPH06169798 A JP H06169798A
Authority
JP
Japan
Prior art keywords
lactic acid
sample
ldh
immobilized
calibration curve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4327057A
Other languages
Japanese (ja)
Other versions
JP3104445B2 (en
Inventor
Yukie Inoue
幸枝 井上
Ryuzo Hayashi
隆造 林
Naoko Matsuya
直子 松矢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Oji Paper Co Ltd
Original Assignee
New Oji Paper Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Oji Paper Co Ltd filed Critical New Oji Paper Co Ltd
Priority to JP04327057A priority Critical patent/JP3104445B2/en
Priority to US08/067,960 priority patent/US5510244A/en
Priority to DE4317958A priority patent/DE4317958C2/en
Priority to GB9311118A priority patent/GB2267343B/en
Publication of JPH06169798A publication Critical patent/JPH06169798A/en
Application granted granted Critical
Publication of JP3104445B2 publication Critical patent/JP3104445B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

PURPOSE:To provide the device and method for measuring the amounts of D-lactic acid and L-lactic acid in a short time in good accuracy and in simple operations. CONSTITUTION:The flow style device for measuring the D-lactic acid and L- lactic acid is provided with a mechanism (24) for injecting a specimen into a flowing carrier from its upstream, a reactor (25) therein having immobilized enzymes containing D-lactic acid dehydrogenase and L-lactic acid dehydrogenase, a L-lactic acid oxidase-immobilized product (28), and an electrode (29) for detecting an electrode-active substance increasing or decreasing when the L- lactic acid in the specimen is oxidized with the L-lactic acid oxidase.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、固定化酵素を利用した
迅速かつ簡便な乳酸の測定装置と測定方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rapid and simple measuring apparatus and method for lactic acid using immobilized enzyme.

【0002】[0002]

【従来の技術】乳酸発酵は、従来より食品工業の分野で
広く利用されている。例えば微生物による乳酸発酵は乳
酸や乳飲料の生産だけでなく、チーズ、バター、清酒、
しょうゆ、みそ、漬物等の生産に利用されている。これ
らの乳酸発酵に用いられる微生物としては、乳酸菌と糸
状菌がある。このうち乳酸菌では菌種によって、D−乳
酸のみを生産するもの、L−乳酸のみを生産するもの、
D−乳酸とL−乳酸の混合物を生産するもの等が知られ
ており、発酵過程でのD−乳酸及びL−乳酸の測定は発
酵制御、コンタミネーションの発見等に欠かせないもの
である。
2. Description of the Related Art Lactic acid fermentation has been widely used in the field of food industry. For example, lactic acid fermentation by microorganisms not only produces lactic acid and milk drinks, but also cheese, butter, sake,
It is used to produce soy sauce, miso and pickles. Microorganisms used for these lactic acid fermentations include lactic acid bacteria and filamentous fungi. Among these, lactic acid bacteria produce only D-lactic acid, and produce only L-lactic acid, depending on the bacterial species.
Those which produce a mixture of D-lactic acid and L-lactic acid are known, and the measurement of D-lactic acid and L-lactic acid in the fermentation process is essential for fermentation control, discovery of contamination, and the like.

【0003】従来、D−乳酸の測定は、D−乳酸脱水素
酵素(以下D−LDHと略す)と補酵素ニコチンアミド
アデニンジヌクレオチド(以下NADと略す)を用い
て、生成した還元型ニコチンアミドアデニンジヌクレオ
チド(以下NADHと略す)もしくはピルビン酸を吸光
光度法、蛍光強度法で測定していた。しかし、この測定
法では、D−LDHの性質により様々な問題があった。
Conventionally, the measurement of D-lactic acid was carried out by using D-lactate dehydrogenase (hereinafter abbreviated as D-LDH) and the coenzyme nicotinamide adenine dinucleotide (hereinafter abbreviated as NAD) to produce reduced nicotinamide. Adenine dinucleotide (hereinafter abbreviated as NADH) or pyruvic acid was measured by absorptiometry and fluorescence intensity method. However, this measuring method has various problems depending on the properties of D-LDH.

【0004】第1に、反応効率が低いため、実用的なレ
ベルでは必要とする酵素量が多過ぎて、分析コストが高
くなる。用いる酵素量を減少させるためには、反応時間
を長くしたり、反応温度を調節するという手段が考えら
れるが、さらに繁雑な操作や測定時間の延長等のマイナ
ス要因となっていた。第2点として、D−LDHの関与
する反応の平衡はNADHとピルビン酸からD−乳酸を
生成する方向に傾いているため、全てのD−乳酸が変化
しつくす前に反応が停止してしまう。そのため生成した
ピルビン酸を、グルタミン酸ピルビン酸トランスアミナ
ーゼにより消費する等の手段が必要であり、反応工程が
複雑化するとともに分析コストが上昇していた。
First, since the reaction efficiency is low, the amount of enzyme required is too large at a practical level, resulting in a high analysis cost. In order to reduce the amount of enzyme to be used, it is conceivable to lengthen the reaction time or adjust the reaction temperature, but it has been a negative factor such as more complicated operation and extension of the measurement time. Secondly, the equilibrium of the reaction involving D-LDH is inclined toward the production of D-lactic acid from NADH and pyruvic acid, so that the reaction is stopped before all D-lactic acid is completely changed. . Therefore, means such as consumption of the produced pyruvate by glutamate pyruvate transaminase is required, which complicates the reaction process and raises the analysis cost.

【0005】また、D−乳酸のみでなく、L−乳酸も測
定する場合には、先ずD−乳酸を分析し、次にD−乳酸
と同様の測定をL−乳酸脱水素酵素(以下L−LDHと
略す)を用いて行う必要がある。そのため操作は複雑と
なり、測定時間、コストが2倍になる。さらに乳酸脱水
素酵素のみを用いる測定方法では、その反応の一般的検
出手段が反応により変化するNADもしくはNADHの
紫外域における吸光度変化であり、試料の濁りや着色物
質の影響を受けやすいという欠点があった。
When not only D-lactic acid but also L-lactic acid is measured, first, D-lactic acid is analyzed, and then the same measurement as D-lactic acid is carried out. LDH). Therefore, the operation becomes complicated, and the measurement time and cost are doubled. Further, in the measuring method using only lactate dehydrogenase, the general detection means of the reaction is the change in absorbance in the ultraviolet region of NAD or NADH which changes depending on the reaction, and there is a drawback that the sample is easily affected by turbidity and coloring substances. there were.

【0006】[0006]

【発明が解決しようとする課題】上記のように、従来開
示されたD−乳酸とL−乳酸の測定方法では、充分実用
的な測定方法とは言い難い。本発明は、D−LDHとL
−LDHの固定化体を用い、D−乳酸およびL−乳酸の
2成分を短時間で精度良く簡便に測定することができる
測定装置および測定方法を提供することを目的とする。
As described above, the conventionally disclosed measuring methods for D-lactic acid and L-lactic acid cannot be said to be sufficiently practical measuring methods. The present invention relates to D-LDH and L
An object of the present invention is to provide a measuring device and a measuring method that can measure two components of D-lactic acid and L-lactic acid accurately and easily in a short time using an immobilized body of LDH.

【0007】[0007]

【課題を解決するための手段】本発明の要旨は下記に示
す実施態様に例示されるが、これらに限定されるもので
はない。
The gist of the present invention is illustrated by the following embodiments, but the invention is not limited thereto.

【0008】(1) D−乳酸脱水素酵素とL−乳酸
脱水素酵素を含む酵素固定化体、ニコチンアミドアデ
ニンジヌクレオチドと試料を前記酵素固定化体に接触さ
せる機構、及びL−乳酸測定機構を具備するD−乳酸
とL−乳酸の測定装置。
(1) Enzyme-immobilized body containing D-lactate dehydrogenase and L-lactate dehydrogenase, a mechanism for bringing nicotinamide adenine dinucleotide and a sample into contact with the enzyme-immobilized body, and a mechanism for measuring L-lactic acid An apparatus for measuring D-lactic acid and L-lactic acid, which comprises:

【0009】(2) 上流より、送液されるキャリヤー
中へ試料を注入する機構、D−乳酸脱水素酵素とL−乳
酸脱水素酵素を含む酵素固定化体を内包するリアクタ
ー、並びにL−乳酸酸化酵素固定化体及びL−乳酸酸化
酵素により試料中のL−乳酸が酸化される際に増加また
は減少する電極活性物質を検知する電極、を具備するフ
ロー方式のD−乳酸とL−乳酸の測定装置。
(2) A mechanism for injecting a sample into a carrier to be fed from upstream, a reactor containing an enzyme immobilization body containing D-lactate dehydrogenase and L-lactate dehydrogenase, and L-lactic acid. Flow-type D-lactic acid and L-lactic acid, which are equipped with an oxidase-immobilized body and an electrode for detecting an electrode active substance that increases or decreases when L-lactic acid in a sample is oxidized by L-lactic acid oxidase measuring device.

【0010】(3) D−乳酸脱水素酵素とL−乳酸脱
水素酵素を含む酵素固定化体と試料を含むキャリヤーが
接触した状態で、キャリヤーの送液を停止又は流速を低
下させる機構を有する(2)記載の測定装置。
(3) In the state where the immobilized enzyme containing D-lactate dehydrogenase and L-lactate dehydrogenase and the carrier containing the sample are in contact with each other, it has a mechanism of stopping the liquid feeding of the carrier or lowering the flow rate. (2) The measuring device as described above.

【0011】(4) 前記リアクターの上流側に、更に
L−乳酸酸化酵素固定化体及びL−乳酸酸化酵素により
試料中のL−乳酸が酸化される際に増加または減少する
電極活性物質を検知する電極を設けた(2)記載の測定
装置。
(4) On the upstream side of the reactor, an electrode active substance that increases or decreases when L-lactic acid in a sample is further oxidized by the L-lactate oxidase-immobilized body and L-lactate oxidase is detected. The measuring device according to (2), which is provided with an electrode for

【0012】(5) a.試料とニコチンアミドアデニ
ンジヌクレオチドをD−乳酸脱水素酵素とL−乳酸脱水
素酵素を含む酵素固定化体に接触させ、試料中のD−乳
酸とL−乳酸との変換反応を行った後にL−乳酸を測定
する工程、b.試料中のL−乳酸を測定する工程、を含
むD−乳酸とL−乳酸の測定方法。
(5) a. The sample and nicotinamide adenine dinucleotide are brought into contact with an enzyme-immobilized body containing D-lactate dehydrogenase and L-lactate dehydrogenase to carry out a conversion reaction between D-lactic acid and L-lactic acid in the sample, and then L -A step of measuring lactic acid, b. A method for measuring D-lactic acid and L-lactic acid, which comprises the step of measuring L-lactic acid in a sample.

