JPH06168862A - Semiconductor laser aligner - Google Patents

Semiconductor laser aligner

Info

Publication number
JPH06168862A
JPH06168862A JP4196499A JP19649992A JPH06168862A JP H06168862 A JPH06168862 A JP H06168862A JP 4196499 A JP4196499 A JP 4196499A JP 19649992 A JP19649992 A JP 19649992A JP H06168862 A JPH06168862 A JP H06168862A
Authority
JP
Japan
Prior art keywords
lens
distance
laser
autofocus
focal length
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4196499A
Other languages
Japanese (ja)
Inventor
Hiroshi Taniura
博 谷浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THINK LAB KK
Think Laboratory Co Ltd
Original Assignee
THINK LAB KK
Think Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THINK LAB KK, Think Laboratory Co Ltd filed Critical THINK LAB KK
Priority to JP4196499A priority Critical patent/JPH06168862A/en
Publication of JPH06168862A publication Critical patent/JPH06168862A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a semiconductor laser aligner in which aligning time can be shortened greatly by superposing a large number of laser beams emitted from semiconductor lasers while shifting sequentially and projecting the laser beam while moving in the direction perpendicular to the arranging direction of laser beam thereby allowing multibeam alining. CONSTITUTION:Laser beams emitted from semiconductor lasers 2, 2,... are introduced into optical fibers 3, 3,... where the optical axes are substantially parallelized. The laser beams are then overlapped by means of a first condenser lens 4 and converged by means of a second condenser lens 5 and an auto-focus lens 6 before being projected onto an object W to be exposed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体レーザを用い多
数本のレーザ光を一列に次々にオーバーラップするよう
に配列して多数本ビーム露光が行なえる半導体レーザ露
光装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor laser exposure apparatus capable of performing multiple beam exposure by using a semiconductor laser and arranging a plurality of laser beams so as to overlap each other in a line.

【0002】[0002]

【従来の技術】従来の半導体レーザ露光装置は、一本の
レーザ光をドラムに巻いた銀塩フィルムまたは感光膜を
コーティングした被製版ロールに照射し、ドラムまたは
被製版ロールに主走査(回転)を与えつつレーザ光をド
ラムに沿って副走査(直動)を行なう一本レーザビーム
露光方式が採用されており、露光作業が極めて長時間に
及んでいた。
2. Description of the Related Art A conventional semiconductor laser exposure apparatus irradiates a single roll of laser light onto a plate-making roll coated with a silver salt film or a photosensitive film wound on a drum, and main-scans (rotates) the drum or plate-making roll. The single laser beam exposure method is used in which the laser beam is sub-scanned (directly moved) along the drum while being applied, and the exposure operation takes an extremely long time.

【0003】[0003]

【発明が解決しようとする課題】レーザ光の本数を増や
せば、露光作業にかかる時間は、一本レーザビーム露光
のときの本数分の一になるので、ビームスプリッターを
用いてレーザ光の本数を増やすことが考えられる。しか
し、半導体レーザは、アルゴン・ネオンガスレーザに比
してビームエネルギーが遙かに弱いのでビームスプリッ
ターに通すことは全くできない。そこで、半導体レーザ
を多数並設することが考えられるが、半導体レーザの配
列間隔が大き過ぎ、どのようにすれば、レーザビームの
配列を一列に次々にずれて重ねることができるか提案さ
れていない。
If the number of laser beams is increased, the time required for the exposure work will be one fraction of the number of laser beams used for single laser beam exposure. Therefore, the number of laser beams can be reduced by using a beam splitter. It is possible to increase. However, since the semiconductor laser has a beam energy much weaker than that of the argon / neon gas laser, it cannot pass through the beam splitter at all. Therefore, it is conceivable to arrange a large number of semiconductor lasers side by side, but the arrangement interval of the semiconductor lasers is too large, and it has not been proposed how to arrange the laser beams so that they are arranged in a row one after another. .

