JPH06167406A - Differential pressure type pressure change measuring device - Google Patents

Differential pressure type pressure change measuring device

Info

Publication number
JPH06167406A
JPH06167406A JP34123492A JP34123492A JPH06167406A JP H06167406 A JPH06167406 A JP H06167406A JP 34123492 A JP34123492 A JP 34123492A JP 34123492 A JP34123492 A JP 34123492A JP H06167406 A JPH06167406 A JP H06167406A
Authority
JP
Japan
Prior art keywords
pressure
gas
communication pipe
back pressure
gas communication
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34123492A
Other languages
Japanese (ja)
Inventor
Yukio Oi
幸雄 大井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oyo Corp
Original Assignee
Oyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oyo Corp filed Critical Oyo Corp
Priority to JP34123492A priority Critical patent/JPH06167406A/en
Publication of JPH06167406A publication Critical patent/JPH06167406A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To accurately measure a fine pressure change regardless of the magnitude of pressure. CONSTITUTION:A differential pressure type pressure change measuring device is equipped with a differential pressure type pressure sensor 10, the automatic back pressure adjusting mechanism 20 provided in parallel to the pressure sensor 10, the gas pipe 30 for connecting the back pressure area of the pressure sensor 10 to airtightly with the automatic back pressure adjusting mechanism 20, and the opening and closing valve 36 provided to the gas pipe 30. The differential pressure type pressure sensor 10 is airtightly partitioned into upper and lower parts by a diaphragm 12 and the gas pipe 30 is connected to the upper part. The automatic back pressure adjusting mechanism 20 is a cylindrical container 21 having an opening 22 provided to the bottom part thereof and the gas pipe 10 is connected to the upper part of the container 21.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、差圧式圧力センサの背
圧側に、周囲の液圧とほぼ均衡し且つ一定圧力のガスを
供給して、液中での圧力変動を測定する装置に関するも
のである。この装置は、例えば水中深く挿入しても、高
い水圧の影響を受けることがなく、微小な圧力変化を高
精度で測定でき、そのため高深度の透水試験等での圧力
測定に有用である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a device for measuring a pressure fluctuation in a liquid by supplying a gas having a constant pressure and a liquid pressure substantially equal to the surrounding liquid pressure to a back pressure side of a differential pressure type pressure sensor. Is. This device can measure minute pressure changes with high accuracy without being affected by high water pressure even when it is inserted deep into water, and is therefore useful for pressure measurement in high-depth water permeability tests and the like.

【0002】[0002]

【従来の技術】土質調査等の技術分野では、液中深くに
おける微小な圧力変化を測定することが必要となってき
ている。例えば代表的なものに、地盤中に水圧をかけて
その伝播速度を測定することにより地盤の透水性を求め
る試験がある。この試験では、地盤中に掘削したボーリ
ング孔内に圧力がステップ状に変化する加圧水を注入
し、加圧位置から離れた地盤内のボーリング孔内で応答
圧力を測定する。また他には、石油工学における貯留層
工学の分野で石油の埋蔵量を推定するために石油の貯留
層の一部に圧力を加え、その圧力伝播を測定する場合な
どもある。
2. Description of the Related Art In the technical field of soil investigation and the like, it has become necessary to measure minute pressure changes deep in a liquid. For example, as a typical example, there is a test for determining the water permeability of the ground by applying a water pressure to the ground and measuring the propagation velocity thereof. In this test, pressurized water whose pressure changes stepwise is injected into a boring hole excavated in the ground, and the response pressure is measured in the boring hole in the ground away from the pressing position. In addition, in the field of reservoir engineering in petroleum engineering, there is also a case where pressure is applied to a part of a reservoir of oil and its pressure propagation is measured in order to estimate the reserve of oil.

【0003】ところで圧力の測定には、一般に各種の差
圧式圧力センサが用いられている。これは、原理的に
は、内部をダイアフラムにより気密的に仕切り、一方に
計測圧を印加し、他方に背圧(通常、大気圧)が加わる
ようにし、背圧側に歪センサ等のセンサ素子を配置する
構成である。このような圧力センサでは、計測圧と背圧
との差圧によるダイアフラムの変形量を、前記センサ素
子により検出して電気抵抗や電圧などの電気量の変動と
して取り出し、圧力値に変換するものである。そのた
め、計測圧力レンジに応じた圧力センサを選定し使用し
ている。
By the way, in order to measure the pressure, various differential pressure type pressure sensors are generally used. In principle, the inside is airtightly partitioned by a diaphragm, the measurement pressure is applied to one side, the back pressure (usually atmospheric pressure) is applied to the other side, and a sensor element such as a strain sensor is placed on the back pressure side. It is a configuration to be arranged. In such a pressure sensor, the deformation amount of the diaphragm due to the differential pressure between the measured pressure and the back pressure is detected by the sensor element and is taken out as a change in the electric amount such as electric resistance or voltage and converted into a pressure value. is there. Therefore, a pressure sensor is selected and used according to the measured pressure range.