【0013】(6) a.試料とニコチンアミドアデニ
ンジヌクレオチドをD−乳酸脱水素酵素とL−乳酸脱水
素酵素を含む酵素固定化体に接触させ、試料中のD−乳
酸とL−乳酸との変換反応を行う工程、及び b.試料中のL−乳酸がL−乳酸酸化酵素により酸化さ
れる際に増加又は減少する電極活性物質を電気化学的に
検出する工程、を含むD−乳酸とL−乳酸の測定方法で
あり、 ・工程bにおいて試料としてL−乳酸標準液を用い、L
−乳酸濃度と出力値の関係を示す検量線1を求め、 ・試料としてL−乳酸標準液を用い工程aを行い、次に
その試料につき工程bを行いL−乳酸濃度と出力値の関
係を示す検量線2を求め、 ・試料としてD−乳酸標準液を用い工程aを行い、次に
その試料につき工程bを行いD−乳酸濃度と出力値の関
係を示す検量線3を求め、 ・更に、工程bにおいて試料として測定試料を用い、出
力値1を測り、 ・試料として測定試料を用い工程aを行い次に工程bを
行い出力値2を測り、 出力値1,出力値2,検量線1,検量線2,検量線3よ
り測定試料中のD−乳酸量とL−乳酸量を計算するD−
乳酸とL−乳酸の測定方法。
(6) a. A step of bringing a sample and nicotinamide adenine dinucleotide into contact with an enzyme-immobilized body containing D-lactate dehydrogenase and L-lactate dehydrogenase to carry out a conversion reaction between D-lactic acid and L-lactic acid in the sample; and b. A method for measuring D-lactic acid and L-lactic acid, which comprises a step of electrochemically detecting an electrode active substance that increases or decreases when L-lactic acid in a sample is oxidized by L-lactic acid oxidase. In step b, using L-lactic acid standard solution as a sample,
-The calibration curve 1 showing the relationship between the lactic acid concentration and the output value is obtained.-Using the L-lactic acid standard solution as a sample, the step a is performed, and then the step b is performed on the sample to show the relationship between the L-lactic acid concentration and the output value. The calibration curve 2 shown below is obtained, and step a is performed using a D-lactic acid standard solution as a sample, and then step b is performed for the sample to obtain a calibration curve 3 showing the relationship between the D-lactic acid concentration and the output value. In step b, a measurement sample is used as a sample, and an output value of 1 is measured, and when a measurement sample is used as a sample, step a is performed, and then step b is performed, an output value 2 is measured, and an output value 1, an output value 2 and a calibration curve are obtained. 1. Calculate the amount of D-lactic acid and the amount of L-lactic acid in the measurement sample from the calibration curve 2 and the calibration curve D-
Method for measuring lactic acid and L-lactic acid.

【0014】(7) 緩衝液を送液する機構と、L−乳
酸酸化酵素固定化体と、L−乳酸が酸化される際に増加
または減少する電極活性物質を検知する電極を備えたフ
ロー型測定装置であり、L−乳酸酸化酵素固定化体の前
段にD−乳酸脱水素酵素とL−乳酸脱水素酵素を固定化
した酵素固定化体を配置し、該D−乳酸脱水素酵素とL
−乳酸脱水素酵素を固定化した酵素固定化体にニコチン
アミドアデニンジヌクレオチド及び試料を接触せしめる
機構を有する測定装置。
(7) A flow type equipped with a mechanism for sending a buffer solution, an L-lactate oxidase-immobilized body, and an electrode for detecting an electrode active substance that increases or decreases when L-lactic acid is oxidized. A measuring device, wherein an enzyme-immobilized body having D-lactate dehydrogenase and L-lactate dehydrogenase immobilized thereon is arranged in front of the L-lactate oxidase immobilized body, and the D-lactate dehydrogenase and L-lactate dehydrogenase are arranged.
-A measuring device having a mechanism for bringing nicotinamide adenine dinucleotide and a sample into contact with an enzyme-immobilized body in which lactate dehydrogenase is immobilized.

【0015】(8) L−乳酸酸化酵素固定化体がL−
乳酸酸化酵素を固定化した担体を内包するカラムである
か、又は固定化酵素膜であり電極に取りつけられている
(7)記載の測定装置。
(8) The L-lactate oxidase-immobilized product is L-
The measuring device according to (7), which is a column containing a carrier on which lactate oxidase is immobilized, or a column of immobilized enzyme, which is attached to an electrode.

【0016】(9) D−乳酸脱水素酵素とL−乳酸脱
水素酵素を固定化した酵素固定化体が両酵素を担体に固
定化しカラムに充填したものである(7)記載の測定装
置。
(9) The measuring apparatus according to (7), wherein the enzyme-immobilized body in which D-lactate dehydrogenase and L-lactate dehydrogenase are immobilized has both enzymes immobilized on a carrier and packed in a column.

【0017】(10) D−乳酸脱水素酵素、L−乳酸
脱水素酵素固定化体にニコチンアミドアデニンジヌクレ
オチドと試料を接触せしめた状態で、一定時間送液を停
止させるか、あるいは一定時間送液の流速を低下させる
機構を設けた(7)記載の測定装置。
(10) With the nicotinamide adenine dinucleotide and the sample in contact with the D-lactate dehydrogenase and L-lactate dehydrogenase-immobilized body, the solution transfer is stopped for a certain period of time or for a certain period of time. The measuring device according to (7), which is provided with a mechanism for reducing the flow rate of the liquid.

【0018】(11) L−乳酸酸化酵素固定化体と電
極を有する流路系が並列に2流路あり、片側のL−乳酸
酸化酵素固定化体の前段にD−乳酸脱水素酵素とL−乳
酸脱水素酵素を固定化した酵素固定化体を配置した
(7)記載の測定装置。
(11) The flow path system having the L-lactate oxidase-immobilized body and the electrode has two flow paths in parallel, and the D-lactate dehydrogenase and the L-form are added in front of the L-lactate oxidase-immobilized body on one side. -The measuring apparatus according to (7), in which an enzyme-immobilized body on which lactate dehydrogenase is immobilized is arranged.

【0019】(12) (7)記載の測定装置を用いて
D−乳酸脱水素酵素、L−乳酸脱水素酵素固定化体に試
料を接触せしめる際にニコチンアミドアデニンジヌクレ
オチドの存在する場合と存在しない場合と2度測定する
測定方法。尚、D−乳酸とL−乳酸の変換反応に充分な
時間をかけた場合、試料は略1:1の混合物となり、
(6)において検量線2と検量線3は略一致するため、
検量線は2本でも計算出来る。そして(6)は、この場
合等を含め一般化したものと解釈すべきである。
(12) When the sample is brought into contact with the immobilized D-lactate dehydrogenase or L-lactate dehydrogenase using the measuring device described in (7), the presence and the presence of nicotinamide adenine dinucleotide Measurement method to measure twice if not. In addition, when a sufficient time is taken for the conversion reaction of D-lactic acid and L-lactic acid, the sample becomes a mixture of about 1: 1,
In (6), since the calibration curve 2 and the calibration curve 3 substantially match,
Even two calibration curves can be calculated. And (6) should be interpreted as a generalized one including this case.

【0020】[0020]

【作用】D−LDH、L−LDHの反応を次式に示す。 D−LDH反応: D−乳酸+NAD→ピルビン酸+N
ADH L−LDH反応: L−乳酸+NAD→ピルビン酸+N
ADH どちらの反応も可逆的であるが、どちらの酵素も平衡は
乳酸とNADが生成する方向に傾いている。そのため、
NADの存在下で多量のD−LDHを試料に接触させて
も、ほとんどピルビン酸へ変化しない。L−LDHにつ
いても同様である。
The reaction of D-LDH and L-LDH is shown in the following formula. D-LDH reaction: D-lactic acid + NAD → pyruvic acid + N
ADH L-LDH reaction: L-lactic acid + NAD → pyruvic acid + N
ADH Both reactions are reversible, but the equilibrium of both enzymes is inclined toward the formation of lactic acid and NAD. for that reason,
When a large amount of D-LDH is contacted with a sample in the presence of NAD, it hardly changes to pyruvic acid. The same applies to L-LDH.

【0021】しかし、本発明者らは試料とNADがD−
LDH及びL−LDH混合物と接触すると、試料中のL
−乳酸はD−乳酸に変換され、D−乳酸はL−乳酸に変
換される事を見出した。この現象は乳酸が一旦ピルビン
酸に酸化され、生じたピルビン酸とNADHから近傍に
存在するD−LDH及びL−LDHの触媒作用により乳
酸が再生されたものと考えられる。
However, the present inventors found that the sample and NAD were D-
Upon contact with the LDH and L-LDH mixture, L in the sample
It was found that -lactic acid is converted to D-lactic acid, and D-lactic acid is converted to L-lactic acid. It is considered that this phenomenon is that lactic acid was once oxidized to pyruvic acid, and lactic acid was regenerated by the catalytic action of D-LDH and L-LDH existing in the vicinity of the generated pyruvic acid and NADH.

【0022】さらに興味のある事実として、D−乳酸と
L−乳酸の混合試料においても、各乳酸光学異性体の変
換速度は独立していることを見出した。すなわち、D−
LDHとL−LDHの近接固定化体に試料及びNADを
接触せしめて、前記固定化体と接触後のL−乳酸量を検
出する。例えば、L−乳酸酸化酵素固定化体と過酸化水
素電極で検出することにより、本発明の目的を達成する
ことができる。各種濃度のL−乳酸のみを含む試料を接
触させた場合、L−乳酸と電極出力値の間に直線関係が
成立する濃度領域が認められる。そこでこの濃度領域の
一点を選び、そのL−乳酸溶液に各種濃度のD−乳酸を
添加すると別の検量線が得られる。この検量線をL1と
する。次に各種濃度のD−乳酸のみを含む試料と電流出
力値との関係から得られた検量線をL2とする。すると
L1とL2の勾配は一致し、またL1の切片は当該濃度
のL−乳酸を接触せしめた場合の電流出力値と一致す
る。この系において、L−乳酸とD−乳酸を入れかえて
も同じ結果が得られる。
As a more interesting fact, it was found that even in the mixed sample of D-lactic acid and L-lactic acid, the conversion rate of each optical isomer of lactic acid was independent. That is, D-
A sample and NAD are brought into contact with a proximity immobilization body of LDH and L-LDH, and the amount of L-lactic acid after contact with the immobilization body is detected. For example, the object of the present invention can be achieved by detecting with an immobilized L-lactate oxidase and a hydrogen peroxide electrode. When a sample containing only various concentrations of L-lactic acid was brought into contact, a concentration range where a linear relationship was established between L-lactic acid and the electrode output value was observed. Therefore, by selecting one point in this concentration region and adding various concentrations of D-lactic acid to the L-lactic acid solution, another calibration curve can be obtained. Let this calibration curve be L1. Next, let L2 be the calibration curve obtained from the relationship between the sample containing only various concentrations of D-lactic acid and the current output value. Then, the slopes of L1 and L2 coincide, and the intercept of L1 coincides with the current output value when L-lactic acid at the relevant concentration is brought into contact. In this system, the same result can be obtained by replacing L-lactic acid and D-lactic acid.