【0004】本発明は、上述した点に鑑み案出したもの
で、半導体レーザを用いて多数本のレーザ光を一列に次
々にずれて重ねることができ該レーザ光の配列方向と直
交方向に照射移動して多数本レーザビーム露光ができ、
露光作業にかかる時間を大幅に短縮できる半導体レーザ
露光装置を提供することを目的としている。
The present invention has been devised in view of the above-mentioned points, and a large number of laser beams can be stacked in a row one after another by using a semiconductor laser, and the laser beams can be irradiated in a direction orthogonal to the array direction. You can move and perform multiple laser beam exposure,
It is an object of the present invention to provide a semiconductor laser exposure apparatus that can significantly reduce the time required for exposure work.

【0005】[0005]

【課題を解決するための手段】本発明は、上記の課題を
解決するための手段として、走査テーブル1に、被露光
物体Wにレーザ光を放射する所要数の半導体レーザ2,
2,・・をそれらのレーザ光が平行に放射するように並
設し、該半導体レーザ2,2,・・と同数の光ファイバ
ー3,3,・・の一端部を半導体レーザ2,2,・・の
間隔に合わせかつそれらの端面を横並びに揃えてレーザ
光を導入するように半導体レーザ2に対向させ、さらに
光ファイバー3,3,・・の他端部をそれらの端面を横
並びに揃えて平行かつ近接状態に保持し、該光ファイバ
ー3,3,・・の他端部から距離Aだけ離れて第一の集
光レンズ4を設置し、さらに第一の集光レンズ4から距
離Bだけ離れて第二の集光レンズ5を設置し、さらに第
二の集光レンズ5から距離Cだけ離れてオートフォーカ
スレンズ6を設置してなり、前記光ファイバー3,3,
・・の他端部の端面から前記第一の集光レンズ4までの
距離Aは、光ファイバー3,3,・・より放射するレー
ザ光の拡がりが前記第一の集光レンズ4の肉厚中心に到
達したときに隣接して到達するレーザ光との間で適宜値
のオーバーラップRを生じるように設定し、前記第一の
集光レンズ4と前記第二の集光レンズ5との距離Bは、
第一の集光レンズ4の焦点距離f1と第二の集光レンズ
5の焦点距離f2を加算した距離に設定し、前記第二の
集光レンズ5と前記オートフォーカスレンズ6との距離
Cは、第二の集光レンズ5の焦点距離f2とオートフォ
ーカスレンズ6の焦点距離f3を加算した距離に設定
し、前記オートフォーカスレンズ6と前記被露光物体W
との距離は、露光に先立って前記走査テーブル1をX軸
方向に移動調整してオートフォーカスレンズ6の焦点距
離f3に一致するようになっているとともに、露光中は
オートフォーカスレンズ6のオートフォーカス機能によ
り焦点距離f3に一致するようになっていることを特徴
とする半導体レーザ露光装置を提供するものである。
As a means for solving the above problems, the present invention provides a scanning table 1 with a required number of semiconductor lasers 2 for emitting laser light to an object W to be exposed.
, Are arranged side by side so that their laser beams are radiated in parallel, and one end portion of the same number of optical fibers 3, 3, ... As the semiconductor lasers 2, 2 ,. · Opposed to the semiconductor laser 2 so that the laser light is introduced by aligning their end faces side by side and aligning their end faces side by side, and the other ends of the optical fibers 3, 3, · · are aligned by aligning their end faces side by side. Further, the first condensing lens 4 is installed at a distance A from the other ends of the optical fibers 3, 3, ... While being kept in close proximity, and further at a distance B from the first condensing lens 4. The second condensing lens 5 is installed, and further, the autofocus lens 6 is installed at a distance C from the second condensing lens 5, and the optical fibers 3, 3,
The distance A from the end face of the other end of the first condenser lens 4 to the first condenser lens 4 is such that the spread of the laser light emitted from the optical fibers 3, 3 ,. Is set so that an appropriate value of the overlap R is generated between the laser beams that are adjacent to each other and reach the distance B between the first condenser lens 4 and the second condenser lens 5. Is
The focal length f1 of the first condensing lens 4 and the focal length f2 of the second condensing lens 5 are set to a sum, and the distance C between the second condensing lens 5 and the autofocus lens 6 is set to , The focal length f2 of the second condenser lens 5 and the focal length f3 of the autofocus lens 6 are set, and the autofocus lens 6 and the exposed object W are set.
Is adjusted so that the scanning table 1 is moved and adjusted in the X-axis direction prior to the exposure so as to match the focal length f3 of the autofocus lens 6, and during the exposure, the autofocus of the autofocus lens 6 is performed. The present invention provides a semiconductor laser exposure apparatus, which is characterized in that the focal length f3 is matched with the function.