【0004】[0004]

【発明が解決しようとする課題】ところが、このような
圧力センサでは、高圧下での微小な圧力変動を測定し難
い問題がある。上記のように従来の差圧式圧力センサで
は、計測圧をダイアフラムの変形量から測定するため、
高圧下においては、ダイアフラム等もその圧力に耐えう
るだけの強固な構造にしなければならない。つまり高圧
用の圧力センサが必要となる。しかし、それでは圧力変
動に対するダイアフラムの変形量の変化は減少し、圧力
センサで検出する電気的出力変化も減少する。しかも電
気的な出力変化が減少すると、種々のノイズに埋没し、
信号が取り出し難くなる。つまり定格圧力が増すにつれ
て、センサの感度、分解能などが低下することになる。
However, such a pressure sensor has a problem that it is difficult to measure minute pressure fluctuations under high pressure. As described above, in the conventional differential pressure type pressure sensor, since the measured pressure is measured from the deformation amount of the diaphragm,
Under high pressure, the diaphragm and the like must also have a strong structure that can withstand the pressure. That is, a pressure sensor for high pressure is required. However, in that case, the change in the deformation amount of the diaphragm with respect to the pressure change is reduced, and the change in the electrical output detected by the pressure sensor is also reduced. Moreover, when the change in electrical output decreases, it is buried in various noises,
It becomes difficult to retrieve the signal. That is, as the rated pressure increases, the sensitivity and resolution of the sensor decrease.

【0005】前述した透水性の試験では、数百〜千mの
大深度のボーリング孔内で圧力伝播を測定する場合もあ
る。その場合、地下水の存在によって測定深度が大きく
なるほど圧力センサに加わる静水圧は上昇する。それに
対して、検出すべき圧力変動は、加圧位置から離れる
程、その距離の2〜3乗に逆比例して小さくなるため、
かなり微弱である。上記の理由で、従来の差圧式圧力セ
ンサでは、大深度の透水性試験を満足に行えない欠点が
あった。
In the above-mentioned water permeability test, pressure propagation may be measured in a boring hole having a large depth of several hundreds to 1,000 m. In that case, as the measurement depth increases due to the presence of groundwater, the hydrostatic pressure applied to the pressure sensor increases. On the other hand, the pressure fluctuation to be detected becomes smaller as the distance from the pressurizing position increases in inverse proportion to the second to third power of the distance.
It is quite weak. For the above reasons, the conventional differential pressure type pressure sensor has a drawback in that it cannot satisfactorily perform a large depth water permeability test.

【0006】圧力センサとしては、近年、水晶振動式が
開発されている。この水晶振動式圧力センサは、付着質
量を振動子の共振周波数の変化として計測する方式であ
り、絶対圧力を高感度で計測できる特徴がある。そのた
め高圧下でも使用でき、且つ分解能も優れている。しか
し、デジタル的に共振周波数を計測する(一定時間内で
の振動数を計数する)方式であるため、一定時間毎の計
測となり、経時的に連続した測定ができない。前述の透
水性試験の場合は、圧力伝播を時間的に連続して測定す
る(受振波形を検出する)必要があり、そのような用途
には適していない。その上、この種の圧力センサは非常
に高価である。
As a pressure sensor, a crystal vibration type has been developed in recent years. This crystal vibration type pressure sensor is a method of measuring the adhered mass as a change in the resonance frequency of the vibrator, and has a feature that absolute pressure can be measured with high sensitivity. Therefore, it can be used under high pressure and has excellent resolution. However, since it is a method of digitally measuring the resonance frequency (counting the number of vibrations within a fixed time), the measurement is performed every fixed time, and continuous measurement cannot be performed over time. In the case of the above-mentioned water permeability test, it is necessary to continuously measure the pressure propagation in time (to detect the received waveform), which is not suitable for such an application. Moreover, pressure sensors of this kind are very expensive.

【0007】本発明の目的は、圧力の大小にかかわらず
微小な圧力変化を的確に測定できる差圧式圧力変動測定
装置を提供することである。
An object of the present invention is to provide a differential pressure type pressure fluctuation measuring device capable of accurately measuring a minute pressure change regardless of the magnitude of the pressure.

【0008】[0008]

【課題を解決するための手段】本発明は、ダイアフラム
により気密的に仕切られ、その変位により計測側の液圧
と背圧側のガス圧との差を検出する差圧式圧力センサ
と、該差圧式圧力センサに並設され、周囲の液圧とほぼ
均衡する圧力のガスを生じる背圧自動調整機構と、前記
差圧式圧力センサの背圧側と背圧自動調整機構とを気密
的に連通するガス連通管と、該ガス連通管に設けた開閉
弁とを具備している差圧式圧力変動測定装置である。
SUMMARY OF THE INVENTION The present invention is a differential pressure type pressure sensor which is airtightly partitioned by a diaphragm and detects the difference between the liquid pressure on the measurement side and the gas pressure on the back pressure side by the displacement thereof, and the differential pressure type pressure sensor. A back pressure automatic adjustment mechanism that is installed in parallel with the pressure sensor and generates gas at a pressure that is approximately in balance with the surrounding liquid pressure, and a gas communication that air-tightly connects the back pressure side of the differential pressure type pressure sensor and the back pressure automatic adjustment mechanism. A differential pressure type pressure fluctuation measuring device comprising a pipe and an opening / closing valve provided in the gas communication pipe.

