JPH06168668A - Cathode structure for dc type discharge display tube - Google Patents
Cathode structure for dc type discharge display tubeInfo
- Publication number
- JPH06168668A JPH06168668A JP18028392A JP18028392A JPH06168668A JP H06168668 A JPH06168668 A JP H06168668A JP 18028392 A JP18028392 A JP 18028392A JP 18028392 A JP18028392 A JP 18028392A JP H06168668 A JPH06168668 A JP H06168668A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- cathode
- resistance
- discharge
- anode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2201/00—Electrodes common to discharge tubes
- H01J2201/30—Cold cathodes
- H01J2201/319—Circuit elements associated with the emitters by direct integration
Landscapes
- Gas-Filled Discharge Tubes (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は直流型放電表示管の陰極
構造に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cathode structure of a DC type discharge display tube.
【0002】[0002]
【従来の技術】従来、直流型放電表示管の陰極は、電気
から光への変換効率を高めるため、陰極側のインピーダ
ンスは出来るだけ低い方が良いと考えられており、ガス
空間からのイオン衝撃のエネルギーを効率よく2次電子
放射エネルギーに変換できる材料が追求され、併せて電
極の厚さ方向の抵抗も出来るだけ下げることが良いと考
えられてきた。 また陰極ではなく陽極側に、各画素ご
とに独立した抵抗を厚さ方向に積層する発想もあった
が、これは本発明とは発想が異なり各画素の独立性を確
保してメモリー機能を持たせるものである。2. Description of the Related Art Conventionally, it has been considered that the cathode of a DC discharge display tube should have as low an impedance as possible on the cathode side in order to enhance the conversion efficiency from electricity to light. It has been considered that a material capable of efficiently converting the above energy into secondary electron radiant energy can be efficiently pursued, and at the same time, the resistance in the thickness direction of the electrode should be lowered as much as possible. Also, there was an idea of stacking an independent resistor for each pixel in the thickness direction on the anode side instead of the cathode, but this is different from the present invention, and this ensures the independence of each pixel and has a memory function. It is something that can be made.
【0003】[0003]
【発明が解決しようとする課題】直流型放電表示管の陰
極の形成は、その簡便さと設計の自由度から厚膜印刷技
術がその中心である。 これはNiやLaB6等の放電
管の陰極にふさわしい材料の微小粉末を低融点ガラスを
バインダーとして溶剤等と共にインキペースト状にし
て、スクリーン印刷等の方法でガラス基板上にパターン
を形成し、約550〜600℃で焼成する。 通常はこ
の焼成温度はガラスの軟化点を大幅に上回ることは出来
ないので、金属粉末が焼結された状態ではなく、溶融し
た低融点ガラスによって固着された状態になっている。The formation of the cathode of a DC type discharge display tube is centered on the thick film printing technique because of its simplicity and the freedom of design. This is a fine powder of a material suitable for a cathode of a discharge tube, such as Ni or LaB6, made into an ink paste together with a solvent or the like using a low melting point glass as a binder, forms a pattern on a glass substrate by a method such as screen printing, and forms about 550 Bake at ~ 600 ° C. Normally, this firing temperature cannot greatly exceed the softening point of the glass, so that the metal powder is not in a sintered state but in a fixed state by the molten low-melting glass.
【0004】上記の厚膜印刷による陰極の形成法で得ら
れた表示用放電管の陰極には、基本的な問題点として、
表示発光に利用する陰極グローが時間の経過と共に陰極
の一部分に集中する、いわゆるグローの凝縮という問題
があり、表示品位を著しく損なうばかりでなく、表示管
の寿命を短くする原因であった。 この現象は直流型の
放電管に共通の基本的問題点であるが、金属板等の均一
な材料で形成した陰極よりも上記のごとく異物と混在し
て形成された印刷陰極でより顕著に発生することが確認
されている。The cathode of the display discharge tube obtained by the above-described method of forming a cathode by thick film printing has the following basic problems.