【0023】このことは、D−乳酸及びL−乳酸の濃度
と電流出力値の関係はそれぞれ線型独立したものであ
り、実試料においてD−乳酸とL−乳酸が混合していて
も、最初に含まれるL−乳酸濃度を別途に決定すれば、
D−乳酸量を算出できることを示すものである。当然な
がら、D−LDH、L−LDH固定化体と試料及びNA
Dの接触時間が長くなればなるほどD−乳酸とL−乳酸
の変換率は上昇する。十分な時間反応させれば最終的に
D−乳酸とL−乳酸は平衡化しラセミ体が出来上がる。
しかし、平衡状態にすることによりD−乳酸量とL−乳
酸量を求める方法は、D−LDHとL−LDHを固定化
した場合、反応に長い時間を要し、連続的な測定を行う
には不適当である。一般の酵素反応において反応時間と
変換率の間に直線関係が成立するのは、基質の変換率が
20%程度以下である場合である。従って固定化に用い
た酵素量において、20%以下の変換率の場合は接触時
間が長くなるにつれて感度がほぼ直線的に上昇する。し
かし、それ以降は徐々に反応速度が低下するので、送液
の流速を遅くして接触時間を長くしても、それにより得
られる効果は低くなる。送液を停止、又は流速を低下し
ても実用的には変換率は80%程度になる範囲の時間で
測定すると短時間で測定することが出来る。
This means that the relationship between the concentrations of D-lactic acid and L-lactic acid and the current output value is linear and independent, and even if D-lactic acid and L-lactic acid are mixed in the actual sample, If the contained L-lactic acid concentration is determined separately,
It shows that the amount of D-lactic acid can be calculated. As a matter of course, D-LDH, L-LDH immobilized body, sample and NA
The longer the contact time of D, the higher the conversion rate of D-lactic acid and L-lactic acid. If the reaction is carried out for a sufficient time, finally D-lactic acid and L-lactic acid are equilibrated and a racemate is completed.
However, the method of obtaining the D-lactic acid amount and the L-lactic acid amount by equilibrating requires a long time for the reaction when D-LDH and L-LDH are immobilized, and requires continuous measurement. Is inappropriate. In a general enzymatic reaction, a linear relationship is established between the reaction time and the conversion rate when the conversion rate of the substrate is about 20% or less. Therefore, in the case where the amount of enzyme used for immobilization is 20% or less, the sensitivity increases almost linearly as the contact time increases. However, since the reaction rate gradually decreases thereafter, even if the flow rate of the liquid feed is slowed and the contact time is lengthened, the effect obtained thereby becomes low. Even if the liquid feeding is stopped or the flow rate is decreased, the conversion rate can be practically measured in a short time if the conversion rate is about 80%.

【0024】尚、送液を停止、又は送液の流速を低下さ
せる態様については後に記載する。D−LDH、L−L
DH固定化体と試料及びNADの接触時間を長くするに
はD−LDH、L−LDH固定化体に試料及びNADを
接触させた状態で、送液の流速を低下させればよい。又
試料がD−LDH、L−LDH固定化体に接する状態で
送液を停止し長時間反応させれば100%の変換率も可
能である。この場合、乳酸はD−乳酸:L−乳酸=1:
1のラセミ化が生成する。
The mode of stopping the liquid feeding or reducing the flow velocity of the liquid feeding will be described later. D-LDH, LL
In order to extend the contact time between the DH-immobilized body and the sample and NAD, the flow rate of the solution may be reduced while the D-LDH and L-LDH-immobilized body is in contact with the sample and NAD. Further, if the sample is brought into contact with the D-LDH and L-LDH-immobilized body and the liquid feeding is stopped and the reaction is carried out for a long time, a conversion rate of 100% is possible. In this case, lactic acid is D-lactic acid: L-lactic acid = 1:
A racemization of 1 is produced.

【0025】本発明ではD−LDH、L−LDH固定化
体を用いて反応条件を一定にして測定するので、変換率
が100%でなくても正確な測定をすることが出来る。
具体的には以下の測定装置が例示できる。第1の装置
は、試料を2つに分け、一方はL−乳酸酸化酵素にのみ
接触させL−乳酸測定に利用する。もう一方はD−LD
HとL−LDHとNADに一定時間接触させる。その後
L−乳酸酸化酵素に接触させ、変換反応後のL−乳酸の
測定に利用する。図1に示すように流路を2方向に分流
することにより簡単かつ迅速に測定することができる。
また試料のフローを分枝させずに2つの測定系で2度測
定してもよい。
In the present invention, the D-LDH- and L-LDH-immobilized products are used to carry out the measurement under a constant reaction condition, so that accurate measurement can be performed even if the conversion rate is not 100%.
Specifically, the following measuring devices can be exemplified. The first device divides the sample into two, one of which is contacted only with L-lactate oxidase and used for L-lactic acid measurement. The other is D-LD
The H, L-LDH and NAD are contacted for a certain time. Then, it is brought into contact with L-lactate oxidase and used for the measurement of L-lactic acid after the conversion reaction. As shown in FIG. 1, it is possible to measure easily and quickly by dividing the flow path into two directions.
Alternatively, the sample flow may be measured twice by two measurement systems without branching.

【0026】第2の装置は、上流よりL−乳酸酸化酵素
固定化カラム(44)、過酸化水素電極(45)、D−
LDHとL−LDHを固定化したカラム(46)、L−
乳酸酸化酵素固定化カラム(47)、過酸化水素電極
(48)を直列に接続した装置である(図3)。先ず、
試料をL−乳酸酸化酵素固定化カラム(44)に接触さ
せ、L−乳酸を検出し、続いてD−LDHとL−LDH
とNADに一定時間接触させ、その後L−乳酸酸化酵素
固定化カラム(47)に接触させ、L−乳酸の検出値を
求める。第3の装置は、D−LDHとL−LDHの固定
化カラム(25)を有し、その下流側にL−乳酸検出機
構を具備したフロー方式の測定装置(図2)である。試
料とD−LDHとL−LDHの接触時にNADがある場
合とない場合について測定し、両者でのL−乳酸の検出
値を求める。このとき、試料にNADを添加した試料と
添加しない試料を測定してもよいし、NADを含む緩衝
液で測定する場合と含まない緩衝液との2種類の緩衝液
を用いる方法でも良い。この態様については、実施例2
で説明する。
The second device is the L-lactate oxidase-immobilized column (44), the hydrogen peroxide electrode (45), and the D-
LDH and L-LDH immobilized column (46), L-
This is a device in which a lactate oxidase-immobilized column (47) and a hydrogen peroxide electrode (48) are connected in series (Fig. 3). First,
The sample is contacted with an L-lactate oxidase-immobilized column (44) to detect L-lactic acid, followed by D-LDH and L-LDH.
And NAD for a certain period of time, and then contacted with an L-lactate oxidase-immobilized column (47) to determine the detected value of L-lactic acid. The third device is a flow-type measuring device (FIG. 2) that has an immobilized column (25) for D-LDH and L-LDH, and is equipped with an L-lactic acid detection mechanism on the downstream side thereof. When the sample is contacted with D-LDH and L-LDH, the case where NAD is present and the case where NAD is not present are measured, and the detection value of L-lactic acid in both is obtained. At this time, a sample in which NAD is added to the sample and a sample in which NAD is not added may be measured, or a method of using two types of buffer solutions, that is, a case of measuring with a buffer solution containing NAD and a buffer solution not containing NAD may be used. Regarding this aspect, Example 2
Described in.

【0027】実際の測定には、まずD−乳酸とL−乳酸
のそれぞれの標準液を測定し得られた電流値より検量線
を作成する。検量線1はL−乳酸の検量線でD−乳酸と
L−乳酸の変換反応を行わない場合に測定したものであ
る。つまり、D−LDH、L−LDH固定化体を通過せ
ずに、あるいは通過する前でL−乳酸酸化酵素固定化体
にのみ接触する場合、または、NADをD−LDH、L
−LDH固定化体に接触させないで試料を測定した場合
である。これらの条件ではD−乳酸を注入しても全く電
流値は得られない。
For the actual measurement, first, a standard curve is prepared from the current values obtained by measuring the standard solutions of D-lactic acid and L-lactic acid. Calibration curve 1 is a calibration curve for L-lactic acid and is measured when the conversion reaction of D-lactic acid and L-lactic acid is not performed. That is, without contacting the D-LDH or L-LDH-immobilized body, or before contacting only with the L-lactate oxidase-immobilized body, or when NAD is contacted with D-LDH, L-
-This is the case where the sample was measured without contact with the LDH-immobilized body. Under these conditions, no current value can be obtained even if D-lactic acid is injected.

【0028】検量線2はL−乳酸がNADの存在下でD
−LDH、L−LDH固定化体を通過した後の電流値よ
り得られる検量線である。検量線2は検量線1に比べL
−乳酸から生成する過酸化水素の比率は低くなってい
る。検量線3は検量線2と同一条件でD−乳酸の標準液
より得られた電流値から作成する。実試料の測定の場合
は、検量線1と同工程で得られる電流値1と検量線2及
び検量線3と同工程より得られる電流値2が得られる。
Calibration curve 2 shows that L-lactic acid was D in the presence of NAD.
It is a calibration curve obtained from the current value after passing through the -LDH and L-LDH immobilized bodies. Calibration curve 2 is L compared to calibration curve 1
-The proportion of hydrogen peroxide produced from lactic acid is low. The calibration curve 3 is created from the current value obtained from the standard solution of D-lactic acid under the same conditions as the calibration curve 2. In the case of measuring an actual sample, a current value 1 obtained in the same step as the calibration curve 1, a calibration curve 2 and a current value 2 obtained in the same step as the calibration curve 3 are obtained.