【0009】背圧自動調整機構としては、下部に開口を
有する容器がある。あるいは、容器と、その容器壁を貫
通して底部近傍に達するパイプと、該パイプに設けた液
導入用の逆止弁とを具備する構成でもよい。ガス連通管
は該容器の上部に接続する。該ガス連通管の途中に液滴
トラップを設けてもよい。更にこれに加えて、ガス連通
管が三方弁を介して大気側及び高圧ガス発生源に接続さ
れているものもある。また背圧自動調整機構は、気密構
造で且つ伸縮自在の袋状体であって、それにガス連通管
が接続されているものでもよい。伸縮自在とするには、
ゴム製のように素材自体が伸縮するものでもよいし、蛇
腹構造のようなものでもよい。
As the automatic back pressure adjusting mechanism, there is a container having an opening at the bottom. Alternatively, it may be configured to include a container, a pipe that penetrates the wall of the container and reaches the vicinity of the bottom, and a check valve for introducing the liquid, which is provided in the pipe. The gas communication pipe is connected to the upper part of the container. A droplet trap may be provided in the middle of the gas communication pipe. In addition to this, there is also one in which a gas communication pipe is connected to the atmosphere side and a high-pressure gas generation source via a three-way valve. The automatic back pressure adjusting mechanism may be an airtight structure and an expandable / contractible bag-shaped body to which a gas communication pipe is connected. To be flexible,
The material itself may be elastic such as rubber, or may be a bellows structure.

【0010】[0010]

【作用】液中において、背圧自動調整機構の内部のガス
は、周囲の深度の液圧とほぼ均衡する圧力となる。ガス
連通管の開閉弁が開いていると、そのガス圧力は差圧式
圧力センサの背圧側に伝達され、他方、差圧式圧力セン
サの計測側には周囲の液圧が加わる。差圧式圧力センサ
と背圧自動調整機構は並設されているから、ダイアフラ
ムにかかる計測圧と背圧とは挿入深度にかかわらず常に
ほぼ等しい。従って、どの深度であっても、ダイアフラ
ムには常にその深度の液圧とほぼ均衡した背圧が自動的
に加わり、ダイアフラムを強固な構造とする必要が無く
なる。測定時は、ガス連通管に設けた開閉弁を閉じれば
よい。開閉弁は、背圧自動調整機構での圧力変動の影響
を切り離す作用をする。背圧は、開閉弁を閉じる直前の
一定の圧力であり、その時のダイアフラムの変形量を基
準として、どの程度変形するかによって圧力変動を測定
する。なおガス空間は、液の流入を防止して、ダイアフ
ラムの背圧側に組み込まれているセンサ素子や配線など
の短絡や腐食などを防止する。
In the liquid, the gas inside the automatic back pressure adjusting mechanism has a pressure almost equilibrium with the liquid pressure at the surrounding depth. When the open / close valve of the gas communication pipe is opened, the gas pressure is transmitted to the back pressure side of the differential pressure type pressure sensor, while the surrounding liquid pressure is applied to the measurement side of the differential pressure type pressure sensor. Since the differential pressure type pressure sensor and the back pressure automatic adjusting mechanism are installed in parallel, the measurement pressure applied to the diaphragm and the back pressure are always substantially equal regardless of the insertion depth. Therefore, at any depth, the back pressure that is almost in equilibrium with the hydraulic pressure at that depth is automatically applied to the diaphragm automatically, and it is not necessary to make the diaphragm a strong structure. At the time of measurement, the on-off valve provided in the gas communication pipe may be closed. The on-off valve acts to isolate the influence of pressure fluctuations in the automatic back pressure adjusting mechanism. The back pressure is a constant pressure immediately before the on-off valve is closed, and the pressure fluctuation is measured based on the amount of deformation of the diaphragm at that time as a reference. The gas space prevents the inflow of liquid and prevents short-circuits and corrosion of the sensor elements and wirings installed on the back pressure side of the diaphragm.

【0011】背圧自動調整機構が下部に開口を有する容
器であると、その開口から液が出入し、内部のガスは容
器上部で液圧と均衡する。ガス連通管が容器上部に接続
されているので、容器の容量が充分大きく設計しておく
ことにより、ガス連通管内に液が流れ込むことはない。
液圧と均衡するガス圧が背圧側に印加されることにな
る。
When the back pressure automatic adjusting mechanism is a container having an opening at the bottom, liquid flows in and out through the opening, and the gas inside is balanced with the liquid pressure at the top of the container. Since the gas communication pipe is connected to the upper part of the container, by designing the capacity of the container to be sufficiently large, the liquid will not flow into the gas communication pipe.
A gas pressure that is in equilibrium with the liquid pressure will be applied to the back pressure side.

【0012】背圧自動調整機構の容器に設けた逆止弁付
きのパイプは、液中への挿入・抜出過程で、周囲の液は
流入可能であるが、例え傾いても内部の液やガスが外部
へ流出するのを防止する機能を果たす。水滴トラップ
は、万一誤操作などにより液がガス連通管を通って進入
しきても、それを留めて、液が圧力センサに達するのを
防止する。更に三方弁に接続したガス発生源は、容器内
に強制的に高圧ガスを供給するものであり、それによっ
て容器容積が小さくても内部上方がガスで満たされるよ
うにする。
The pipe with a check valve provided in the container of the automatic back pressure adjusting mechanism allows the surrounding liquid to flow in during the process of inserting / withdrawing into / from the liquid, but even if it tilts, the internal liquid or It functions to prevent the gas from flowing out. The water drop trap prevents the liquid from reaching the pressure sensor even if the liquid has entered through the gas communication pipe due to an erroneous operation or the like. Further, the gas generating source connected to the three-way valve forcibly supplies the high-pressure gas into the container so that the upper part of the container is filled with gas even if the container volume is small.