【0006】[0006]

【作用】 露光に先立って走査テーブル1をX軸方向に
移動調整してオートフォーカスレンズ6と被露光物体W
との距離を、オートフォーカスレンズ6の焦点距離f3
に一致させる。そして、走査テーブル1を被露光物体W
に対してX軸方向に相対的に走査し、半導体レーザ2,
2,・・を画像データに基づいて点滅ドライブし、該半
導体レーザ2,2,・・から放射するレーザ光を光ファ
イバー3と第一の集光レンズ4と第二の集光レンズ5と
オートフォーカスレンズ6を透過して被露光物体Wに照
射する。半導体レーザ2,2,・・から並列に放射する
多数本のレーザ光は、光ファイバー3,3,・・を通る
過程で光径が一定の大きさに円形化し第一の集光レンズ
4に向かって放射する過程で光の広がり角を大きくし
て、第一の集光レンズ4の肉厚中心に到達したときに隣
接して到達するレーザ光との間で適宜値のオーバーラッ
プRを生じ、このレーザ光のオーバーラップ配列が第二
の集光レンズ5とオートフォーカスレンズ6によって、
十数分の一ないし数十分の一に縮小され被露光物体Wに
照射される。
The scanning table 1 is moved and adjusted in the X-axis direction prior to the exposure to adjust the autofocus lens 6 and the exposed object W.
Is the focal length f3 of the autofocus lens 6
To match. Then, the scanning table 1 is placed on the object W to be exposed.
Scanning in the X-axis direction relative to the semiconductor laser 2,
2, ... Are driven by blinking based on image data, and the laser light emitted from the semiconductor lasers 2, 2, ... Is automatically focused with the optical fiber 3, the first condenser lens 4, the second condenser lens 5, and the like. The object W to be exposed is irradiated with the light through the lens 6. A large number of laser beams emitted in parallel from the semiconductor lasers 2, 2, ... Are circularized into a constant diameter in the process of passing through the optical fibers 3, 3 ,. The divergence angle of the light is increased in the process of radiating the laser light, and when the laser light reaches the center of the wall thickness of the first condenser lens 4, an overlap R of an appropriate value is generated between the laser light and the adjacent laser light. The overlapping arrangement of the laser light is generated by the second condenser lens 5 and the autofocus lens 6.
The object W to be exposed is irradiated with the light after being reduced to a tenth to a few tenths.