There is a problem of so-called glow condensation, in which the cathode glow used for display light emission concentrates on a part of the cathode with the passage of time, which not only seriously impairs the display quality but also shortens the life of the display tube. This phenomenon is a basic problem common to DC type discharge tubes, but it occurs more markedly in the printed cathode formed by mixing foreign substances as described above than in the cathode formed of a uniform material such as a metal plate. It is confirmed to do.
【0005】この現象の原因を説明するためには図3の
印刷陰極の断面図を模式化したものが分かりやすい。
即ち、印刷により形成された陰極は、一枚の単一な金属
体からなる陰極とはことなり、微小陰極8( k1,k
2,−−−−kn)からなる集合体と考えることができ
る。 実際の焼成後の印刷陰極は、陰極材の微小粒子ど
うしが接触抵抗を持ちながらほぼ良好な導電性を有して
いる、と考えられていたが、上記のグローの凝縮現象は
このバインダーとして混入した低融点ガラスによる陰極
材の分離現象が起因していることがわかった。In order to explain the cause of this phenomenon, it is easy to understand the schematic cross-sectional view of the printed cathode of FIG.
That is, the cathode formed by printing is different from the cathode made of one single metal body, and the micro cathode 8 (k1, k
2, ----- kn). In the actual printed cathode after firing, it was thought that the fine particles of the cathode material had a good electrical conductivity while having contact resistance, but the above-mentioned glow condensation phenomenon was mixed as this binder. It was found that the phenomenon of separation of the cathode material by the low melting point glass was caused.
【0006】一般に、直流型放電管では放電安定化抵抗
5を回路系内に直列に挿入する。プラズマデイスプレイ
等のXYマトリクス型放電管のごとく、一本の陰極を複
数の画素に分割する場合には、陰極と直交する各陽極に
一個ずつの安定化抵抗5を設ける。Generally, in the DC type discharge tube, the discharge stabilizing resistor 5 is inserted in series in the circuit system. When one cathode is divided into a plurality of pixels like an XY matrix discharge tube such as a plasma display, one stabilizing resistor 5 is provided for each anode orthogonal to the cathode.
【0007】ところで、一般的によく知られていること
であるが、図4のように陽極、陰極をそれぞれ共通に接
続して一本の安定化抵抗5を通してT1,−−T4の全
ての放電管を同時に点灯することは難しい。 それは、
各放電管のうちどれか一本が先に放電すると、その放電
電流の為に安定化抵抗5に生ずる電圧降下が、他の放電
管の陽極の電位を下げるために、他の放電管の端子間電
圧が放電開始電圧に達しないためである。 ただし、放
電電流をさらに増加させると、先に放電した放電管の陰
極の電流供給能力を上回って端子電圧が上昇してくるの
で、他の放電管にも放電が発生する。 ここで、先に放
電した放電管に引き続いて何個の放電管が点灯するか
は、各放電管の陰極の電流供給能力に依存する。By the way, as is generally well known, as shown in FIG. 4, all the discharges of T1 and --T4 are connected through a single stabilizing resistor 5 by connecting the anode and cathode in common. It is difficult to light the tubes at the same time. that is,
When any one of the discharge tubes discharges first, the voltage drop that occurs in the stabilizing resistor 5 due to the discharge current decreases the potential of the anodes of the other discharge tubes and causes the terminals of the other discharge tubes to drop. This is because the inter-voltage does not reach the discharge start voltage. However, if the discharge current is further increased, the terminal voltage rises beyond the current supply capacity of the cathode of the previously discharged discharge tube, so that discharge also occurs in other discharge tubes. Here, how many discharge tubes are lit subsequent to the previously discharged discharge tube depends on the current supply capacity of the cathode of each discharge tube.