【0029】D−乳酸量とL−乳酸量は以下に例示する
方法でそれぞれ計算される。電流値1より検量線1に代
入しL−乳酸量を算出する。算出したL−乳酸濃度を検
量線2に代入し、電流値2に寄与するL−乳酸の電流値
を算出する。電流値2より前記電流値2に寄与するL−
乳酸電流値を差し引くとD−乳酸の電流値が求められ
る。このD−乳酸寄与分の電流値を検量線3に代入する
とD−乳酸量が算出できる。
The amounts of D-lactic acid and L-lactic acid are calculated by the methods exemplified below. The L-lactic acid amount is calculated by substituting the current value 1 into the calibration curve 1. The calculated L-lactic acid concentration is substituted into the calibration curve 2 to calculate the current value of L-lactic acid contributing to the current value 2. L− that contributes to the current value 2 from the current value 2
Subtracting the lactic acid current value gives the D-lactic acid current value. The amount of D-lactic acid can be calculated by substituting the current value of this D-lactic acid contribution into the calibration curve 3.

【0030】本発明では、D−LDH、L−LDHを固
定化して用いる点に大きな特徴を有する。固定化して用
いると酵素の繰り返し利用が可能となることや、酵素の
反応条件を調整し易い等の利点がある。酵素の固定化法
は、特に限定されず、吸着法、化学結合法、包括法等を
用いることが出来る。中でも強固な固定化体を作成でき
る化学結合法が望ましい。固定化にもちいる担体にはケ
イソウ土、シリカゲル、ガラスビーズ、アルミナ、セラ
ミック、カーボン、活性炭、モレキュラーシーブ、シリ
コンゴム、セルロース、アガロース、アミノ酸系ポリマ
ー等が使用できる。化学結合法としては、担体表面にア
ミノシラン化試薬でアミノ基を導入し、さらにグルタル
アルデヒド等の多官能性アルデヒドを用いてホルミル化
を行った後、酵素を接触させて固定化する方法が例示で
きる。固定化酵素の形態は、電極表面の膜上に固定化す
る方法、担体に固定化しカラム等のリアクターに充填す
る方法、膜や中空糸を利用したリアクター等が考えられ
る。なかでもカラムに固定化した担体を充填する方法
は、試料と固定化酵素との接触時間を長くすることがで
き変換率を上昇できることから有利である。カラムは容
積が大きい方が多くの担体を充填でき反応時間も長くな
り有利である。しかし、反応時間が長いと測定時間も長
くなり測定に不利になるので、望ましい容積は10〜5
00μl程度である。またカラムの素材は、アクリル、
フッ素樹脂、塩化ビニル樹脂、ガラスやステンレス等の
金属等あるいはこれらを組み合せたものを用いることが
できる。
The present invention is characterized in that D-LDH and L-LDH are immobilized and used. When immobilized and used, there are advantages that the enzyme can be repeatedly used and that the reaction conditions of the enzyme can be easily adjusted. The method for immobilizing the enzyme is not particularly limited, and an adsorption method, a chemical bonding method, an encapsulation method or the like can be used. Above all, a chemical bonding method that can form a strong immobilized body is preferable. As the carrier used for immobilization, diatomaceous earth, silica gel, glass beads, alumina, ceramics, carbon, activated carbon, molecular sieve, silicone rubber, cellulose, agarose, amino acid-based polymer and the like can be used. Examples of the chemical bonding method include a method in which an amino group is introduced on the surface of a carrier with an aminosilanization reagent, formylation is further performed using a polyfunctional aldehyde such as glutaraldehyde, and then an enzyme is contacted to immobilize it. . The form of the immobilized enzyme may be a method of immobilizing it on a membrane on the surface of an electrode, a method of immobilizing it on a carrier and filling it in a reactor such as a column, a reactor using a membrane or a hollow fiber, and the like. Among them, the method of filling the column with the immobilized carrier is advantageous because the contact time between the sample and the immobilized enzyme can be lengthened and the conversion rate can be increased. A column with a large volume is advantageous because it can be packed with more carriers and the reaction time becomes longer. However, if the reaction time is long, the measurement time becomes long and it is disadvantageous for the measurement.
It is about 100 μl. The material of the column is acrylic,
A fluororesin, a vinyl chloride resin, a metal such as glass or stainless steel, or a combination thereof can be used.

【0031】D−乳酸とL−乳酸の変換反応を起こすた
めに作用させるD−LDHとL−LDHの混合割合は特
に限定されないが、D−LDHに対するL−LDHの比
率は、活性で表した場合略1/10から略20倍まで用
いることができる。この濃度範囲において1/2〜10
倍の範囲が好ましく、より好ましくは1/2〜5であ
る。尚、LDH活性は一般にピルビン酸から乳酸を生成
する速度を測定することにより定義される。
The mixing ratio of D-LDH and L-LDH that acts to cause the conversion reaction of D-lactic acid and L-lactic acid is not particularly limited, but the ratio of L-LDH to D-LDH is expressed as activity. In this case, it can be used from about 1/10 to about 20 times. 1 / 2-10 in this concentration range
The range is preferably double, and more preferably 1 / 2-5. The LDH activity is generally defined by measuring the rate of producing lactic acid from pyruvic acid.

【0032】サンプル中の乳酸の変換反応は、前記のD
−LDH反応とL−LDH反応の作用によるため、D−
LDHとL−LDHはほぼ同時に試料及びNADが接触
するように近接固定するのが好ましい。具体的には、D
−LDH固定化膜とL−LDH固定化膜を重ねる方法、
D−LDHを固定化した担体とL−LDHを固定化した
担体を混合する方法、D−LDH溶液とL−LDH溶液
を混合後、担体又は膜に固定化する方法等がある。ただ
しD−LDH、L−LDHは一般に酵素活性が低く酵素
反応も遅いので、電極表面上に固定化する方法では必ず
しも充分に乳酸の変換反応を行うことは出来ないので、
担体に固定化しカラム等のリアクターに充填して用いる
のが望ましい。
The conversion reaction of lactic acid in the sample is as described in D above.
-Because of the action of LDH reaction and L-LDH reaction, D-
LDH and L-LDH are preferably fixed in close proximity so that the sample and NAD are in contact with each other almost simultaneously. Specifically, D
A method of stacking the LDH-immobilized membrane and the L-LDH-immobilized membrane,
There are a method of mixing a carrier on which D-LDH is immobilized and a carrier on which L-LDH is immobilized, a method of mixing a D-LDH solution and an L-LDH solution, and then immobilizing on a carrier or a membrane. However, since D-LDH and L-LDH generally have low enzymatic activity and slow enzymatic reaction, the method of immobilizing them on the electrode surface cannot always sufficiently perform the conversion reaction of lactic acid.
It is desirable to use it after immobilizing it on a carrier and filling it in a reactor such as a column.

【0033】NADの添加方法としては試料に添加して
もよいし、キャリヤーに添加してもよい。NADを試料
に添加する場合は2mMから20mM程度が好ましく、
この方法は試料数が少ない場合に適している。また、フ
ロー方式でキャリヤーに添加する場合は常にD−LD
H、L−LDH固定化体とNADは接触している状態に
あり、試料に添加する場合より使用効果が高いので1m
Mから10mM程度が好ましい。この方法は試料数が多
い場合に適している。
The NAD may be added to the sample or the carrier. When NAD is added to the sample, it is preferably about 2 mM to 20 mM,
This method is suitable when the number of samples is small. Also, when adding to the carrier by the flow method, always use D-LD.
Immobilized H, L-LDH and NAD are in contact with each other, and the use effect is higher than when added to the sample.
About M to 10 mM is preferable. This method is suitable when the number of samples is large.

【0034】もちろん、D−LDH、L−LDH固定化
体と試料及びNADの接触時間を長くするとNADは少
量でよい。尚、前記のようにD−LDH、L−LDH固
定化体の反応速度は比較的遅いため、充分な感度を得る
ため、又は変換率を高め平衡状態に近くするためには、
D−LDH、L−LDH固定化体とNAD及び試料を接
触せしめた状態で、一定時間送液を停止、あるいは一定
時間送液の流速を低下させる機構を設けてもよい。
Of course, if the contact time between the D-LDH / L-LDH-immobilized product and the sample / NAD is extended, the NAD may be small. In addition, as described above, since the reaction rate of the D-LDH and L-LDH-immobilized body is relatively slow, in order to obtain sufficient sensitivity or to increase the conversion rate to approach the equilibrium state,
A mechanism may be provided in which, while the D-LDH or L-LDH-immobilized body is in contact with NAD and the sample, the solution feeding is stopped for a certain period of time or the flow rate of the liquid feeding is reduced for a certain period of time.

【0035】送液を一定時間停止する場合には、送液の
停止開始は試料全体が、D−LDH、L−LDH固定化
体に入った時点とするのが良く、その停止時間は本発明
において特徴とする、測定の迅速性を損なわない範囲で
あれば良く、実用的には5分以内とするのが短時間で測
定するためには望ましい。また、一定時間送液の流速を
低下させる場合は、少なくとも試料部の先頭がD−LD
H、L−LDH固定化体をでる以前に流速を低下させる
必要があり、好ましくは試料部の先頭がD−LDH、L
−LDH固定化体を入る時点で流速を低下させる。低速
を保つ時間は試料全体がD−LDH、L−LDH固定化
体を通過し終わるまでであって、同様に5分以内とする
のが短時間で測定するためには望ましい。
When the liquid feeding is stopped for a certain period of time, the liquid feeding is preferably started at the time when the whole sample enters the D-LDH- and L-LDH-immobilized body. In the range which does not impair the quickness of measurement, which is a characteristic of the above, it is practically preferable to set the time within 5 minutes in order to measure in a short time. Further, when the flow rate of the liquid transfer is reduced for a certain period of time, at least the beginning of the sample part is D-LD.
It is necessary to reduce the flow rate before leaving the H, L-LDH-immobilized body, and preferably the head of the sample part is D-LDH, L.
-Reduce the flow rate when entering the LDH-immobilized body. The time for maintaining the low speed is until the whole sample has passed through the D-LDH- and L-LDH-immobilized body, and similarly, it is preferably within 5 minutes for measuring in a short time.