【0007】[0007]

【実施例】本発明の半導体レーザ露光装置の実施例を図
1を参照して説明する。図において、被露光物体Wは、
銀塩フィルムが巻かれた回転ドラムまたは感光膜をコー
ティングした被製版ロールを示している。該被露光物体
Wは、図示しないサーボモータによって走査回転され
る。走査テーブル1は、被露光物体Wに対して接近離隔
するX軸方向に移動自在かつ被露光物体Wの被露光面に
平行するY軸方向に往復移動自在である。走査テーブル
1のY軸方向に移動は、副走査であって、被露光物体W
の一回転当たりレーザービームの略列幅だけシフトする
ようになっている。なお、被露光物体Wが例えばオフセ
ット平版であるときは、走査テーブル1は、三次元テー
ブルとして構成されるのが好ましい。該走査テーブル1
に半導体レーザ2,2,・・と光ファイバー3,3,・
・と第一の集光レンズ4と第二の集光レンズ5とオート
フォーカスレンズ6が配設されてなる。半導体レーザ
2,2,・・は、レーザ光を平行に放射するように十個
備えられ取付け具7で固定されている。半導体レーザ
2,2,・・は、レーザ筐体を密着して配設されてい
る。光ファイバー3,3,・・は、半導体レーザ2,
2,・・と同数備えられ、それらの一端部を、端面を横
並びに揃えて半導体レーザ2,2,・・の間隔に合わせ
てファイバー固定具8により固定され半導体レーザ2に
対向かつ近接されレーザ光を導入するようになっている
とともに、それらの他端部を、端面を横並びに揃えて平
行かつ近接状態に保持するようにファイバー固定具9に
より固定されている。第一の集光レンズ4は、光ファイ
バー3,3,・・の他端部から距離Aだけ離れて微調整
自在な支持器10に支持されている。第二の集光レンズ
5は、第一の集光レンズ4から距離Bだけ離れて微調整
自在な支持器11に支持されている。オートフォーカス
レンズ6は、第二の集光レンズ5から距離Cだけ離れて
微調整自在な支持器12に支持されている。半導体レー
ザアレイ2から放射するレーザ光は、光ファイバー3,
3,・・と第一の集光レンズ4と第二の集光レンズ5と
オートフォーカスレンズ6を透過して被露光物体Wに照
射するようになっている。光ファイバー3,3,・・と
第一の集光レンズ4との距離Aは、半導体レーザ2a,
2a,・・から放射するレーザ光が、光ファイバー3,
3,・・を通る過程で光径が一定の大きさに円形化し第
一の集光レンズ4に向かって放射する過程で光の広がり
角を大きくして、第一の集光レンズ4の肉厚中心に到達
したときに、隣接して到達するレーザ光との間で適宜値
のオーバーラップRを生じるように設定されている。該
オーバーラップRは、レーザ光とレーザ光が接するよう
に僅少なオーバーラップであっても良いが、好ましく
は、レーザ光の光径をdとしたとき最小で0.293d
のオーバーラップ、最大で0.5dのオーバーラップオ
ーバーラップ生じるようにすることが好ましい。第一の
集光レンズ4と第二の集光レンズ5との距離Bは、第一
の集光レンズ4の焦点距離f1と第二の集光レンズ5の
焦点距離f2を加算した距離に設定されている。第二の
集光レンズ5とオートフォーカスレンズ6との距離C
は、第二の集光レンズ5の焦点距離f2とオートフォー
カスレンズ6の焦点距離f3を加算した距離に設定され
ている。オートフォーカスレンズ6と被露光物体Wとの
距離は、露光に先立って前記走査テーブル1をX軸方向
に移動調整してオートフォーカスレンズ6の焦点距離f
3に一致するようになっている。オートフォーカスレン
ズ6は、ボイスコイルまたは電歪アクチュエータによっ
て光軸方向に位置制御されるように保持されることによ
り、露光中はこのオートフォーカス機能により焦点距離
f3に一致するようになっている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a semiconductor laser exposure apparatus of the present invention will be described with reference to FIG. In the figure, the exposed object W is
1 shows a rotary drum wound with a silver salt film or a plate-making roll coated with a photosensitive film. The exposed object W is scanned and rotated by a servo motor (not shown). The scanning table 1 is movable in the X-axis direction approaching and separating from the exposed object W and reciprocally movable in the Y-axis direction parallel to the exposed surface of the exposed object W. The movement of the scanning table 1 in the Y-axis direction is the sub-scanning, and the exposed object W
Each rotation of the laser beam is shifted by about the width of the column. When the object W to be exposed is, for example, an offset lithographic plate, the scanning table 1 is preferably configured as a three-dimensional table. The scanning table 1
Semiconductor lasers 2, 2, ... And optical fibers 3, 3 ,.
The first condenser lens 4, the second condenser lens 5, and the autofocus lens 6 are arranged. The ten semiconductor lasers 2, 2, ... Are provided so as to radiate the laser light in parallel and are fixed by a fixture 7. The semiconductor lasers 2, 2, ... Are arranged in close contact with the laser housing. The optical fibers 3, 3, ... Are semiconductor lasers 2,
The same number as that of the lasers 2, 2, ..., One end of which is aligned side by side with the end faces of the semiconductor lasers 2, 2 ,. The light is introduced, and the other ends thereof are fixed by a fiber fixing tool 9 so that the end faces are aligned side by side and are held in parallel and close to each other. The first condensing lens 4 is supported by a finely adjustable supporter 10 at a distance A from the other ends of the optical fibers 3, 3 ,. The second condenser lens 5 is separated from the first condenser lens 4 by a distance B and is supported by a finely adjustable supporter 11. The autofocus lens 6 is supported by a finely adjustable supporter 12 at a distance C from the second condenser lens 5. The laser light emitted from the semiconductor laser array 2 is transmitted through the optical fiber 3,
.., the first condensing lens 4, the second condensing lens 5, and the autofocus lens 6 are transmitted to irradiate the object W to be exposed. The distance A between the optical fibers 3, 3, ... And the first condenser lens 4 is equal to the semiconductor laser 2a,
Laser light emitted from 2a, ...
In the process of passing through 3, ..., The light diameter is circularized to a constant size, and the divergence angle of the light is increased in the process of radiating toward the first condensing lens 4, so that It is set so that when the center of thickness is reached, an appropriate value of overlap R is generated between adjacent laser beams. The overlap R may be a slight overlap so that the laser beams come into contact with each other, but it is preferably 0.293d at the minimum when the light diameter of the laser beam is d.
It is preferable to cause an overlap of 0.5 d and a maximum of 0.5 d. The distance B between the first condenser lens 4 and the second condenser lens 5 is set to a distance obtained by adding the focal length f1 of the first condenser lens 4 and the focal length f2 of the second condenser lens 5. Has been done. Distance C between the second condenser lens 5 and the autofocus lens 6
Is set to a distance obtained by adding the focal length f2 of the second condenser lens 5 and the focal length f3 of the autofocus lens 6. The distance between the autofocus lens 6 and the object W to be exposed is adjusted by moving the scanning table 1 in the X-axis direction prior to the exposure to obtain a focal length f of the autofocus lens 6.
It is supposed to match 3. The autofocus lens 6 is held by the voice coil or the electrostrictive actuator so as to be position-controlled in the optical axis direction, and during exposure, the autofocus function matches the focal length f3.