【0008】ところで図3のようなモデルでは、上記説
明と同じ現象が一つの画素上でも起こりうることを示し
ている。 つまり一つの画素の微小部分例えば微小陰極
k1に最初に放電が発生したと仮定すると、微小陰極8
の陰極材の電流供給能力が優れ、また陰極の厚さ方向の
インピーダンスが十分に低い場合には、陽極側安定化抵
抗の電位降下が大きくなるので、はじめに放電が発生し
たk1から周辺にはグローが拡がらなくなる。 この傾
向は時間の経過とともにk1部分が活性化されて、ます
ますその現象が定着する。 これがグローの遍在現象の
主因であり、表示品位を著しく損なうとともに、表示管
の寿命を短くする原因であった。By the way, the model as shown in FIG. 3 shows that the same phenomenon as described above can occur on one pixel. That is, assuming that a discharge is first generated in a minute portion of one pixel, for example, the minute cathode k1, the minute cathode 8
When the current supply capacity of the cathode material is excellent and the impedance in the thickness direction of the cathode is sufficiently low, the potential drop of the stabilizing resistor on the anode side becomes large. Will not spread. This tendency is that the k1 portion is activated over time, and the phenomenon becomes more and more established. This is the main cause of the ubiquitous phenomenon of glow, which is a cause of significantly impairing the display quality and shortening the life of the display tube.
【0009】[0009]
【課題を解決するための手段】本発明においてはかかる
課題を解決するために、陰極の表面層の下に抵抗層を配
し、さらにその下に良導電層を配した3層の陰極構造に
したものである。 この新しい陰極の構成は、その実施
例の一つである図1をもって説明される。In order to solve the above problems, the present invention provides a three-layer cathode structure in which a resistance layer is arranged under the surface layer of the cathode and a good conductive layer is arranged under the resistance layer. It was done. The construction of this new cathode is explained with reference to one of its embodiments, FIG.
【0010】図1は3層構造陰極の断面図である。 ま
ずガラス基板4の上の最下層には放電電流を外部端子に
導く良導電層3がある。 その上には抵抗層2が形成さ
れ、最上部の陰極材層1と最下部の良導電層3間に挟ま
れた形になっている。FIG. 1 is a sectional view of a three-layer structure cathode. First, on the lowermost layer on the glass substrate 4, there is a good conductive layer 3 that guides a discharge current to an external terminal. A resistance layer 2 is formed thereon, and is sandwiched between the uppermost cathode material layer 1 and the lowermost good conductive layer 3.
【0011】[0011]
【作用】図1の構造の陰極の作用は、図1の陰極を用い
てガラス容器12とガラス基板4で形成する放電管に放
電ガス7を封入した場合の模式的断面図である図2をも
って説明される。 図2の陰極は図3でも仮定した如
く、微小陰極8(k1,k2,−−−kn)に分かれて
いるが、良導電層3との間には抵抗層2があり、厚さ方
向と面方向に分布して抵抗網を形成している。 つまり
各微小陰極8の厚み方向のインピーダンス(微小抵抗
9)を意図的に高くしたことに相当する。The function of the cathode of the structure of FIG. 1 is shown in FIG. 2, which is a schematic cross-sectional view in the case where the discharge gas 7 is enclosed in the discharge vessel formed by the glass container 12 and the glass substrate 4 using the cathode of FIG. Explained. The cathode of FIG. 2 is divided into minute cathodes 8 (k1, k2, --kn) as assumed in FIG. 3, but the resistance layer 2 is present between the good conductive layer 3 and It is distributed in the plane direction to form a resistance network. That is, this corresponds to intentionally increasing the impedance (micro resistance 9) in the thickness direction of each micro cathode 8.
【0012】そこでまず放電がk1,k2,−−−kn
の何れか、例えばk1に発生したとすると、放電電流の
ため陽極電位は低下するが、微小陰極8側のインピーダ
ンス(微小抵抗9)のためk1の電位が上昇し、電流が
流れ難くなるので、より電流を供給すためにk1に隣接
するk2にもグローが発生する。 つまりグローが拡散
しやすくなって遍在現象が起き難くなる。Therefore, first, the discharge is k1, k2, --kn.