【0036】試料溶液のD−LDH、L−LDH固定化
体での一定時間送液を停止、又は一定時間送液する流速
を低下させる手段としては、例えば、試料注入部からD
−LDH、L−LDH固定化体までの配管の長さと配管
径とその時のポンプの送液速度から計算によって求める
か、あるいは予め実測するなどして注入時間からD−L
DH、L−LDH固定化体に到達するまでの時間を求
め、D−LDH、L−LDH固定化体に達した時にポン
プ流速の制御値を変更すると良い。
As a means for stopping the liquid feeding of the sample solution in the D-LDH or L-LDH-immobilized body for a certain period of time or reducing the flow rate of the liquid feeding for a certain period of time, for example, from the sample injecting section to D-LDH
-Calculate from the length of the pipe to the LDH / L-LDH immobilized body, the pipe diameter, and the pumping speed of the pump at that time, or measure it in advance and measure the injection time from the D-L
It is advisable to determine the time required to reach the DH / L-LDH-immobilized body and change the control value of the pump flow rate when the time reaches the D-LDH / L-LDH-immobilized body.

【0037】これらの、具体的な方法としては、例え
ば、特定の電子回路あるいはコンピューターを用いて、
D/A変換器を介してポンプの流速を制御し、かつ試料
注入からD−LDH、L−LDH固定化体への到達時間
を正確に監視する方法が用いられる。また、実施例2で
説明するように、切換バルブに接続したループ部にD−
LDHとL−LDH固定化体リアクターを接続し、リア
クター内で試料を留めることにより変換率を高めること
もできる。
These specific methods include, for example, using a specific electronic circuit or computer,
A method is used in which the flow rate of the pump is controlled via the D / A converter and the arrival time from the sample injection to the D-LDH / L-LDH immobilized body is accurately monitored. Further, as described in the second embodiment, the loop portion connected to the switching valve has a D-
It is also possible to increase the conversion rate by connecting the LDH and L-LDH immobilized body reactors and retaining the sample in the reactor.

【0038】次に、L−乳酸の選択的測定法について説
明する。L−乳酸は、D−乳酸やNAD等のL−乳酸以
外の物質が存在していても影響のない方法で測定しなけ
ればならない。そしてL−乳酸酸化酵素を用いた測定法
が利用できる。L−乳酸酸化酵素の反応を次式に示す。 L−乳酸+O2 →ピルビン酸+H2 2 この反応は、D−乳酸やNADが共存していても影響さ
れないので正確にL−乳酸のみを定量するのに適してい
る。
Next, a method for selectively measuring L-lactic acid will be described. L-lactic acid must be measured by a method that does not affect the presence of substances other than L-lactic acid such as D-lactic acid and NAD. And the measuring method using L-lactate oxidase can be used. The reaction of L-lactate oxidase is shown in the following formula. L-lactic acid + O 2 → pyruvic acid + H 2 O 2 This reaction is not affected even when D-lactic acid and NAD coexist, and is therefore suitable for accurately quantifying only L-lactic acid.

【0039】L−乳酸酸化酵素を用いたL−乳酸の定量
には、減少した酸素または増加した過酸化水素等を検出
すればよい。また、ジクロロインドフェノール、フェリ
シアン化カリウム、ベンゾキノンなどの電子伝達体、所
謂メディエーター等を介在させ測定することも出来る。
酸素、過酸化水素等の電極活性物質の増減を電極によっ
て電流値に変換して測定する電気化学的測定法は分光光
度計を用いる測定と比較して試料の濁りや、着色物質に
影響されず、操作が簡単であり好ましい。
L-lactic acid can be quantified using L-lactate oxidase by detecting decreased oxygen or increased hydrogen peroxide. Further, the measurement can be performed by interposing an electron carrier such as dichloroindophenol, potassium ferricyanide, benzoquinone, a so-called mediator, or the like.
Electrochemical measurement method that measures increase and decrease of electrode active substances such as oxygen, hydrogen peroxide, etc. by current value by electrodes is not affected by turbidity of sample and coloring substances compared with measurement using spectrophotometer It is preferable because it is easy to operate.

【0040】L−乳酸酸化酵素は溶液でも使用できる
が、固定化して用いると酵素の繰り返し利用が可能とな
ることや、酵素の反応条件を調整し易い等の利点があ
る。固定化方法としてはD−LDH、L−LDHに関し
て前記したものと同様の吸着法、化学結合法、包括法等
が利用でき、カラム等のリアクターに内包して用いるこ
とが出来る。また、L−乳酸酸化酵素をグルタルアルデ
ヒド、ホルムアルデヒド、サクシニルアルデヒド等の架
橋剤で固定した膜を電極に取りつけて使用することもで
きる。膜状に固定する際にはアルブミン、グロブリン、
ゼラチン等の他のタンパク質を添加してL−乳酸酸化酵
素を架橋することもできる。
Although L-lactate oxidase can be used in a solution, it has advantages that it can be used repeatedly after being immobilized and that the reaction conditions of the enzyme can be easily adjusted. As the immobilization method, the same adsorption method, chemical bonding method, encapsulation method and the like as described above for D-LDH and L-LDH can be used, and they can be used by being contained in a reactor such as a column. Further, a membrane in which L-lactate oxidase is fixed with a cross-linking agent such as glutaraldehyde, formaldehyde, succinyl aldehyde can be attached to the electrode and used. Albumin, globulin,
Other proteins such as gelatin can be added to crosslink the L-lactate oxidase.

【0041】消費された酸素を測定する酸素電極は、カ
ルバニ型、クラーク型等各種公知のものを利用できる。
生成する過酸化水素を測定する過酸化水素電極として
は、アノード基体に炭素、白金、ニッケル、パラジウム
等を用い、カソード側に銀等を用いた公知のものを利用
できる。一般にアノードとしては、過酸化水素に対する
過電圧が低く高感度が得られるという理由から白金を用
いることが多い。そして電極表面にポリシロキサン膜、
アクリル樹脂膜、蛋白膜、アセチルセルロース膜等の選
択透過膜を有している形式の電極が妨害物除去の観点か
ら望ましい。
As the oxygen electrode for measuring the consumed oxygen, various known ones such as a carbani type and a Clark type can be used.
As the hydrogen peroxide electrode for measuring the hydrogen peroxide produced, a known one using carbon, platinum, nickel, palladium or the like for the anode substrate and silver or the like for the cathode side can be used. Generally, platinum is often used as the anode because of its low overvoltage against hydrogen peroxide and high sensitivity. And a polysiloxane film on the electrode surface,
An electrode having a permselective membrane such as an acrylic resin membrane, a protein membrane and an acetylcellulose membrane is preferable from the viewpoint of removing obstacles.

【0042】電極系は作用電極、対極より構成される2
電極の過酸化水素電極や酸素電極が利用できる。また安
定性、精度の点からは作用電極、参照電極、対極より構
成される3電極のものが好ましい。送液されるキャリヤ
ーとしてはD−LDH、L−LDH、L−乳酸酸化酵素
に適したpHであるpH7付近で緩衝能があり、電極に
電気化学的な影響を及ばさない緩衝液等が用いられる。
The electrode system is composed of a working electrode and a counter electrode 2
A hydrogen peroxide electrode or an oxygen electrode can be used as the electrode. From the viewpoint of stability and accuracy, a three-electrode structure including a working electrode, a reference electrode and a counter electrode is preferable. As a carrier to be sent, a buffer solution or the like which has a buffering capacity at around pH 7 which is a suitable pH for D-LDH, L-LDH and L-lactate oxidase and which does not exert an electrochemical influence on the electrode is used. To be

【0043】[0043]

【実施例】以下に実施例を挙げて、本発明の内容をさら
に詳細に説明するが、もちろん本発明はこれらに限定さ
れるものではない。
The contents of the present invention will be described in more detail with reference to the following examples, but of course the present invention is not limited thereto.

【0044】実施例1 (1)L−乳酸酸化酵素固定化カラムの製造 焼成したケイソウ土である耐火レンガ(30〜60メッ
シュ)150mgをよく乾燥し、10%γ−アミノプロ
ピルトリエトキシシランの無水トルエン溶液に1時間浸
漬した後、よくトルエンで洗浄し、乾燥する。こうして
アミノシラン化処理した担体を5%グルタルアルデヒド
に1時間浸漬した後、よく蒸留水で洗浄し、最後にpH
7.0、100mMのリン酸ナトリウム緩衝液で置き換
え、この緩衝液をできるだけ除いておく。このホルミル
化した耐火レンガにpH7.0、100mMリン酸ナト
リウム緩衝液にL−乳酸酸化酵素(シグマ社製)50ユ
ニット/mlの濃度で溶解した溶液200μlを接触さ
せ、0〜4℃で1日放置し固定化する。この酵素固定化
担体を内径3.5mm、長さ30mmのアクリル製のカ
ラムに充填しL−乳酸酸化酵素固定化カラムとした。
Example 1 (1) Production of L-lactate oxidase-immobilized column 150 mg of fire-resistant brick (30 to 60 mesh), which was calcined diatomaceous earth, was well dried and anhydrous 10% γ-aminopropyltriethoxysilane. After soaking in a toluene solution for 1 hour, it is thoroughly washed with toluene and dried. After the aminosilane-treated carrier was immersed in 5% glutaraldehyde for 1 hour, it was washed thoroughly with distilled water and finally pH adjusted.
Replace with 7.0, 100 mM sodium phosphate buffer and remove this buffer as much as possible. This formylated refractory brick was brought into contact with 200 μl of a solution prepared by dissolving L-lactate oxidase (manufactured by Sigma) at a concentration of 50 units / ml in 100 mM sodium phosphate buffer having a pH of 7.0, and at 0 to 4 ° C. for 1 day. Leave and fix. The enzyme-immobilized carrier was packed in an acrylic column having an inner diameter of 3.5 mm and a length of 30 mm to give an L-lactate oxidase-immobilized column.