【0013】[0013]

【実施例】図1は本発明に係る差圧式圧力変動測定装置
の一実施例を示す説明図である。この差圧式圧力変動測
定装置は、差圧式圧力センサ10と、該差圧式圧力セン
サ10に並設されている背圧自動調整機構20と、前記
差圧式圧力センサ10の背圧側と背圧自動調整機構20
とを気密的に連通するガス連通管30と、該ガス連通管
30に設けた開閉弁36とを具備している。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is an explanatory view showing an embodiment of a differential pressure type pressure fluctuation measuring device according to the present invention. This differential pressure type pressure fluctuation measuring device includes a differential pressure type pressure sensor 10, a back pressure automatic adjustment mechanism 20 arranged in parallel with the differential pressure type pressure sensor 10, a back pressure side of the differential pressure type pressure sensor 10 and an automatic back pressure adjustment. Mechanism 20
And a gas communication pipe 30 that air-tightly communicates with each other, and an opening / closing valve 36 provided in the gas communication pipe 30.

【0014】差圧式圧力センサ10は、中空の円柱状で
あり、ダイアフラム12によって内部が気密的に上下に
仕切られている。ダイアフラム12の上側が背圧側であ
り、圧力センサ素子14が配置されている。差圧式圧力
センサ10の底部には周囲の水圧を伝達する圧力導入管
16が連結され、上部にはガス連通管30が接続されて
いる。圧力センサ素子14からのリード線18は、上部
の耐水コネクター19を介して地上に設置している測定
記録装置40に接続する。
The differential pressure type pressure sensor 10 has a hollow cylindrical shape, and the inside thereof is airtightly partitioned by a diaphragm 12. The upper side of the diaphragm 12 is the back pressure side, and the pressure sensor element 14 is arranged therein. A pressure introducing pipe 16 that transmits the surrounding water pressure is connected to the bottom of the differential pressure type pressure sensor 10, and a gas communication pipe 30 is connected to the upper portion. The lead wire 18 from the pressure sensor element 14 is connected to the measurement recording device 40 installed on the ground via the water resistant connector 19 on the upper side.

【0015】背圧自動調整機構20は、金属製の筒状容
器21であり、容量は例えば800〜1000cc程度で
ある。その底部には周囲の水が出入りする開口22が設
けてあり、上部にはガス連通管30が接続されている。
ガス連通管30は、細い高圧チューブ(例えば直径1m
m)である。ガス連通管30の途中には、電磁式の開閉
弁36が配置され、地上からの操作によって開閉する。
The automatic back pressure adjusting mechanism 20 is a metallic cylindrical container 21 having a capacity of, for example, about 800 to 1000 cc. An opening 22 through which ambient water flows in and out is provided in the bottom portion thereof, and a gas communication pipe 30 is connected to the upper portion thereof.
The gas communication pipe 30 is a thin high-pressure tube (for example, a diameter of 1 m).
m). An electromagnetic on-off valve 36 is arranged in the middle of the gas communication pipe 30, and is opened and closed by an operation from the ground.

【0016】次に、この差圧式圧力変動測定装置の圧力
変動測定動作について説明する。開閉弁36を開いてい
る状態で、差圧式圧力変動測定装置をボーリング孔42
内の所定の深度まで挿入する。背圧自動調整機構20の
底部に設けた開口22より周囲の水が流れ込み、容器2
1内の空気は静水圧とほぼ均衡する圧力になるまで圧縮
される。これがガス連通管30を介して差圧式圧力セン
サ10のダイアフラム12の背圧側に印加される。一
方、差圧式圧力センサ10の圧力導入管16を通じて水
圧がダイアフラム12の計測側に印加される。ここで、
差圧式圧力センサ10と背圧自動調整機構20を並設し
ているから、水中深度はほぼ同じであり、ダイアフラム
12に印加される背圧と静水圧はほぼ等しい値をとる。
このようにして、背圧自動調整機構20により、どの深
度に差圧式圧力変動測定装置を挿入しても、その静水圧
にほぼ等しい背圧が差圧式圧力センサ10に自動的に印
加される。従って高深度においても、ダイアフラム12
が低圧用の構造であっても、破壊されるおそれがない。
そのため微小な圧力に対する変形量も大きくでき、高圧
下においても測定感度を高めることができる。但し、こ
こで注意しなくてはならないことは、背圧はガスの流れ
として伝達するから、所定の背圧がかかるまでにタイム
ラグがある。従って、水中への挿入速度は差圧が差圧式
圧力センサ10の定格を越えない程度にゆっくり行う必
要がある。
Next, the pressure fluctuation measuring operation of this differential pressure type pressure fluctuation measuring device will be described. With the on-off valve 36 open, the differential pressure type pressure fluctuation measuring device is installed in the boring hole 42.
Insert to the prescribed depth. The surrounding water flows into the container 2 through the opening 22 provided at the bottom of the automatic back pressure adjusting mechanism 20.
The air in 1 is compressed to a pressure that is approximately in equilibrium with the hydrostatic pressure. This is applied to the back pressure side of the diaphragm 12 of the differential pressure type pressure sensor 10 via the gas communication pipe 30. On the other hand, water pressure is applied to the measurement side of the diaphragm 12 through the pressure introducing pipe 16 of the differential pressure type pressure sensor 10. here,
Since the differential pressure type pressure sensor 10 and the back pressure automatic adjusting mechanism 20 are arranged in parallel, the depth of water is substantially the same, and the back pressure and the hydrostatic pressure applied to the diaphragm 12 are substantially equal.
In this way, by the automatic back pressure adjusting mechanism 20, no matter which depth the differential pressure type pressure fluctuation measuring device is inserted, a back pressure approximately equal to the hydrostatic pressure is automatically applied to the differential pressure type pressure sensor 10. Therefore, even at high depths, the diaphragm 12
Even if the structure is for low pressure, there is no risk of destruction.
Therefore, the amount of deformation with respect to a minute pressure can be increased, and the measurement sensitivity can be increased even under high pressure. However, it should be noted here that since the back pressure is transmitted as a gas flow, there is a time lag until a predetermined back pressure is applied. Therefore, the insertion speed into the water must be so slow that the differential pressure does not exceed the rating of the differential pressure type pressure sensor 10.

【0017】所定の計測深度に達した後、ガス連通管3
0に設置した開閉弁36を閉じる。これは、背圧自動調
整機構20が周囲の水圧変動により背圧も変動させてし
まうことを防止するためである。開閉弁36の閉止によ
って、背圧自動調整機構20から差圧式圧力センサ10
へのガス圧力の伝達が遮断され、背圧は一定値を維持す
る。この時のダイアフラム12の変形量を基準とし、こ
の基準値に対してどの程度変形するかによって、圧力変
動を測定することになる。
After reaching a predetermined measurement depth, the gas communication pipe 3
The on-off valve 36 installed at 0 is closed. This is to prevent the automatic back pressure adjusting mechanism 20 from changing the back pressure due to the fluctuation of the surrounding water pressure. When the on-off valve 36 is closed, the back pressure automatic adjustment mechanism 20 causes the differential pressure type pressure sensor 10 to move.
The transmission of gas pressure to the is cut off, and the back pressure maintains a constant value. Using the deformation amount of the diaphragm 12 at this time as a reference, the pressure fluctuation is measured depending on how much the diaphragm 12 is deformed with respect to this reference value.

【0018】測定深度を変える場合、あるいは本装置を
引き上げる場合は、開閉弁36を開いて、差圧式圧力セ
ンサ10と背圧自動調整機構20との連絡を復旧するだ
けでよい。本装置を更にボーリング孔42深くに挿入す
ると、静水圧が高くなり水が開口22から容器21に流
入すると共に、ガス圧力が高まる。しかし、ダイアフラ
ム12の両側の圧力はほぼ均衡し続ける。本装置をボー
リング孔42から引き上げる時は、静水圧が徐々に低く
なり、容器21内部の水は開口22から流出してガス圧
力が低くなる。引き上げている間中、このような動作に
よりダイアフラム12の両側の圧力はほぼ均衡し続け
る。なおガス連通管30を約1mm程度と小口径にしたの
は、ガス連通管30の内容積をできるだけ小さくし、大
深度でも水がガス連通管30内に入らないようにするた
めである。
When changing the measurement depth or when pulling up the apparatus, it is only necessary to open the open / close valve 36 and restore the connection between the differential pressure type pressure sensor 10 and the automatic back pressure adjusting mechanism 20. When the device is inserted further into the boring hole 42, the hydrostatic pressure increases, water flows into the container 21 through the opening 22, and the gas pressure increases. However, the pressure on both sides of diaphragm 12 remains approximately balanced. When the device is pulled up from the boring hole 42, the hydrostatic pressure gradually decreases, and the water inside the container 21 flows out through the opening 22 and the gas pressure decreases. This action keeps the pressures on both sides of the diaphragm 12 approximately balanced during pulling. The reason why the gas communication pipe 30 has a small diameter of about 1 mm is to make the inner volume of the gas communication pipe 30 as small as possible and prevent water from entering the gas communication pipe 30 even at a large depth.

【0019】図2は、本発明に係る差圧式圧力変動測定
装置の他の実施例を示す説明図である。この差圧式圧力
変動測定装置の背圧自動調整機構50は、容器51と、
容器壁を貫通して底部近傍に達するパイプ54と、該パ
イプ54に設けた水導入用の逆止弁56とを具備してい
る。ガス連通管30は容器51の上部に接続され、該ガ
ス連通管56の途中に液滴トラップ47を有する。また
ガス連通管30は、三方弁38を介して大気側及び高圧
ガス発生源46に接続されている。高圧ガス発生源46
である窒素ガスボンベには精密圧力調整装置44が設け
てある。その他の部分ついては図1に示した構造と同様
であってよいため、同一符号を付し、説明は省略する。
FIG. 2 is an explanatory view showing another embodiment of the differential pressure type pressure fluctuation measuring device according to the present invention. The back pressure automatic adjusting mechanism 50 of the differential pressure type pressure fluctuation measuring device includes a container 51,
A pipe 54 that penetrates the container wall to reach the vicinity of the bottom and a check valve 56 for introducing water provided in the pipe 54 are provided. The gas communication pipe 30 is connected to the upper portion of the container 51 and has a droplet trap 47 in the middle of the gas communication pipe 56. The gas communication pipe 30 is connected to the atmosphere side and the high-pressure gas generation source 46 via a three-way valve 38. High pressure gas source 46
The nitrogen gas cylinder is a precision pressure adjusting device 44. The other parts may be similar to the structure shown in FIG. 1, and therefore, the same reference numerals are given and the description thereof is omitted.

【0020】水が連通管30を通って、差圧式圧力セン
サ10の背圧側に浸入すると、圧力センサ素子等に損傷
を与えるおそれがある。本実施例は、そのような事態の
発生をより効果的に防ぐことができる。まず逆止弁56
は、背圧自動調整機構50の周囲の水の流入は許容する
が、内部の水及び空気の流出は阻止する。従って水中に
挿入する過程で背圧自動調整機構50が大きく傾いた場
合でも、内部の空気が流出することが生じないため、傾
きに注意する必要がなく比較的容易に挿入できる。
If water enters the back pressure side of the differential pressure type pressure sensor 10 through the communication pipe 30, it may damage the pressure sensor element and the like. The present embodiment can prevent such a situation from occurring more effectively. First check valve 56
Allows the inflow of water around the automatic back pressure adjusting mechanism 50, but blocks the outflow of water and air inside. Therefore, even if the back pressure automatic adjusting mechanism 50 is largely tilted in the process of inserting into water, the internal air does not flow out, and therefore the tilt can be relatively easily inserted without paying attention to the tilt.

【0021】液滴トラップ47は、縦長密閉容器48
と、その上壁を貫通し底面近傍に達するガス入口管49
aと、容器の底壁を貫通し上面近傍に達するガス出口管
49bからなる。これは操作ミス等により、水がガス連
通管30に流入してきたときに差圧式圧力センサ10の
背圧側に浸入するのを防止する。即ち、背圧自動調整機
構50から水がガス連通管30に侵入しても、液滴トラ
ップ47の縦長密閉容器48に浸入水が備蓄されため、
差圧式圧力センサ10の背圧側に浸入しない。従って、
より確実に水の浸入を防止したい場合には、このような
液滴トラップ47を設けることも有効である。
The droplet trap 47 is a vertically long closed container 48.
And a gas inlet pipe 49 that penetrates the upper wall and reaches near the bottom surface
and a gas outlet pipe 49b that penetrates the bottom wall of the container and reaches the vicinity of the upper surface. This prevents water from entering the back pressure side of the differential pressure type pressure sensor 10 when the water flows into the gas communication pipe 30 due to an operation error or the like. That is, even if water enters the gas communication pipe 30 from the automatic back pressure adjusting mechanism 50, the infiltrated water is stored in the vertically long closed container 48 of the droplet trap 47.
Do not penetrate into the back pressure side of the differential pressure type pressure sensor 10. Therefore,
If it is desired to prevent water from entering more reliably, it is effective to provide such a droplet trap 47.

【0022】三方弁38は、本装置を引き上げる時にガ
スを大気側に徐々に放出して、差圧式圧力センサ10の
ダイアフラムの両側の圧力均衡を図る働きをする。また
高圧ガス発生源46は、その高圧ガスを三方弁38を介
して背圧自動調整機構50に供給することにより、容器
容積の不足を補う機能を果たす。例えば本装置を水中深
く降ろしていくと、静水圧が徐々に大きくなり、それに
伴いガスは圧縮され、最終的には水がガス連通管に浸入
しようとする。それが装置の使用限界深度である。背圧
自動調整機構50の容積を大きくすれば、ガスが圧縮可
能な範囲が広がり、大深度まで挿入できるが、ボーリン
グ孔との関係あるいは装置構成上で限度がある。上記の
ように、予めガス圧力を高めておけば、大深度でもガス
は圧縮され難くなり、背圧自動調整機構50の容積を大
きくしなくても、水中深くまで挿入することが可能とな
る。
The three-way valve 38 serves to gradually release gas to the atmosphere side when pulling up the present device, and to balance the pressure on both sides of the diaphragm of the differential pressure type pressure sensor 10. The high-pressure gas generation source 46 also supplies the high-pressure gas to the back pressure automatic adjustment mechanism 50 via the three-way valve 38, thereby fulfilling the function of compensating for the shortage of the container volume. For example, when the device is lowered deep into water, the hydrostatic pressure gradually increases, the gas is compressed accordingly, and finally water tends to enter the gas communication pipe. That is the maximum usable depth of the device. If the volume of the automatic back pressure adjusting mechanism 50 is increased, the range in which the gas can be compressed expands and the gas can be inserted to a large depth, but there is a limit in terms of the relationship with the boring hole or the device configuration. As described above, if the gas pressure is increased in advance, it becomes difficult for the gas to be compressed even at a large depth, and the gas can be inserted deep into the water without increasing the volume of the back pressure automatic adjusting mechanism 50.

【0023】図3には、本発明に係る差圧式圧力変動測
定装置の更に他の実施例を示す説明図である。背圧自動
調整機構60は、例えばゴム等の伸縮自在の材料で構成
した袋状体のものである。その内部は空気等のガスで満
たされている。外部の水圧により背圧自動調整機構60
が収縮し、内部のガスを周囲の水圧とほぼ均衡する圧力
にまで圧縮する。これがガス連通管30を介して、差圧
式圧力センサ10に背圧として印加される。背圧自動調
整装置60は全く外部の水を取り入れることがないの
で、前述の実施例のように、液滴トラップのような機構
は不要である。
FIG. 3 is an explanatory view showing still another embodiment of the differential pressure type pressure fluctuation measuring device according to the present invention. The automatic back pressure adjusting mechanism 60 is a bag-shaped body made of a stretchable material such as rubber. The inside is filled with gas such as air. Back pressure automatic adjustment mechanism 60 by external water pressure
Contracts, compressing the gas inside to a pressure approximately in equilibrium with the surrounding water pressure. This is applied as a back pressure to the differential pressure type pressure sensor 10 via the gas communication pipe 30. Since the automatic back pressure adjusting device 60 does not take in any external water, it does not require a mechanism such as a droplet trap as in the above-described embodiment.

【0024】本発明は上記実施例の構成のみに限定され
るものではない。図1に示す実施例の構成に液滴トラッ
プや三方弁、高圧ガス発生源などを組み合わせてもよ
い。また図3の実施例に三方弁と高圧ガス発生源を組み
合わせることも可能である。圧力センサ素子の構成は任
意であり、ダイアフラムの両側の差圧を計測できるもの
であれば使用可能である。
The present invention is not limited to the configuration of the above embodiment. A droplet trap, a three-way valve, a high-pressure gas generation source, or the like may be combined with the configuration of the embodiment shown in FIG. It is also possible to combine a three-way valve and a high-pressure gas generation source with the embodiment of FIG. The configuration of the pressure sensor element is arbitrary, and any element can be used as long as it can measure the differential pressure between the two sides of the diaphragm.

【0025】[0025]

【発明の効果】本発明は、差圧式圧力センサと並設した
背圧自動調整機構により差圧式圧力センサの計測側の液
圧とほぼ均衡する圧力のガスを背圧側に自動的に印加で
きるため、高深度においてもダイアフラムの構造を強固
なものにする必要がない。そのため、変形し易い構造を
採用することにより、高圧下においても、圧力変動の高
感度の測定が可能となる。ダイアフラムの変形を検出す
る圧力センサ素子も一般的な安価なものを使用できる。
According to the present invention, the automatic back pressure adjusting mechanism provided in parallel with the differential pressure type pressure sensor can automatically apply the gas having the pressure almost equal to the hydraulic pressure on the measuring side of the differential pressure type pressure sensor to the back pressure side. , It is not necessary to strengthen the diaphragm structure even at high depths. Therefore, by adopting a structure that is easily deformed, it is possible to measure pressure fluctuations with high sensitivity even under high pressure. A general inexpensive pressure sensor element for detecting the deformation of the diaphragm can be used.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る差圧式圧力変動測定装置の一実施
例を示す説明図。
FIG. 1 is an explanatory view showing an embodiment of a differential pressure type pressure fluctuation measuring device according to the present invention.

【図2】本発明に係る差圧式圧力変動測定装置の他の実
施例を示す説明図。
FIG. 2 is an explanatory view showing another embodiment of the differential pressure type pressure fluctuation measuring device according to the present invention.

【図3】本発明に係る差圧式圧力変動測定装置の更に他
の実施例を示す説明図。
FIG. 3 is an explanatory view showing still another embodiment of the differential pressure type pressure fluctuation measuring device according to the present invention.

【符号の説明】[Explanation of symbols]

10 差圧式圧力センサ 12 ダイアフラム 20 背圧自動調整機構 21 容器 22 開口 30 ガス連通管 36 開閉弁 10 differential pressure type pressure sensor 12 diaphragm 20 automatic back pressure adjusting mechanism 21 container 22 opening 30 gas communication pipe 36 on-off valve

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 ダイアフラムにより気密的に仕切られ、
その変位により計測側の液圧と背圧側のガス圧との差を
検出する差圧式圧力センサと、該差圧式圧力センサに並
設され、周囲の液圧とほぼ均衡する圧力のガスを生じる
背圧自動調整機構と、前記差圧式圧力センサの背圧側と
背圧自動調整機構とを気密的に連通するガス連通管と、
該ガス連通管に設けた開閉弁とを具備している差圧式圧
力変動測定装置。
1. An airtight partition by a diaphragm,
A differential pressure type pressure sensor that detects the difference between the hydraulic pressure on the measurement side and the gas pressure on the back pressure side due to the displacement, and a back pressure sensor that is installed in parallel with the differential pressure type pressure sensor and that produces gas at a pressure that is approximately balanced with the surrounding hydraulic pressure A pressure automatic adjustment mechanism, a gas communication pipe that airtightly connects the back pressure side of the differential pressure type pressure sensor and the back pressure automatic adjustment mechanism,
A differential pressure type pressure fluctuation measuring device comprising an on-off valve provided in the gas communication pipe.
【請求項2】 背圧自動調整機構は、下部に開口を有す
る容器であって、その上部にガス連通管が接続されてい
る請求項1記載の装置。
2. The apparatus according to claim 1, wherein the automatic back pressure adjusting mechanism is a container having an opening at a lower portion, and a gas communication pipe is connected to an upper portion thereof.
【請求項3】 背圧自動調整機構は、容器と、その容器
壁を貫通して底部近傍に達するパイプと、該パイプに設
けた液導入用の逆止弁とを具備し、ガス連通管は該容器
の上部に接続され、該ガス連通管の途中に液滴トラップ
を有する請求項1記載の装置。
3. The automatic back pressure adjusting mechanism comprises a container, a pipe penetrating the container wall to reach the vicinity of the bottom, and a check valve for introducing liquid provided in the pipe, wherein the gas communication pipe is The apparatus according to claim 1, further comprising a droplet trap connected to an upper portion of the container and provided in the middle of the gas communication pipe.
【請求項4】 ガス連通管が、三方弁を介して大気側及
び高圧ガス発生源に接続されている請求項3記載の装
置。
4. The apparatus according to claim 3, wherein the gas communication pipe is connected to the atmosphere side and the high-pressure gas generation source via a three-way valve.
【請求項5】 背圧自動調整機構は、気密構造で且つ伸
縮自在の袋状体であって、それにガス連通管が接続され
ている請求項1記載の装置。
5. The apparatus according to claim 1, wherein the automatic back pressure adjusting mechanism is an airtight structure and is an expandable and contractible bag-like body, to which a gas communication pipe is connected.
JP34123492A 1992-11-27 1992-11-27 Differential pressure type pressure change measuring device Pending JPH06167406A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34123492A JPH06167406A (en) 1992-11-27 1992-11-27 Differential pressure type pressure change measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34123492A JPH06167406A (en) 1992-11-27 1992-11-27 Differential pressure type pressure change measuring device

Publications (1)

Publication Number Publication Date
JPH06167406A true JPH06167406A (en) 1994-06-14

Family

ID=18344427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34123492A Pending JPH06167406A (en) 1992-11-27 1992-11-27 Differential pressure type pressure change measuring device

Country Status (1)

Country Link
JP (1) JPH06167406A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003524245A (en) * 2000-02-22 2003-08-12 シュラムバーガー・テクノロジー・コーポレイション Optimization of integrated reservoir
JP2008232633A (en) * 2007-03-16 2008-10-02 Anritsu Corp Fbg water pressure fluctuation measuring sensor
JP2010071672A (en) * 2008-09-16 2010-04-02 Shimizu Corp Device for measuring hydraulic pressure of groundwater

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003524245A (en) * 2000-02-22 2003-08-12 シュラムバーガー・テクノロジー・コーポレイション Optimization of integrated reservoir
US7739089B2 (en) 2000-02-22 2010-06-15 Schlumberger Technology Corporation Integrated reservoir optimization
US7953585B2 (en) 2000-02-22 2011-05-31 Schlumberger Technology Corp Integrated reservoir optimization
JP2008232633A (en) * 2007-03-16 2008-10-02 Anritsu Corp Fbg water pressure fluctuation measuring sensor
JP2010071672A (en) * 2008-09-16 2010-04-02 Shimizu Corp Device for measuring hydraulic pressure of groundwater

Similar Documents

Publication Publication Date Title
US5159828A (en) Microaccumulator for measurement of fluid volume changes under pressure
US3596510A (en) Resonant infrasonic gauging apparatus
US5644947A (en) Tensiometer and method of determining soil moisture potential in below-grade earthen soil
CA1201532A (en) Liquid volume sensor system
Stannard Tensiometers—theory, construction, and use
US7673515B2 (en) Vibration sensor
US5739435A (en) Two-stage strain-sensing device and method
US5243855A (en) Apparatuses and methods for measuring ultrasonic velocities in materials
US4957001A (en) Apparatus and method for measuring reservoir pressure changes
EP0197042B1 (en) Reference pressure devices for calibrating pressure-measuring instruments
US4052903A (en) Pressure sensor
US20040035634A1 (en) Pneumatically clamped wellbore seismic receiver
US5900545A (en) Strain monitoring system
Dunlap et al. Pore pressure measurements in underconsolidated sediments
US20070220969A1 (en) Leakage Inspection Apparatus for Liquid Storage Tank Technical Field
US6578431B2 (en) Method and apparatus for determining bulk material properties of elastomeric materials
JPH06167406A (en) Differential pressure type pressure change measuring device
CN110579308B (en) Submarine sediment pressure observation device and method
CN114910367A (en) Indoor static sounding and bending element combined test system suitable for soil body size strain measurement
US20210263007A1 (en) Multifunctional and modular geotechnical testing device
CA1317787C (en) Stress gauge
JPH10281905A (en) Vibrating ground pore water pressure measuring device
JPH05163887A (en) Pressurizing device for intra-hole horizontal placing testing machine
KR100702195B1 (en) Disturbance Degree measurement device of soil sample
KR200390948Y1 (en) Disturbance Degree measurement device of soil sample