【0008】露光に先立って走査テーブル1をX軸方向
に移動調整してオートフォーカスレンズ6と被露光物体
Wとの距離を、オートフォーカスレンズ6の焦点距離f
3に一致させる。そして、被露光物体Wを走査回転する
とともに、走査テーブル1をY軸方向に走査移動し、半
導体レーザ2,2,・・を画像データに基づいて点滅ド
ライブし、半導体レーザ2,2,・・から放射するレー
ザ光を光ファイバー3,3,・・に導入し レーザ光が
光ファイバー3,3,・・を通る過程でレーザ光の径を
一定の大きさに円形化し第一の集光レンズ4に向かって
放射する過程で光の広がり角を大きくして、第一の集光
レンズ4の肉厚中心に到達したときに隣接して到達する
レーザ光との間で適宜値のオーバーラップRを生じ、こ
のレーザ光のオーバーラップ配列を維持したまま第二の
集光レンズ5とオートフォーカスレンズ6によって、十
数分の一ないし数十分の一に絞り込んで被露光物体Wに
照射する。第一の集光レンズ4の肉厚中心に到達したと
きにオーバーラップ配列となるレーザ光は、該第一の集
光レンズ4より焦点距離f1だけ進んだ位置Pで一本に
重なり、さらにクロスするように第二の集光レンズ5の
焦点距離f2だけ進んで該第二の集光レンズ5を透過し
引続き第二の集光レンズ5の焦点距離f2だけ進んで被
露光物体Wに照射し露光を行なう。半導体レーザ2,
2,・・から放射するレーザ光は、被露光物体Wに点滅
照射し、画像データに基づいた画像を露光することにな
る。
Prior to the exposure, the scanning table 1 is moved and adjusted in the X-axis direction so that the distance between the autofocus lens 6 and the object W to be exposed becomes equal to the focal length f of the autofocus lens 6.
Match 3 Then, while the object W to be exposed is scanned and rotated, the scanning table 1 is scanned and moved in the Y-axis direction to drive the semiconductor lasers 2, 2, ... Blinking based on the image data, and the semiconductor lasers 2, 2 ,. The laser light radiated from the optical fiber is introduced into the optical fibers 3, 3, ... And the diameter of the laser light is circularized into a certain size while the laser light passes through the optical fibers 3, 3 ,. The divergence angle of the light is increased in the process of radiating toward the laser beam, and when the laser beam reaches the center of the wall thickness of the first condenser lens 4, an overlap R of an appropriate value is generated between the laser beam and the adjacent laser beam. While the overlapping arrangement of the laser light is maintained, the second condensing lens 5 and the autofocus lens 6 squeeze the light to the object W to be exposed to light by narrowing it down to one tenth or several tenths. When the laser light that reaches the center of the thickness of the first condensing lens 4 is in the overlapping arrangement, the laser lights are overlapped at a position P that is ahead of the first condensing lens 4 by the focal length f1 and further cross. As described above, the focal length f2 of the second condenser lens 5 advances, the light passes through the second condenser lens 5, and then the focal distance f2 of the second condenser lens 5 advances to irradiate the object W to be exposed. Perform exposure. Semiconductor laser 2,
The laser light emitted from 2, ..., Blinks and irradiates the object W to be exposed to expose the image based on the image data.

【0009】[0009]

【発明の効果】以上説明してきたように、本発明の半導
体レーザ露光装置によれば、半導体レーザ放射するレー
ザ光を光ファイバーに導入して光軸間隔を平行に近接さ
せ、第一の集光レンズにおいてオーバーラップ配列と
し、第二の集光レンズとオートフォーカスレンズでオー
バーラップ配列のまま絞りこんで被露光物体に照射する
ように構成したので、半導体レーザを用いて多数本のレ
ーザ光を一列に次々にずれて重ねることができ該レーザ
光の配列方向と直交方向に照射移動して多数本レーザビ
ーム露光ができ、露光作業にかかる時間を大幅に短縮で
きる。
As described above, according to the semiconductor laser exposure apparatus of the present invention, the laser beam emitted from the semiconductor laser is introduced into the optical fiber so that the optical axis intervals are close to each other in parallel, and the first condenser lens is provided. In the overlapping arrangement, the second condensing lens and the autofocus lens are arranged to squeeze the overlapping arrangement and irradiate the object to be exposed. The laser beams can be overlapped with each other one after another, and irradiation can be performed in a direction orthogonal to the arrangement direction of the laser beams to expose a large number of laser beams, and the time required for the exposure operation can be greatly shortened.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の半導体レーザ露光装置の概略正面図。FIG. 1 is a schematic front view of a semiconductor laser exposure apparatus of the present invention.

【符号の説明】[Explanation of symbols]

W ・・・被露光物体、 1 ・・・走査テーブル、 2 ・・・半導体レーザ, 3 ・・・光ファイバー、 4 ・・・第一の集光レンズ、 5 ・・・第二の集光レンズ、 6 ・・・オートフォーカスレンズ、 W ... Object to be exposed, 1 ... Scanning table, 2 ... Semiconductor laser, 3 ... Optical fiber, 4 ... First condensing lens, 5 ... Second condensing lens, 6 ... Autofocus lens,

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 走査テーブルに、被露光物体にレーザ光
を放射する所要数の半導体レーザをそれらのレーザ光が
平行に放射するように並設し、該半導体レーザと同数の
光ファイバーの一端部を半導体レーザの間隔に合わせか
つそれらの端面を横並びに揃えてレーザ光を導入するよ
うに半導体レーザに対向させ、さらに光ファイバーの他
端部をそれらの端面を横並びに揃えて平行かつ近接状態
に保持し、該光ファイバーの他端部から距離Aだけ離れ
て第一の集光レンズを設置し、さらに第一の集光レンズ
から距離Bだけ離れて第二の集光レンズを設置し、さら
に第二の集光レンズから距離Cだけ離れてオートフォー
カスレンズを設置してなり、前記光ファイバーの他端部
の端面から前記第一の集光レンズまでの距離Aは、光フ
ァイバーより放射するレーザ光の拡がりが前記第一の集
光レンズの肉厚中心に到達したときに隣接して到達する
レーザ光との間で適宜値のオーバーラップを生じるよう
に設定し、前記第一の集光レンズと前記第二の集光レン
ズとの距離Bは、第一の集光レンズの焦点距離f1と第
二の集光レンズの焦点距離f2を加算した距離に設定
し、前記第二の集光レンズと前記オートフォーカスレン
ズとの距離Cは、第二の集光レンズの焦点距離f2とオ
ートフォーカスレンズの焦点距離f3を加算した距離に
設定し、前記オートフォーカスレンズと前記被露光物体
Wとの距離は、露光に先立って前記走査テーブル1をX
軸方向に移動調整してオートフォーカスレンズの焦点距
離f3に一致するようになっているとともに、露光中は
オートフォーカスレンズのオートフォーカス機能により
焦点距離f3に一致するようになっていることを特徴と
する半導体レーザ露光装置。
1. A scanning table is provided with a required number of semiconductor lasers for emitting laser light to an object to be exposed, arranged in parallel so that the laser light is emitted in parallel, and one end portion of the same number of optical fibers as the semiconductor lasers are provided. Face the semiconductor laser so that the laser light is introduced by aligning the end faces of the semiconductor lasers side by side and aligning their end faces side by side, and further holding the other end of the optical fiber in parallel and close to each other by aligning their end faces side by side. , A first condensing lens is installed at a distance A from the other end of the optical fiber, and a second condensing lens is installed at a distance B from the first condensing lens. An autofocus lens is installed at a distance C from the condenser lens, and the distance A from the end face of the other end of the optical fiber to the first condenser lens is emitted from the optical fiber. When the spread of the laser light to reach the center of the thickness of the first condensing lens, it is set so as to generate an appropriate value overlap with the adjacent laser light, the first collection The distance B between the optical lens and the second condensing lens is set to a distance obtained by adding the focal length f1 of the first condensing lens and the focal length f2 of the second condensing lens. The distance C between the optical lens and the autofocus lens is set to a distance obtained by adding the focal length f2 of the second condenser lens and the focal length f3 of the autofocus lens, and the distance between the autofocus lens and the exposed object W is set. The distance of X is set on the scanning table 1 prior to exposure.
It is characterized in that it is adjusted in the axial direction so as to match the focal length f3 of the autofocus lens, and during exposure, the focal length f3 is matched by the autofocus function of the autofocus lens. Semiconductor laser exposure device.
JP4196499A 1992-06-30 1992-06-30 Semiconductor laser aligner Pending JPH06168862A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4196499A JPH06168862A (en) 1992-06-30 1992-06-30 Semiconductor laser aligner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4196499A JPH06168862A (en) 1992-06-30 1992-06-30 Semiconductor laser aligner

Publications (1)

Publication Number Publication Date
JPH06168862A true JPH06168862A (en) 1994-06-14

Family

ID=16358779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4196499A Pending JPH06168862A (en) 1992-06-30 1992-06-30 Semiconductor laser aligner

Country Status (1)

Country Link
JP (1) JPH06168862A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003255552A (en) * 2002-03-06 2003-09-10 Nec Corp Laser irradiation device, exposure method using scanning laser beam, and manufacturing method for color filter using scanning laser beam
JP2021151745A (en) * 2020-03-24 2021-09-30 株式会社東芝 Laser recording device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5372575A (en) * 1976-12-10 1978-06-28 Thomson Csf Pattern transfer optical device
JPS5393371A (en) * 1977-01-28 1978-08-16 Hitachi Ltd Device for drawing scan pattern
JPS54111832A (en) * 1978-02-22 1979-09-01 Hitachi Ltd Exposure device
JPH0315018A (en) * 1989-01-13 1991-01-23 Dainippon Screen Mfg Co Ltd Laser exposure device for image scanning and recording device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5372575A (en) * 1976-12-10 1978-06-28 Thomson Csf Pattern transfer optical device
JPS5393371A (en) * 1977-01-28 1978-08-16 Hitachi Ltd Device for drawing scan pattern
JPS54111832A (en) * 1978-02-22 1979-09-01 Hitachi Ltd Exposure device
JPH0315018A (en) * 1989-01-13 1991-01-23 Dainippon Screen Mfg Co Ltd Laser exposure device for image scanning and recording device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003255552A (en) * 2002-03-06 2003-09-10 Nec Corp Laser irradiation device, exposure method using scanning laser beam, and manufacturing method for color filter using scanning laser beam
JP2021151745A (en) * 2020-03-24 2021-09-30 株式会社東芝 Laser recording device

Similar Documents

Publication Publication Date Title
JP3929084B2 (en) How to irradiate the surface of an untreated product
JP2657957B2 (en) Projection device and light irradiation method
TW445189B (en) Laser processing apparatus and method
TWI283435B (en) Lithographic apparatus and device manufacturing method
JP4322359B2 (en) Laser processing equipment
WO2006129473A1 (en) Laser processing apparatus and laser processing method
JPH10328873A (en) Laser beam machining device
JP3416579B2 (en) Precision variable rectangular beam optical system for double beam
US5401934A (en) Lens system for scanning laser apparatus
JPH06168862A (en) Semiconductor laser aligner
JPH0812843B2 (en) Optical imaging apparatus and method
JPH0684741A (en) Semiconductor laser exposing device
JPH0417989A (en) Laser beam peeling machine for coating of electric wire
JP2001109163A (en) Plate-making exposure device and method thereof
KR19980057579A (en) Semiconductor exposure equipment
JP2001277464A (en) Laser exposure device for plate-making
JP2759890B2 (en) Exposure equipment
JPS6258484B2 (en)
JP3223826B2 (en) Unnecessary resist exposure equipment on substrate
JPH03184687A (en) Laser beam machining apparatus
JPH07113736B2 (en) Lighting equipment
JPH08265931A (en) Laser beam machining system
JP2023167600A (en) Method of processing wafer and laser applying apparatus
WO2005025800A1 (en) Laser processing method and processing apparatus
JP2023169518A (en) Method of processing wafer and laser applying apparatus

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050920

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060124

A61 First payment of annual fees (during grant procedure)

Effective date: 20060130

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090203

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100203

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20110203

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110203

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120203

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120203

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130203

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130203

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140203

Year of fee payment: 8