【0045】(2)過酸化水素電極の製造 直径2mmの白金線の側面を熱収縮テフロンで被覆し、
その線の一端をやすりおよび1500番のエメリー紙で
平滑に仕上げる。この白金線を作用極、1cm角型白金
板を対極、飽和カロメル電極を参照極として、0.1M
硫酸中、+2.0Vで10分間の電解処理を行う。その
後白金線をよく水洗した後、40℃で10分間乾燥し、
10%γ−アミノプロピルトリエトキシシランの無水ト
ルエン溶液に1時間浸漬後、洗浄する。牛血清アルブミ
ン(シグマ社製、Fraction V)20mgを蒸
留水1mlに溶解し、その中にグルタルアルデヒドを
0.2%になるように加える。この混合液を手早く先に
用意した白金線上に5μlのせ、40℃で15分間乾燥
硬化して過酸化水素選択透過膜とし、これを過酸化水素
電極とした。また参照電極としてはAg/AgCl参照
電極を用い、対極には導電性の配管を用いた。
(2) Manufacture of hydrogen peroxide electrode A side surface of a platinum wire having a diameter of 2 mm is coated with heat-shrinkable Teflon,
One end of the wire is smoothed with a file and a No. 1500 emery paper. Using this platinum wire as a working electrode, a 1 cm square platinum plate as a counter electrode, and a saturated calomel electrode as a reference electrode, 0.1M
Electrolyte in sulfuric acid at +2.0 V for 10 minutes. After that, the platinum wire was washed well with water and then dried at 40 ° C for 10 minutes.
It is immersed in an anhydrous toluene solution of 10% γ-aminopropyltriethoxysilane for 1 hour and then washed. 20 mg of bovine serum albumin (Fraction V, manufactured by Sigma) is dissolved in 1 ml of distilled water, and glutaraldehyde is added to the solution to make the concentration 0.2%. 5 μl of this mixed solution was quickly put on a platinum wire prepared in advance, and dried and cured at 40 ° C. for 15 minutes to form a hydrogen peroxide selective permeable membrane, which was used as a hydrogen peroxide electrode. An Ag / AgCl reference electrode was used as the reference electrode, and a conductive pipe was used as the counter electrode.

【0046】(3)D−LDH、L−LDH固定化カラ
ムの製造 L−乳酸酸化酵素の固定化法と同様にホルミル化した焼
成ケイソウ土(耐火レンガ)に、pH7.0、100m
Mリン酸ナトリウム緩衝液にD−LDH(ベーリンガー
山之内社製)300ユニット/ml、L−LDH(シグ
マ社製)900ユニット/mlを混合した溶液500μ
lを接触させ、0〜4℃で1日放置し固定化する。この
酵素固定化担体を内径3.5mm、長さ30mmのアク
リル製のカラムに充填しD−LDHとL−LDHを固定
化したカラムとした。
(3) Production of D-LDH and L-LDH-immobilized column pH was 7.0 and 100 m on calcined diatomaceous earth (refractory brick) formylated in the same manner as in the L-lactate oxidase immobilization method.
500 μ solution of M sodium phosphate buffer mixed with 300 units / ml of D-LDH (manufactured by Boehringer Yamanouchi) and 900 units / ml of L-LDH (manufactured by Sigma)
1 is contacted and left at 0 to 4 ° C. for 1 day for immobilization. This enzyme-immobilized carrier was packed in an acrylic column having an inner diameter of 3.5 mm and a length of 30 mm to prepare a column on which D-LDH and L-LDH were immobilized.

【0047】(4)測定装置 図1に示すフロー型測定装置によってL−乳酸、D−乳
酸の測定を行う。緩衝液槽(1)より緩衝液をポンプ
(2)により送液し、サンプラ(3)により試料1μl
を注入する。注入された試料は三方ジョイント(5)で
二方に分流される。一方はL−乳酸酸化酵素カラム
(6)を通過し、L−乳酸より過酸化水素が生成し、過
酸化水素電極(7)により電流値の変化を検出する。こ
の電極を第1電極とする。一方はD−LDH、L−LD
Hカラム(8)を通過しD−乳酸とL−乳酸の変換反応
が起こる。L−乳酸酸化酵素カラム(9)を通過し、過
酸化水素電極(10)で電流値の変化が検出される。こ
ちらを第2電極とする。これらのカラムと電極を30℃
の恒温槽(4)中に設置する。それぞれの電極で電流値
の変化は検出器(11)により検出される。さらに信号
をパーソナルコンピュータ(14)に送ることもでき
る。 緩衝液の組成は100mMリン酸ナトリウム、5
0mM塩化カリウム、1mMアジ化ナトリウム、5mM
NADを含みpH7.0である。ポンプの流速は1.3
ml/分であり、第1電極での流速は0.7ml/分、
第2電極での流速は0.6ml/分であった。
(4) Measuring device L-lactic acid and D-lactic acid are measured by the flow type measuring device shown in FIG. The buffer solution is sent from the buffer solution tank (1) by the pump (2), and the sample (1 μl) is sent by the sampler (3).
Inject. The injected sample is divided into two by a three-way joint (5). One passes through the L-lactate oxidase column (6), hydrogen peroxide is produced from L-lactic acid, and the change in current value is detected by the hydrogen peroxide electrode (7). This electrode is the first electrode. One is D-LDH, L-LD
After passing through the H column (8), a conversion reaction of D-lactic acid and L-lactic acid occurs. After passing through the L-lactate oxidase column (9), a change in current value is detected at the hydrogen peroxide electrode (10). This is the second electrode. These columns and electrodes at 30 ℃
It is installed in the constant temperature bath (4). The change in current value at each electrode is detected by the detector (11). Further, the signal can be sent to the personal computer (14). The composition of the buffer solution is 100 mM sodium phosphate, 5
0 mM potassium chloride, 1 mM sodium azide, 5 mM
The pH is 7.0 including NAD. Pump flow rate is 1.3
ml / min, the flow rate at the first electrode is 0.7 ml / min,
The flow rate at the second electrode was 0.6 ml / min.

【0048】(5)標準液の測定 (4)の測定装置に蒸留水、1、2、5、10mMのL
−乳酸、2、5、10、20、50mMのD−乳酸を注
入し、第1、第2電極で得られた電流値は表1のように
なり、次の検量線が得られた。ただし、Yは電流値(n
A)、Xは試料中の乳酸濃度(mM)とする。第1電極
(7)は、L−乳酸にのみ反応するので検量線1はL−
乳酸のみの検量線である。第2電極(10)では、L−
乳酸とD−乳酸の変換反応が行われ、L−乳酸標準液を
測定する際L−乳酸は一定の比率で減少し、D−乳酸標
準液を測定する際にはD−乳酸は一定の比率でL−乳酸
に変換され検出される。D−乳酸とL−乳酸のどちらで
も検出されるので、L−乳酸の検量線である検量線2と
D−乳酸の検量線である検量線3が得られる。 検量線1 第1電極 L−乳酸検量線 Y=15.5X
+0.9 検量線2 第2電極 L−乳酸検量線 Y=11.8X
−0.6 検量線3 第2電極 D−乳酸検量線 Y= 1.5X
−0.6
(5) Measurement of standard solution Distilled water 1, 2, 5, 10 mM L was added to the measuring device of (4).
-Lactic acid, 2, 5, 10, 20, 50 mM D-lactic acid was injected, and the current values obtained at the first and second electrodes were as shown in Table 1, and the following calibration curves were obtained. However, Y is the current value (n
A) and X are lactic acid concentrations (mM) in the sample. Since the first electrode (7) reacts only with L-lactic acid, the calibration curve 1 shows L-
This is a calibration curve for lactic acid only. At the second electrode (10), L-
A conversion reaction of lactic acid and D-lactic acid is performed, L-lactic acid decreases at a constant ratio when measuring L-lactic acid standard solution, and D-lactic acid remains at a constant ratio when measuring D-lactic acid standard solution. Is converted to L-lactic acid and detected. Since both D-lactic acid and L-lactic acid are detected, a calibration curve 2 which is a calibration curve of L-lactic acid and a calibration curve 3 which is a calibration curve of D-lactic acid are obtained. Calibration curve 1 1st electrode L-lactic acid calibration curve Y = 15.5X
+0.9 calibration curve 2 second electrode L-lactic acid calibration curve Y = 11.8X
-0.6 calibration curve 3 2nd electrode D-lactic acid calibration curve Y = 1.5X
-0.6

【0049】[0049]

【表1】 [Table 1]

【0050】(6)混合試料の測定 (4)の測定装置にD−乳酸、L−乳酸の混合液を注入
した。第1、第2電極で得られた電流値、標準液測定に
より算出した検量線より算出したD−乳酸、L−乳酸の
濃度は表2のようになった。未知試料中の乳酸の濃度算
出方法は、まず第1電極で得られた電流値より検量線1
によって試料中のL−乳酸濃度が求められる。この濃度
より検量線2によって第2電極に関与するL−乳酸の電
流値が求められる。第2電極で得られた電流値よりL−
乳酸による電流値を差し引いた残りがD−乳酸による電
流値なので、この値と検量線3によってD−乳酸の濃度
を求めることができる。
(6) Measurement of mixed sample A mixed solution of D-lactic acid and L-lactic acid was injected into the measuring device of (4). Table 2 shows the current values obtained at the first and second electrodes and the concentrations of D-lactic acid and L-lactic acid calculated from the calibration curve calculated by measuring the standard solution. To calculate the concentration of lactic acid in an unknown sample, firstly use the calibration curve 1 from the current value obtained at the first electrode.
The L-lactic acid concentration in the sample can be determined by From this concentration, the current value of L-lactic acid involved in the second electrode can be obtained from the calibration curve 2. From the current value obtained at the second electrode, L-
Since the remainder after subtracting the current value due to lactic acid is the current value due to D-lactic acid, the concentration of D-lactic acid can be obtained from this value and the calibration curve 3.

【0051】[0051]

【表2】 [Table 2]

【0052】実施例2 (1)L−乳酸酸化酵素固定化カラムの製造 実施例1と同様にL−乳酸酸化酵素固定化カラムを作成
した。 (2)D−LDH、L−LDH固定化カラムの製造 実施例1と同様にD−LDHとL−LDH固定化カラム
を作成した。 (3)過酸化水素電極の製造 実施例1と同様に過酸化水素電極を作成した。
Example 2 (1) Production of L-lactate oxidase-immobilized column An L-lactate oxidase-immobilized column was prepared in the same manner as in Example 1. (2) Production of D-LDH and L-LDH-immobilized columns D-LDH and L-LDH-immobilized columns were prepared in the same manner as in Example 1. (3) Production of hydrogen peroxide electrode A hydrogen peroxide electrode was prepared in the same manner as in Example 1.