If any of these occurs, for example, in k1, the anode potential decreases due to the discharge current, but the potential of k1 increases due to the impedance (micro resistance 9) on the side of the microcathode 8 and it becomes difficult for the current to flow. In order to supply more current, glow also occurs in k2 adjacent to k1. That is, the glow easily diffuses and the ubiquitous phenomenon becomes difficult to occur.
【0013】[0013]
【実施例】図1において、ガラス基板4の上にある最下
層の良導電層3の材料は Ni、Ag、Cu等が用いら
れるが、形成方法は必ずしも厚膜印刷とは限らず、蒸着
やスパッタリング等でも形成できる。 また抵抗層2は
酸化ルテニウム(RuO2)、カーボン(C)等の抵抗
材を上記良導電層3を覆うが如くに印刷して焼成して形
成するが、蒸着法等を用いてもよい。 また最上部の陰
極材層1は一般によく用いられるNi等の他に、LaB
6等のより二次電子放射率の高い材料を用いてもよく、
厚膜印刷で上記2層の上に積層して形成する。 もちろ
ん上記2層と同様蒸着等の薄膜法でも形成できる。EXAMPLE In FIG. 1, Ni, Ag, Cu or the like is used as the material of the lowermost good conductive layer 3 on the glass substrate 4, but the forming method is not necessarily thick film printing, and vapor deposition or It can also be formed by sputtering or the like. The resistance layer 2 is formed by printing a resistance material such as ruthenium oxide (RuO2) or carbon (C) so as to cover the good conductive layer 3 and baking the resistance material, but a vapor deposition method or the like may be used. In addition, the uppermost cathode material layer 1 is made of LaB in addition to Ni, which is commonly used.
A material having a higher secondary electron emissivity such as 6 may be used,
It is formed by stacking on the above two layers by thick film printing. Of course, similar to the above two layers, it can be formed by a thin film method such as vapor deposition.
【0014】上記3層のうち、抵抗層2と陰極材層1は
画素部分のみにあればよいが、製造上かえって難しくな
るので、最下層の良導電層3を全面覆うように上部2層
を形成しても動作上なんら問題はない。Of the above three layers, the resistance layer 2 and the cathode material layer 1 may be provided only in the pixel portion, but this is difficult in terms of manufacturing. Therefore, the upper two layers are covered so as to cover the lowermost good conductive layer 3 entirely. Even if formed, there is no problem in operation.
【0015】[0015]
【発明の効果】直流型表示用放電管の陰極において、表
示品位上及び寿命上問題であったグローが陰極の一部分
に集中する、いわゆるグローの凝縮という問題がこれに
よって解決された。 一般に優れた陰極材料は、二次電
子放射率が高く、仕事関数が小さいので、低い動作電圧
で大きな電流を供給できるのであるから、高い二次電子
放射率と高い陰極抵抗を両立させることは出来ない、と
して直流型表示用放電管の性能改善の障害になっていた
問題が解決し、優れた陰極材が自由に適用できるように
なった。EFFECTS OF THE INVENTION In the cathode of a discharge lamp for a direct current type display, the problem of so-called glow condensation, which is a problem in display quality and life, is concentrated in a part of the cathode, thereby solving the problem. Generally, a good cathode material has a high secondary electron emissivity and a small work function, and therefore can supply a large current at a low operating voltage.Therefore, a high secondary electron emissivity and a high cathode resistance cannot both be achieved. As a result, the problem that had been an obstacle to improving the performance of the discharge tube for direct current type display was solved, and it became possible to freely apply excellent cathode materials.
【0016】[0016]
【図1】本発明の3層構造陰極の断面図。FIG. 1 is a sectional view of a three-layer structure cathode of the present invention.
【図2】図1の陰極を用いた放電管の模式的説明図。FIG. 2 is a schematic explanatory view of a discharge tube using the cathode of FIG.
【図3】従来の陰極を用いた放電管の模式的説明図。FIG. 3 is a schematic explanatory diagram of a conventional discharge tube using a cathode.
【図4】放電管を並列接続した場合の動作説明図。FIG. 4 is an operation explanatory view when the discharge tubes are connected in parallel.
1 陰極材層 2 抵抗層 3 良導電層 4 ガラス基板 5 放電安定化抵抗 6 陽極 7 放電ガス 8 微小陰極 (1 陰極材層) 9 微小抵抗 (2 抵抗層) 10 陽極端子 11 陰極端子 12 ガラス容器 1 Cathode Material Layer 2 Resistance Layer 3 Good Conductive Layer 4 Glass Substrate 5 Discharge Stabilizing Resistance 6 Anode 7 Discharge Gas 8 Micro Cathode (1 Cathode Material Layer) 9 Micro Resistance (2 Resistance Layer) 10 Anode Terminal 11 Cathode Terminal 12 Glass Container
─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───
【手続補正書】[Procedure amendment]
【提出日】平成5年11月26日[Submission date] November 26, 1993
【手続補正1】[Procedure Amendment 1]
【補正対象書類名】図面[Document name to be corrected] Drawing
【補正対象項目名】全図[Correction target item name] All drawings
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【図1】 [Figure 1]
【図2】 [Fig. 2]
【図3】 [Figure 3]
【図4】 [Figure 4]
Claims (1)
空間に接触する部分即ち陰極の表面層の下に抵抗層を配
し、さらにその下に良導電層を配した3層の陰極構造。1. A cathode structure of a direct current discharge display tube, comprising a three-layer cathode structure in which a resistance layer is arranged under a surface layer of the cathode which is in contact with a gas space, and a good conductive layer is arranged under the resistance layer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18028392A JPH06168668A (en) | 1992-05-28 | 1992-05-28 | Cathode structure for dc type discharge display tube |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18028392A JPH06168668A (en) | 1992-05-28 | 1992-05-28 | Cathode structure for dc type discharge display tube |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06168668A true JPH06168668A (en) | 1994-06-14 |
Family
ID=16080510
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18028392A Pending JPH06168668A (en) | 1992-05-28 | 1992-05-28 | Cathode structure for dc type discharge display tube |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06168668A (en) |
-
1992
- 1992-05-28 JP JP18028392A patent/JPH06168668A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7064493B2 (en) | Cold cathode electric field electron emission display device | |
US6603260B1 (en) | Plasma display panel with a getter material | |
JPS6217347B2 (en) | ||
CN109473327B (en) | Light-emitting display with stacked double-goose-wing empty-ring tip body cathode slope wave mixed line gate control structure | |
US5914559A (en) | Resistance element and cathode ray tube | |
EP0159199B1 (en) | Methods of producing discharge display devices | |
JPH06168668A (en) | Cathode structure for dc type discharge display tube | |
EP1624476A1 (en) | Image display | |
JP2009164111A (en) | Image display | |
US6690123B1 (en) | Electron gun with resistor and capacitor | |
JP3051127B2 (en) | Plasma display panel | |
JPH05225911A (en) | Plasma display panel | |
JPH0495332A (en) | Discharge electrode | |
JPH0222977B2 (en) | ||
JP3234028B2 (en) | Gas discharge display panel | |
US20080303406A1 (en) | Image Display Device and Manufacturing Method of the Same | |
JP2624346B2 (en) | Cathode structure of gas discharge type color display panel | |
JPH04272635A (en) | Cathode structure for dc type plasma display panel | |
JP3050462B2 (en) | Cathode of gas discharge display panel | |
JP3016537B2 (en) | Manufacturing method of cold cathode for display discharge tube | |
JPH03145030A (en) | Manufacture of gas discharge type display panel | |
JPH0334827Y2 (en) | ||
JPH0740295Y2 (en) | Cathode ray tube | |
JP2000353483A (en) | Anode substrate for fluorescent character display tube | |
JPH11213911A (en) | Electron gun structure and electron tube |