【0053】(4)測定装置 図2に示すフロー型測定装置によってL−乳酸、D−乳
酸の測定を行う。緩衝液槽(21)より緩衝液をポンプ
1(22)により送液し、切り替バルブ(23)に送
る。この切り替バルブは六方バルブであり、ロード側で
はAとB、CとD、EとFが接続している。インジェク
ト側では、BとC、DとE、FとAが接続する。Aには
ポンプ1(22)、BにはL−乳酸酸化酵素カラム(2
8)が配置されており、CとFはD−LDH、L−LD
Hカラム(25)で接続されている。またEには試料注
入口(24)、Dには試料を吸引するポンプ2(26)
を接続する。
(4) Measuring device L-lactic acid and D-lactic acid are measured by the flow type measuring device shown in FIG. The buffer solution is sent from the buffer solution tank (21) by the pump 1 (22) and sent to the switching valve (23). This switching valve is a hexagonal valve, and A and B, C and D, and E and F are connected on the load side. On the inject side, B and C, D and E, and F and A are connected. Pump 1 (22) for A, L-lactate oxidase column for B (2
8) is arranged, C and F are D-LDH, L-LD
It is connected by the H column (25). Further, E is a sample inlet (24), and D is a pump 2 (26) for sucking the sample.
Connect.

【0054】ロード側の場合はポンプ1(22)より送
液された緩衝液はAに送られ、Bから出て30℃の恒温
槽(27)中のL−乳酸酸化酵素カラム(28)へ送液
される。試料はEより注入され、FよりD−LDH、L
−LDHカラム(25)へ送液され、Cから出てDへと
接続される。この状態でポンプ2(26)を停止させる
と一定量の試料(約100μl)はD−LDH、L−L
DHカラム(25)内で変換反応を行う。ただし、D−
LDH、L−LDHでの反応条件を一定にするため、試
料は5mMNAD、100mMリン酸ナトリウム、50
mM塩化カリウム、1mMアジ化ナトリウムを含みpH
7.0に調製する。もちろんNADがなければ試料はD
−LDH、L−LDHカラム内で反応しない。そのため
NADを含む試料、含まない試料を注入することでD−
LDH、L−LDHカラムで反応したもの、しないもの
をそれぞれ測定することができる。またポンプ2(2
6)の停止時間は3分間であった。
On the load side, the buffer solution sent from the pump 1 (22) is sent to A, goes out of B and goes to the L-lactate oxidase column (28) in a thermostat (27) at 30 ° C. Liquid is sent. Sample is injected from E, D-LDH, L from F
-Transmitted to the LDH column (25), exiting C and connecting to D. When the pump 2 (26) is stopped in this state, a fixed amount of sample (about 100 μl) is added to D-LDH and LL.
The conversion reaction is carried out in the DH column (25). However, D-
In order to keep the reaction conditions for LDH and L-LDH constant, the sample was 5 mM NAD, 100 mM sodium phosphate, 50 mM.
pH containing mM potassium chloride, 1 mM sodium azide
Adjust to 7.0. Of course, if there is no NAD, the sample is D
-No reaction in LDH or L-LDH column. Therefore, by injecting a sample containing NAD and a sample not containing NAD, D-
It is possible to measure those reacted with the LDH and L-LDH columns and those not reacted. In addition, pump 2 (2
The stop time of 6) was 3 minutes.

【0055】そしてバルブをインジェクト側へ切り替え
ると緩衝液はAからFに送られ、一定量のD−LDH、
L−LDHカラム内で反応した試料がCからBへ送られ
る。L−乳酸酸化酵素カラム(28)を通過する際に、
L−乳酸より過酸化水素が生成し、過酸化水素電極(2
9)により電流値の変化を検出する。電極で電流値の変
化は検出器(30)により検出される。さらに信号をパ
ーソナルコンピュータ(32)に送ることもできる。
ポンプで送液される緩衝液の組成は100mMリン酸ナ
トリウム、50mM塩化カリウム、1mMアジ化ナトリ
ウムを含みpH7.0である。ポンプ1の流速は1.0
ml/分であった。
When the valve is switched to the inject side, the buffer solution is sent from A to F, and a fixed amount of D-LDH,
The sample reacted in the L-LDH column is sent from C to B. When passing through the L-lactate oxidase column (28),
Hydrogen peroxide is generated from L-lactic acid, and the hydrogen peroxide electrode (2
The change in current value is detected by 9). The change in the current value at the electrodes is detected by the detector (30). Further, the signal can be sent to the personal computer (32).
The composition of the buffer solution pumped is 100 mM sodium phosphate, 50 mM potassium chloride, 1 mM sodium azide and has a pH of 7.0. Pump 1 flow rate is 1.0
It was ml / min.

【0056】(5)標準液の測定 (4)の測定装置に蒸留水、0.05、0.10mMの
L−乳酸、0.05、0.10mMのD−乳酸を注入
し、3分間停止させ測定した。各々の試料はNAD5m
M含むもの含まないものについて測定した。検出した電
流値は表3のようになり、次の検量線が得られた。ただ
し、Yは電流値(nA)、Xは試料中の乳酸濃度(m
M)とする。 検量線1 NADなし L−乳酸検量線 Y=679X
+0.08 検量線2 NADあり L−乳酸検量線 Y=337X
−0.08 検量線3 NADあり D−乳酸検量線 Y=330X
−0.03
(5) Measurement of standard solution Distilled water, 0.05 and 0.10 mM of L-lactic acid and 0.05 and 0.10 mM of D-lactic acid were injected into the measuring device of (4) and stopped for 3 minutes. Was measured. Each sample is NAD 5m
The measurement was carried out for those containing M and not containing M. The detected current value is shown in Table 3, and the following calibration curve was obtained. However, Y is the current value (nA), X is the lactic acid concentration in the sample (m
M). Calibration curve 1 without NAD L-lactic acid calibration curve Y = 679X
+0.08 Calibration curve 2 With NAD L-lactic acid calibration curve Y = 337X
-0.08 Calibration curve 3 With NAD D-lactic acid calibration curve Y = 330X
-0.03

【0057】[0057]

【表3】 [Table 3]

【0058】(6)混合試料の測定 (4)の測定装置にD−乳酸とL−乳酸の混合液につい
てNADを含むもの含まないものについて測定した。得
られた電流値、標準液測定により算出した検量線より計
算したD−乳酸、L−乳酸濃度は表4のようになった。
未知試料中の乳酸の濃度算出方法は実施例1と同様に行
った。
(6) Measurement of mixed sample The mixed solution of D-lactic acid and L-lactic acid in the measuring device of (4) was measured for those containing NAD and not containing NAD. Table 4 shows the obtained current values and the concentrations of D-lactic acid and L-lactic acid calculated from the calibration curve calculated by the standard solution measurement.
The method for calculating the concentration of lactic acid in an unknown sample was the same as in Example 1.

【0059】[0059]

【表4】 [Table 4]

【0060】[0060]

【発明の効果】本発明の測定装置を用いることにより、
D−乳酸とL−乳酸の測定が短時間で正確に簡単にでき
るようになった。また、溶液のL−LDH,D−LDH
を使用したD−乳酸とL−乳酸の測定に比べ、本発明で
は酵素の繰り返し利用が可能となり、酵素の反応条件を
調整し易くなった。
By using the measuring device of the present invention,
Now, D-lactic acid and L-lactic acid can be measured easily in a short time. In addition, L-LDH and D-LDH of the solution
Compared with the measurement of D-lactic acid and L-lactic acid using, the present invention allows the enzyme to be repeatedly used and facilitates the adjustment of the reaction conditions of the enzyme.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は実施例1で用いたフロー型D−乳酸L−
乳酸測定装置の図である。
FIG. 1 is a flow-type D-lactic acid L-used in Example 1.
It is a figure of a lactic acid measuring device.

【図2】図2は実施例2で用いたフロー型D−乳酸L−
乳酸測定装置の図である。
FIG. 2 is a flow-type D-lactic acid L-used in Example 2.
It is a figure of a lactic acid measuring device.

【図3】図3は本発明の他の態様を示す。FIG. 3 illustrates another aspect of the invention.

【符号の説明】[Explanation of symbols]

1 緩衝液槽 2 ポンプ 3 サンプラ 4 恒温槽 5 三方ジョイント 6 L−乳酸酸化酵素固定化カラム 7 過酸化水素電極(第1電極) 8 D−LDH、L−LDH固定化カラム 9 L−乳酸酸化酵素固定化カラム 10 過酸化水素電極(第2電極) 11 検出器 12 シングルボードコンピュータ 13 RS232Cコード 14 パーソナルコンピュータ 15 サンプラ制御信号 16 送液ポンプ制御信号 17 廃液 21 緩衝液槽 22 ポンプ1 23 切り替バルブ 24 試料注入口 25 D−LDH、L−LDH固定化カラム 26 ポンプ2 27 恒温槽 28 L−乳酸酸化酵素固定化カラム 29 過酸化水素電極 30 検出器 31 シングルボードコンピュータ 32 パーソナルコンピュータ 33 RS232Cコード 34 送液ポンプ制御信号 35 廃液 41 緩衝液槽 42 ポンプ 43 サンプラ 44 L−乳酸酸化酵素固定化カラム 45 過酸化水素電極(第1電極) 46 D−LDH、L−LDH固定化カラム 47 L−乳酸酸化酵素固定化カラム 48 過酸化水素電極(第2電極) 49 恒温槽 50 検出器 51 シングルボードコンピュータ 52 パーソナルコンピュータ 53 RS232Cコード 54 サンプラ制御信号 55 送液ポンプ制御信号 56 廃液 1 buffer tank 2 pump 3 sampler 4 thermostat tank 5 three-way joint 6 L-lactate oxidase-immobilized column 7 hydrogen peroxide electrode (first electrode) 8 D-LDH, L-LDH-immobilized column 9 L-lactate oxidase Immobilized column 10 Hydrogen peroxide electrode (second electrode) 11 Detector 12 Single board computer 13 RS232C code 14 Personal computer 15 Sampler control signal 16 Liquid feed pump control signal 17 Waste liquid 21 Buffer tank 22 Pump 1 23 Switching valve 24 Sample Injection port 25 D-LDH, L-LDH immobilized column 26 Pump 2 27 Constant temperature bath 28 L-Lactate oxidase immobilized column 29 Hydrogen peroxide electrode 30 Detector 31 Single board computer 32 Personal computer 33 RS232C code 34 Liquid transfer pump Control signal 35 abolished 41 buffer tank 42 pump 43 sampler 44 L-lactate oxidase-immobilized column 45 hydrogen peroxide electrode (first electrode) 46 D-LDH, L-LDH-immobilized column 47 L-lactate oxidase-immobilized column 48 peroxidation Hydrogen electrode (second electrode) 49 Constant temperature bath 50 Detector 51 Single board computer 52 Personal computer 53 RS232C code 54 Sampler control signal 55 Liquid feed pump control signal 56 Waste liquid

フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 G01N 27/416 Continuation of front page (51) Int.Cl. 5 Identification number Office reference number FI technical display location G01N 27/416

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】D−乳酸脱水素酵素とL−乳酸脱水素酵
素を含む酵素固定化体、ニコチンアミドアデニンジヌ
クレオチドと試料を前記酵素固定化体に接触させる機
構、及びL−乳酸測定機構を具備するD−乳酸とL−
乳酸の測定装置。
1. An enzyme-immobilized body containing D-lactate dehydrogenase and L-lactate dehydrogenase, a mechanism for contacting nicotinamide adenine dinucleotide and a sample with the enzyme-immobilized body, and an L-lactic acid measurement mechanism. D-lactic acid and L- equipped
Lactic acid measuring device.
【請求項2】上流より、送液されるキャリヤー中へ試料
を注入する機構、D−乳酸脱水素酵素とL−乳酸脱水素
酵素を含む酵素固定化体を内包するリアクター、並びに
L−乳酸酸化酵素固定化体及びL−乳酸酸化酵素により
試料中のL−乳酸が酸化される際に増加または減少する
電極活性物質を検知する電極、を具備するフロー方式の
D−乳酸とL−乳酸の測定装置。
2. A mechanism for injecting a sample into a carrier to be fed from the upstream, a reactor containing an immobilized enzyme containing D-lactate dehydrogenase and L-lactate dehydrogenase, and L-lactic acid oxidation. Flow-type measurement of D-lactic acid and L-lactic acid, which comprises an enzyme-immobilized body and an electrode that detects an electrode active substance that increases or decreases when L-lactic acid in a sample is oxidized by L-lactic acid oxidase apparatus.
【請求項3】D−乳酸脱水素酵素とL−乳酸脱水素酵素
を含む酵素固定化体と試料を含むキャリヤーが接触した
状態で、キャリヤーの送液を停止又は流速を低下させる
機構を有する請求項2記載の測定装置。
3. A mechanism having a mechanism for stopping the liquid feeding of the carrier or lowering the flow rate in the state where the enzyme-immobilized body containing D-lactate dehydrogenase and L-lactate dehydrogenase are in contact with the carrier containing the sample. Item 2. The measuring device according to item 2.
【請求項4】前記リアクターの上流側に、更にL−乳酸
酸化酵素固定化体及びL−乳酸酸化酵素により試料中の
L−乳酸が酸化される際に増加または減少する電極活性
物質を検知する電極を設けた請求項2記載の測定装置。
4. An electrode active substance that increases or decreases when L-lactic acid in a sample is oxidized by the L-lactate oxidase-immobilized body and L-lactate oxidase is detected on the upstream side of the reactor. The measuring device according to claim 2, wherein an electrode is provided.
【請求項5】a.試料とニコチンアミドアデニンジヌク
レオチドをD−乳酸脱水素酵素とL−乳酸脱水素酵素を
含む酵素固定化体に接触させ、試料中のD−乳酸とL−
乳酸との変換反応を行った後にL−乳酸を測定する工
程、b.試料中のL−乳酸を測定する工程、を含むD−
乳酸とL−乳酸の測定方法。
5. A. The sample and nicotinamide adenine dinucleotide are brought into contact with an enzyme-immobilized body containing D-lactate dehydrogenase and L-lactate dehydrogenase, and D-lactic acid and L-in the sample
Measuring L-lactic acid after performing a conversion reaction with lactic acid, b. A step of measuring L-lactic acid in the sample,
Method for measuring lactic acid and L-lactic acid.
【請求項6】a.試料とニコチンアミドアデニンジヌク
レオチドをD−乳酸脱水素酵素とL−乳酸脱水素酵素を
含む酵素固定化体に接触させ、試料中のD−乳酸とL−
乳酸との変換反応を行う工程、及び b.試料中のL−乳酸がL−乳酸酸化酵素により酸化さ
れる際に増加又は減少する電極活性物質を電気化学的に
検出する工程、を含むD−乳酸とL−乳酸の測定方法で
あり、 ・工程bにおいて試料としてL−乳酸標準液を用い、L
−乳酸濃度と出力値の関係を示す検量線1を求め、 ・試料としてL−乳酸標準液を用い工程aを行い、次に
その試料につき工程bを行いL−乳酸濃度と出力値の関
係を示す検量線2を求め、 ・試料としてD−乳酸標準液を用い工程aを行い、次に
その試料につき工程bを行いD−乳酸濃度と出力値の関
係を示す検量線3を求め、 ・更に、工程bにおいて試料として測定試料を用い、出
力値1を測り、 ・試料として測定試料を用い工程aを行い次に工程bを
行い出力値2を測り、 出力値1,出力値2,検量線1,検量線2,検量線3よ
り測定試料中のD−乳酸量とL−乳酸量を計算するD−
乳酸とL−乳酸の測定方法。
6. A. The sample and nicotinamide adenine dinucleotide are brought into contact with an enzyme-immobilized body containing D-lactate dehydrogenase and L-lactate dehydrogenase, and D-lactic acid and L-in the sample
Performing a conversion reaction with lactic acid, and b. A method for measuring D-lactic acid and L-lactic acid, which comprises a step of electrochemically detecting an electrode active substance that increases or decreases when L-lactic acid in a sample is oxidized by L-lactic acid oxidase. In step b, using L-lactic acid standard solution as a sample,
-The calibration curve 1 showing the relationship between the lactic acid concentration and the output value is obtained.-Using the L-lactic acid standard solution as a sample, the step a is performed, and then the step b is performed on the sample to show the relationship between the L-lactic acid concentration and the output value. The calibration curve 2 shown below is obtained, and step a is performed using a D-lactic acid standard solution as a sample, and then step b is performed for the sample to obtain a calibration curve 3 showing the relationship between the D-lactic acid concentration and the output value. In step b, a measurement sample is used as a sample, and an output value of 1 is measured, and when a measurement sample is used as a sample, step a is performed, and then step b is performed, an output value 2 is measured, and an output value 1, an output value 2 and a calibration curve are obtained. 1. Calculate the amount of D-lactic acid and the amount of L-lactic acid in the measurement sample from the calibration curve 2 and the calibration curve D-
Method for measuring lactic acid and L-lactic acid.
JP04327057A 1992-01-30 1992-12-07 Lactic acid measuring device and measuring method Expired - Fee Related JP3104445B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP04327057A JP3104445B2 (en) 1992-12-07 1992-12-07 Lactic acid measuring device and measuring method
US08/067,960 US5510244A (en) 1992-01-30 1993-05-27 Apparatus and method for assaying optical isomers
DE4317958A DE4317958C2 (en) 1992-05-29 1993-05-28 Device and method for the analysis of optical isomers
GB9311118A GB2267343B (en) 1992-05-29 1993-05-28 An apparatus and method for assaying optical isomers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04327057A JP3104445B2 (en) 1992-12-07 1992-12-07 Lactic acid measuring device and measuring method

Publications (2)

Publication Number Publication Date
JPH06169798A true JPH06169798A (en) 1994-06-21
JP3104445B2 JP3104445B2 (en) 2000-10-30

Family

ID=18194822

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04327057A Expired - Fee Related JP3104445B2 (en) 1992-01-30 1992-12-07 Lactic acid measuring device and measuring method

Country Status (1)

Country Link
JP (1) JP3104445B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007292740A (en) * 2006-03-31 2007-11-08 Kagawa Univ Microflow type biosensor and use thereof for detecting or quantitating rare sugar

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007292740A (en) * 2006-03-31 2007-11-08 Kagawa Univ Microflow type biosensor and use thereof for detecting or quantitating rare sugar

Also Published As

Publication number Publication date
JP3104445B2 (en) 2000-10-30

Similar Documents

Publication Publication Date Title
Mulchandani et al. Principles and applications of biosensors for bioprocess monitoring and control
Cosgrove et al. Chemically immobilised enzyme electrodes for hydrogen peroxide determination
Yao et al. Simultaneous flow-injection assay of creatinine and creatine in serum by the combined use of a 16-way switching valve, some specific enzyme reactors and a highly selective hydrogen peroxide electrode
US5306413A (en) Assay apparatus and assay method
Kulys et al. The determination of glucose, hypoxanthine and uric acid with use of bi-enzyme amperometric electrodes
Yao et al. Amperometric flow-injection determination of glucose, urate and cholesterol and blood serum by using some immobilized enzyme reactors and a poly (1, 2-diaminobenzene)-coated platinum electrode
JP3104445B2 (en) Lactic acid measuring device and measuring method
Schumacher et al. Investigations with respect to stabilization of screen-printed enzyme electrodes
US5510244A (en) Apparatus and method for assaying optical isomers
Váradi et al. Application of biosensor with amperometric detection for determining ethanol
JP3319008B2 (en) Measuring device and measuring method
JP2928588B2 (en) Alcohol measurement method and measurement device
Nanjo et al. Optically specific detection of D-and L-lactic acids by a flow-injection dual biosensor system with on-line microdialysis sampling
Yao et al. Highly sensitive detection of l‐lactate and pyruvate by amperometric flow‐injection analysis based on enzymatic substrate recycling and selective detection of hydrogen peroxide
JP2020202825A (en) Enzyme-immobilized body and measuring apparatus equipped with the same, and measuring method of asparagine and l-aspartic acid
JP3362509B2 (en) Mannitol measurement method
JP3275504B2 (en) Flow type measuring device
JP3367162B2 (en) Measuring device and its activation method
JPH0731461A (en) Determination apparatus using enzymatic reaction
JP6459400B2 (en) Enzyme immobilized body, analyzer equipped with the same, and method for measuring L-threonine
Botrè et al. Determination of L-glutamate and L-glutamine in pharmaceutical formulations by amperometric L-glutamate oxidase based enzyme sensors
JP3178122B2 (en) Lactic acid and pyruvic acid measurement methods
JP3156408B2 (en) Measurement method using enzyme reaction
JP3451720B2 (en) Sorbitol measurement method
JPH0739395A (en) Method for measuring ammonia and apparatus for measurement

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080901

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090901

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees