JPH0616687A - Heparin unsaturated tetrose and its production - Google Patents

Heparin unsaturated tetrose and its production

Info

Publication number
JPH0616687A
JPH0616687A JP19900492A JP19900492A JPH0616687A JP H0616687 A JPH0616687 A JP H0616687A JP 19900492 A JP19900492 A JP 19900492A JP 19900492 A JP19900492 A JP 19900492A JP H0616687 A JPH0616687 A JP H0616687A
Authority
JP
Japan
Prior art keywords
heparin
heparitinase
unsaturated
tetrasaccharide
enzyme
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19900492A
Other languages
Japanese (ja)
Other versions
JP3522775B2 (en
Inventor
Kazuyuki Sugawara
一幸 菅原
Makiko Sugiura
真喜子 杉浦
Shuhei Yamada
修平 山田
Keiichi Yoshida
圭一 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seikagaku Corp
Original Assignee
Seikagaku Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seikagaku Corp filed Critical Seikagaku Corp
Priority to JP19900492A priority Critical patent/JP3522775B2/en
Publication of JPH0616687A publication Critical patent/JPH0616687A/en
Application granted granted Critical
Publication of JP3522775B2 publication Critical patent/JP3522775B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Saccharide Compounds (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

PURPOSE:To provide a new heparin tetrose containing glucosamine-3-O-sulfuric acid. CONSTITUTION:The heparin unsaturated tetrose expressed by formula (R1 is SO3<-> or COCH3; R2 is SO3<-> or H) and its salt. The compound of formula can be produced by decomposing heparin with an enzyme at least containing heparitinase II originated from Flavobacterium and separating the compound from the decomposition product.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、グルコサミン−3−O
−硫酸を含む新規なヘパリン不飽和4糖に関する。該不
飽和4糖は、ヘパリンの抗凝血活性の中心となる機能領
域を構成する糖鎖である。また、本発明は、ヘパリンを
原料として酵素的方法によって該不飽和4糖を製造する
方法に関する。
FIELD OF THE INVENTION The present invention relates to glucosamine-3-O.
-A novel heparin unsaturated tetrasaccharide containing sulfuric acid. The unsaturated tetrasaccharide is a sugar chain that constitutes a functional region that is the center of heparin's anticoagulant activity. The present invention also relates to a method for producing the unsaturated tetrasaccharide by an enzymatic method using heparin as a raw material.

【0002】[0002]

【従来の技術】ヘパリンは抗凝血活性が強いため、医薬
品として広く用いられている。その活性は血液中に存在
するアンチトロンビンIII (ATIII)とヘパリンが複
合体を形成し凝固因子の活性を抑制するためであること
が知られている。このATIIIとヘパリンとが結合する
部分については詳しい研究がなされ、ヘパリンについて
は活性発現に必要な構造としてグルコサミンの3位の炭
素にO−硫酸エステルをもつ糖鎖を含む次の5糖(下記
(2))の構造が決定されている。
2. Description of the Related Art Heparin is widely used as a drug because of its strong anticoagulant activity. It is known that its activity is because antithrombin III (ATIII) existing in blood and heparin form a complex to suppress the activity of coagulation factor. The part where ATIII and heparin bind to each other has been studied in detail, and heparin has the following pentasaccharide containing a sugar chain having an O-sulfate ester at the 3-position carbon of glucosamine as a structure necessary for the activity expression (see below ( The structure of 2)) has been determined.

【0003】 (式中、Rはアセチル基等のアシル基を示す。GlcAはグ
ルクロン酸を、GlcNはグルコサミンを、(3,6-di-SO3)は
3−O及び6−O−硫酸エステルを、IdoAはイズロン酸
をそれぞれ示す。) 本構造を特徴づける2糖(上記(3))、GlcA→GlcNSO
3(3,6-di-SO3) はヘパリン糖鎖の中では微量成分であ
る。この2糖(3)はATIIIへの結合には不可欠な成
分であるため、抗凝固活性を保有するヘパリンの最も適
切なマ−カ−となっている。
[0003] (In the formula, R represents an acyl group such as an acetyl group. GlcA represents glucuronic acid, GlcN represents glucosamine, (3,6-di-SO 3 ) represents 3-O and 6-O-sulfate, and IdoA Represents iduronic acid.) Disaccharides that characterize this structure ((3) above), GlcA → GlcNSO
3 (3,6-di-SO 3 ) is a minor component in heparin sugar chains. Since this disaccharide (3) is an essential component for binding to ATIII, it is the most suitable marker for heparin having anticoagulant activity.

【0004】また、ヘパリンがATIIIと結合すること
によって発現する凝固因子に対する抑制活性は、ATII
I結合領域の分子量によって変化することがわかってお
り、このサイズを調節することによって血液凝固Xa因
子(ファクタ−Xa)とトロンビンの活性抑制の程度を
変化させることが可能である。すなわち、ヘパリンの分
子量を小さくするこにより、トロンビンへの阻害活性を
低減して出血作用を抑え、Xa活性への阻害活性は温存
させて血栓形成を抑制するという考えがある。この考え
に基づいて、出血の副作用の少ない血栓予防薬、低分子
ヘパリンが発明されるに至っている。(例えば米国特許
第4,303,651号、米国特許第4,396,76
2号)。
The inhibitory activity against the coagulation factor expressed by binding of heparin to ATIII is ATII.
It has been known that it changes depending on the molecular weight of the I-binding region, and it is possible to change the degree of suppression of blood coagulation factor Xa (factor-Xa) and thrombin activity by adjusting this size. That is, it is considered that by reducing the molecular weight of heparin, the inhibitory activity on thrombin is reduced to suppress the bleeding action, and the inhibitory activity on Xa activity is preserved to suppress thrombus formation. Based on this idea, a low-molecular-weight heparin, a thrombolytic agent with few side effects of bleeding, has been invented. (For example, US Pat. No. 4,303,651, US Pat. No. 4,396,76
No. 2).

【0005】従来、自然界から得られる糖鎖の中で2糖
(3)の構造を有する原料はヘパリン/ヘパラン硫酸の
他はあまり知られていない。しかしながら、ヘパリンか
ら2糖(3)を含むオリゴ糖を効率よく取り出す良い方
法はなく、また、化学合成によってこれを大量に得るこ
とは極めて困難であった。すなわち、これら低分子ヘパ
リンを、ヘパリンの限定的な化学処理によって製造する
場合、分子量が多分散でかつ多種構成糖からなる生産物
しか得られず、活性領域を含むオリゴ糖のみを調製する
ことは困難であった。
Conventionally, only raw materials having a disaccharide (3) structure among sugar chains obtained from nature have been known, except for heparin / heparan sulfate. However, there is no good method for efficiently extracting an oligosaccharide containing a disaccharide (3) from heparin, and it has been extremely difficult to obtain a large amount of this oligosaccharide by chemical synthesis. That is, when these low-molecular-weight heparins are produced by the limited chemical treatment of heparin, only products having a polydisperse molecular weight and composed of various constituent sugars are obtained, and it is not possible to prepare only oligosaccharides containing an active region. It was difficult.

【0006】比較的簡易な方法としては、フラボバクテ
リウム・ヘパリナム(Flavobacterium heparinum)由来
のヘパリナ−ゼおよびヘパリチナーゼIを含むヘパリン
分解酵素を用いてヘパリンを徹底分解した後、2糖から
8糖までのオリゴ糖異性体の混合物を高速液体クロマト
グラフィ−(HPLC)で分離して、2糖(3)を還元
端側に含む不飽和6糖を得る方法(K. G. Rice & R. J.
Linhardt, Carbohydr.Res. 190, 219-233, 1989)が知
られている。ここで得られる不飽和6糖は、その純度が
80%程度とされている。しかしながら、この方法では
2糖(3)を含む不飽和4糖は生成していない。
As a relatively simple method, heparin is thoroughly decomposed using heparinase derived from Flavobacterium heparinum and heparinase I containing heparitinase I, and then heparin is decomposed into disaccharides to octasaccharides. A method of separating an oligosaccharide isomer mixture by high performance liquid chromatography (HPLC) to obtain an unsaturated hexasaccharide containing a disaccharide (3) on the reducing end side (KG Rice & RJ
Linhardt, Carbohydr. Res. 190, 219-233, 1989) is known. The purity of the unsaturated hexasaccharide obtained here is about 80%. However, this method does not produce unsaturated tetrasaccharides containing disaccharide (3).

【0007】別の報告では同様の方法で2糖(3)が中
間に存在する不飽和6糖が得られ、これを亜硝酸分解す
ることにより還元端がアンヒドロマンノ−ス体に変化し
た不飽和4糖が得られるとの報告がある(J. Choay, J.
C. Lormeau, M. Petitou, P.Snay & J. Fareed, Annals
of the New York Academy of Sciences, 370, 644-64
9, 1981)。
In another report, an unsaturated hexasaccharide having a disaccharide (3) in the middle was obtained by a similar method, and the reducing end was converted to an anhydromannose form by decomposing nitrous acid to this unsaturated tetrasaccharide. It has been reported that sugar can be obtained (J. Choay, J.
C. Lormeau, M. Petitou, P. Snay & J. Fareed, Annals
of the New York Academy of Sciences, 370, 644-64
9, 1981).

【0008】以上の通り、従来の報告ではヘパリンから
酵素を用いて2糖(3)を含む最小のオリゴ糖を得よう
としているが、これらの報告を含めて酵素分解法、化学
分解法、化学合成法のいずれによっても、現在までに上
記式(3)の2糖単位を含む不飽和4糖を調製した報告
はない。もし、このような4糖が得られれば、アンチト
ロンビンIII結合領域に関与する糖鎖の合成原料や新し
い血液凝固因子の阻害剤として活用することが期待でき
る。
As described above, in the previous reports, the minimum oligosaccharide containing disaccharide (3) was obtained from heparin by using an enzyme. However, including these reports, the enzymatic decomposition method, the chemical decomposition method, and the chemical decomposition method were used. To date, there has been no report of preparing an unsaturated tetrasaccharide containing the disaccharide unit of the above formula (3) by any of the synthetic methods. If such a tetrasaccharide is obtained, it can be expected to be utilized as a raw material for synthesizing sugar chains involved in the antithrombin III binding region and as a new blood coagulation factor inhibitor.

【0009】[0009]

【発明が解決しようとする課題】本発明の第1の目的
は、グルコサミン−3−O−硫酸を含む新規なヘパリン
4糖を提供することである。また、他の目的はこのよう
なヘパリン4糖を、ヘパリンを原料として酵素的手段を
用いて効率よく、簡便に得る手法を提供することであ
る。
SUMMARY OF THE INVENTION The first object of the present invention is to provide a novel heparin tetrasaccharide containing glucosamine-3-O-sulfate. Another object is to provide a method for obtaining such a heparin tetrasaccharide efficiently and easily by using heparin as a raw material and an enzymatic means.

【0010】[0010]

【課題を解決するための手段】本発明者らは、ヘパリン
由来の2糖(3)を含む不飽和4糖を得るべく、ヘパリ
ン/ヘパラン硫酸系の分解酵素の特異性を研究し、その
応用を試みた結果、新規なヘパリン不飽和4糖を効率よ
く、簡易に製造できることを見出し、本発明を完成する
に至った。
The present inventors have studied the specificity of heparin / heparan sulphate-degrading enzymes in order to obtain unsaturated tetrasaccharides containing heparin-derived disaccharide (3), and applied them. As a result, they have found that a novel heparin unsaturated tetrasaccharide can be efficiently and easily produced, and completed the present invention.

【0011】すなわち本発明は、下記化2の一般式
(1)で表されることを特徴とするヘパリン不飽和4糖
およびその塩を提供するものである。
That is, the present invention provides a heparin unsaturated tetrasaccharide and a salt thereof represented by the following general formula (1).

【0012】[0012]

【化2】 [Chemical 2]

【0013】(式中、R1は、SO3 - またはCOCH3(アセチ
ル基; 以下「Ac」と略す。) を表し、R2は、SO3 - また
はHを表す。) 尚、一般式(1)の構造式において、末端不飽和糖残基
を4、以下他の糖残基を1〜3と番号を当て、各糖残基
の基本単位糖を示した。また、一般式(1)の構造式で
は電離した状態のみを記載したが、本発明は、これに限
定されないことは明らかであり、これにプロトンが付加
した構造のもの、あるいはアルカリ金属(ナトリウム、
カリウム、リチウム等)、アルカリ土類金属(カルシウ
ム、バリウム等)、あるいはアンモニウムイオン等との
塩を包含する。
(In the formula, R 1 represents SO 3 or COCH 3 (acetyl group; hereinafter abbreviated as “Ac”), and R 2 represents SO 3 or H). In the structural formula of 1), the terminal unsaturated sugar residue is numbered 4 and the other sugar residues are numbered 1 to 3, and the basic unit sugar of each sugar residue is shown. Further, although only the ionized state is described in the structural formula of the general formula (1), it is clear that the present invention is not limited to this, and a structure having a proton added thereto or an alkali metal (sodium,
It includes salts with potassium, lithium, etc.), alkaline earth metals (calcium, barium, etc.), or ammonium ions.

【0014】また本発明は、ヘパリンを、フラボバクテ
リウム由来のヘパリチナーゼIIを少なくとも用いて分解
し、この分解生成物から分取することを特徴とする前記
一般式(1)で表されるヘパリン不飽和4糖およびその
塩の製造法を提供するものである。以下本発明を具体的
に説明する。
Further, the present invention is characterized in that heparin is decomposed by using at least flavobacterium-derived heparitinase II, and fractionated from this decomposition product. The present invention provides a method for producing a saturated tetrasaccharide and a salt thereof. The present invention will be specifically described below.

【0015】〔ヘパリン不飽和4糖〕本発明のヘパリン
不飽和4糖は、好ましくは、一般式(1)において下記
置換基を選択した化合物I〜III である。 化合物I :ΔGlcA-GlcNAc(6S)-GlcA-GlcN(NS,3S) (R1はAc、R2はH の場合。) 化合物II :ΔGlcA-GlcNAc(6S)-GlcA-GlcN(NS,3S,6
S) (R1はAc、R2はSO3 - の場合。) 化合物III :ΔGlcA-GlcN(NS,6S)-GlcA-GlcN(NS,3S,6
S) (R1はSO3 - 、R2はSO3 - の場合。) (上記式においてΔは不飽和糖であることを、GlcAはグ
ルクロン酸を、GlcNはグルコサミンを、Acはアセチル基
を、NSはN−硫酸エステルを、3Sは3−O−硫酸エステ
ルを、6Sは6−O−硫酸エステルをそれぞれ示す。) これら本発明の不飽和4糖は還元端糖残基が3−O−硫
酸エステル化されたグルコサミンである共通構造を有し
ている。後述の実施例に示す通り、本発明の不飽和4糖
の、構造はプロトン核磁気共鳴スペクトル(1H−NM
R)を測定することにより解析された。
[Heparin Unsaturated Tetrasaccharide] The heparin unsaturated tetrasaccharide of the present invention is preferably compounds I to III in which the following substituents are selected in the general formula (1). Compound I: ΔGlcA-GlcNAc (6S) -GlcA-GlcN (NS, 3S) (when R 1 is Ac and R 2 is H.) Compound II: ΔGlcA-GlcNAc (6S) -GlcA-GlcN (NS, 3S, 6
S) (R 1 is Ac, R 2 is SO 3 - in the case) Compound III:. ΔGlcA-GlcN (NS , 6S) -GlcA-GlcN (NS, 3S, 6
S) (R 1 is SO 3 -, R 2 is SO 3 -. That it is a case) (the Δ in the formula unsaturated sugar, GlcA is glucuronic acid, GlcN is glucosamine, Ac is an acetyl group , NS indicates N-sulfate, 3S indicates 3-O-sulfate, and 6S indicates 6-O-sulfate.) These unsaturated tetrasaccharides of the present invention have a reducing end sugar residue of 3-O. -Has a common structure which is sulphated glucosamine. As shown in Examples below, the structure of the unsaturated tetrasaccharide of the present invention has a proton nuclear magnetic resonance spectrum ( 1 H-NM
It was analyzed by measuring R).

【0016】〔ヘパリン不飽和4糖の製造〕ヘパリンか
らヘパリン不飽和4糖を切り出すために、活性領域にお
ける2糖(3)周辺の糖鎖構造に作用する酵素を活用す
る手段を検討した。すなわち、このような用途に使用で
きる可能性のある酵素として、二種類のフラボバクテリ
ウム属微生物によって生産された基質特異性の異なる6
種類(ヘパリナーゼ、ヘパリチナーゼI、I0、II、IVお
よびV)のヘパリン分解酵素を選び、その種々の組合せ
について逐次または同時に用いてヘパリンを分解し、そ
の生成物の組成について調べた。具体的には、各酵素に
よるヘパリンの分解物について、生成オリゴ糖の分解パ
タ−ンをゲル濾過法で、その構成2糖組成の相違を陰イ
オン交換HPLCで検討した。
[Production of Heparin Unsaturated Tetrasaccharide] In order to excise the heparin unsaturated tetrasaccharide from heparin, means for utilizing an enzyme that acts on the sugar chain structure around the disaccharide (3) in the active region was examined. That is, as enzymes that may be used in such applications, 6 produced by two types of Flavobacterium microorganisms having different substrate specificities are used.
Heparin-degrading enzymes of various types (heparinase, heparitinase I, I 0 , II, IV and V) were selected, and various combinations thereof were used sequentially or simultaneously to decompose heparin, and the composition of the product was investigated. Specifically, with respect to heparin degradation products by each enzyme, the degradation pattern of the oligosaccharides produced was examined by gel filtration, and the difference in the constituent 2 sugar composition was examined by anion exchange HPLC.

【0017】その結果、ヘパリンの主構造であるIdo(2S
O3)-GlcNSO3(6SO3)のクラスタ−部分については、ヘパ
リナ−ゼがより早く分解して不飽和の2糖〜8糖の種々
のオリゴ糖を生じやすく、このオリゴ糖に対してヘパリ
チナ−ゼIおよびIIを同時に作用させると、本発明の
前記化合物I〜III の三種の不飽和4糖と一種の糖−蛋
白質結合部位の不飽和オリゴ糖(ΔGlcA-GlcNAc(6S)-Gl
cA-Gal-Gal-Xyl-Ser)の四種の不飽和オリゴ糖が残るの
みで、他のオリゴ糖は全て不飽和2糖となることが見出
された。このうち一種の不飽和オリゴ糖は、原料として
使用したヘパリンが還元端にペプチドが結合した構造で
ある場合のみ生じる。このオリゴ糖は、ヘパリチナーゼ
Vで2糖と4糖-Serに分解されたが、本発明の三種の不
飽和4糖は上記の6種のいずれのヘパリン分解酵素(エ
リミナーゼ)を作用させてもそれ以上は分解されず、不
飽和2糖を生じないことがわかった。なお、これらの6
種の酵素の性質、一般的な基質特異性等については「新
生化学実験講座3、糖質II、プロテオグリカンとグリ
コサミノグリカン」、244〜249頁(1991年、
株式会社東京化学同人発行)に記載されているが、AT
IIIとの結合に関与する2糖単位(3)周辺の構造に対
してどのように作用するかは不明であった。
As a result, the main structure of heparin, Ido (2S
Regarding the cluster part of O 3 ) -GlcNSO 3 (6SO 3 ), heparinase is likely to decompose more rapidly to form various oligosaccharides of unsaturated disaccharide to octasaccharide, and heparinina is more likely to react with this oligosaccharide. -When the enzymes I and II are allowed to act simultaneously, the three unsaturated tetrasaccharides of the compounds I to III of the present invention and one unsaturated oligosaccharide (ΔGlcA-GlcNAc (6S) -Gl at the sugar-protein binding site are combined.
It was found that only four kinds of unsaturated oligosaccharides (cA-Gal-Gal-Xyl-Ser) remained, and all other oligosaccharides became unsaturated disaccharides. Among them, one kind of unsaturated oligosaccharide occurs only when the heparin used as a raw material has a structure in which a peptide is bound to the reducing end. This oligosaccharide was decomposed by heparitinase V into a disaccharide and a tetrasaccharide-Ser, but the three unsaturated tetrasaccharides of the present invention were affected by any of the above six heparin degrading enzymes (eliminase). It was found that the above was not decomposed and unsaturated disaccharide was not produced. In addition, these 6
For the properties of general enzymes, general substrate specificity, etc., see “Course of New Chemistry 3, Sugar II, Proteoglycans and Glycosaminoglycans”, pp. 244-249 (1991,
(Published by Tokyo Kagaku Doujinshi), AT
It was unclear how it acts on the structure around the disaccharide unit (3) involved in binding to III.

【0018】以上の実験結果より、ヘパリンの主糖鎖
(タンパクへの橋渡し構造を除く)については、グルコ
サミン−3−O−硫酸を含む部分(前記(3)の2糖構
造を含む)のみが酵素分解によって不飽和4糖として残
されるため、本発明の不飽和4糖だけを容易に濃縮、回
収することが可能であることが判明した。以上は本発明
に至る基礎実験であり、本発明のヘパリン不飽和4糖の
製造法はこの結果を基に完成された。
From the above experimental results, regarding the main sugar chain of heparin (excluding the bridge structure to the protein), only the portion containing glucosamine-3-O-sulfate (including the disaccharide structure of the above (3)) It was found that only the unsaturated tetrasaccharide of the present invention can be easily concentrated and recovered because it is left as an unsaturated tetrasaccharide by enzymatic decomposition. The above is a basic experiment leading to the present invention, and the method for producing the heparin unsaturated tetrasaccharide of the present invention was completed based on this result.

【0019】本発明の製造法はヘパリンにヘパリチナ−
ゼIIを作用させることを必須要件とする。本発明ではヘ
パリチナ−ゼIIと組み合わせて種々のヘパリン分解酵素
を使用することができる。すなわち、ヘパリチナ−ゼII
を効率よく経済的に作用させるために、ヘパリナ−ゼ、
ヘパリチナ−ゼI、I0、IV、ヘパリチナーゼV等公知の
ヘパリン分解酵素を併用することができる。本発明にお
いて使用するヘパリン分解酵素としては、フラボバクテ
リウム属微生物(例えば、フラボバクテリウム・ヘパリ
ナム(ATCC 13125;米国特願第180,78
0号)、フラボバクテリウムsp.Hp206(微工研
菌寄第10207号;特開平2−57183号);Xth
International Symposium on Glycoconjugates(Proceed
ings),No228, p.330-331(1989))由来の酵素が例示され
るが、本発明の目的に適合する限り、他の起源の酵素
(例えば、バチルス属微生物由来;特開平2−1424
70、特願平3−63707)であってもよい。
The production method of the present invention is based on heparin, heparitin-
It is an essential requirement to let Ze II act. Various heparin degrading enzymes can be used in combination with heparitinase II in the present invention. That is, heparitinase II
Heparinase,
Known heparin-degrading enzymes such as heparitinase I, I 0 , IV and heparitinase V can be used in combination. The heparin-degrading enzyme used in the present invention includes a microorganism of the genus Flavobacterium (for example, Flavobacterium heparinum (ATCC 13125; US Patent Application No. 180,78).
No. 0), Flavobacterium sp. Hp206 (Ministry of Microbiological Research, No. 10207; JP-A-2-57183); Xth
International Symposium on Glycoconjugates (Proceed
ings), No228, p.330-331 (1989)), but enzymes of other origins (for example, Bacillus microorganisms; JP-A-2-1424) as long as they are compatible with the object of the present invention.
70, Japanese Patent Application No. 3-63707).

【0020】種々のヘパリン分解酵素を併用する際に
は、これらの酵素を任意に組み合わせて混合し用いる
か、単独または二種以上を混合して任意の順序で別々に
作用させることができる。この場合、好ましくは、ヘパ
リチナーゼIIと(a:ヘパリナーゼ及びヘパリチナーゼ
IVからなる群)から選択される1種以上の酵素(a群酵
素)と(b:ヘパリチナーゼI、ヘパリチナーゼI0及び
ヘパリチナーゼVからなる群)から選択される1種以上
の酵素(b群酵素)とを併用することが挙げられる。な
お、ヘパリチナーゼIIとa群酵素およびb群酵素の一方
を併用することも可能である。
When various heparin-degrading enzymes are used in combination, these enzymes can be used in an arbitrary combination and mixed, or they can be used individually or in a mixture of two or more kinds to act separately in any order. In this case, heparitinase II and (a: heparinase and heparitinase are preferred.
One or more enzymes selected from the group consisting of IV) (group a enzyme) and one or more enzymes selected from (b: a group consisting of heparitinase I, heparitinase I 0 and heparitinase V) (group b enzyme) It is possible to use together with. It is also possible to use heparitinase II in combination with one of the group a enzyme and the group b enzyme.

【0021】特に、好ましくは、ヘパリチナーゼIIと、
ヘパリチナーゼIと、ヘパリナーゼまたはヘパリチナー
ゼIVとを併用することが挙げられる。併用の態様として
は、例えばヘパリナーゼ、ヘパリチナーゼIおよびIIを
混合してヘパリンに作用させる方法、ヘパリチナ−ゼ
I、IIおよびIVを混合してヘパリンに作用させる方法、
ヘパリンをヘパリナ−ゼまたはヘパリチナ−ゼIVで消化
した後、不飽和2糖を除去し、これにヘパリチナ−ゼI
およびIIを加えて再度徹底消化する方法などが例示さ
れる。しかし、いずれの場合においても、ヘパリチナ−
ゼIIの使用は必須である。
Particularly preferably, heparitinase II and
A combination of heparitinase I and heparinase or heparitinase IV can be mentioned. Examples of the combined use include, for example, a method of mixing heparinase, heparitinase I and II to act on heparin, a method of mixing heparitinase I, II and IV to act on heparin,
After heparin was digested with heparinase or heparitinase IV, the unsaturated disaccharide was removed and heparinase I was added to it.
A method of adding and II and thoroughly digesting again is exemplified. However, in any case, heparitina
The use of ZE II is mandatory.

【0022】原料として使用するヘパリンは、通常入手
できるヘパリンであればよく、特に限定されない。例え
ば、ブタ、ウシ、ヒツジ、クジラ等の哺乳動物の臓器
(例えば、小腸、肺)由来のヘパリンを使用することが
できる。通常、市販ヘパリンはアルカリ処理を施された
ものであるため、還元端のペプチドや橋渡し構造を失っ
ている場合が多く、本発明による酵素処理を行っても糖
と蛋白質の結合部位の不飽和糖を生じない場合が多い。
The heparin used as a raw material is not particularly limited as long as it is a commonly available heparin. For example, heparin derived from a mammalian organ (eg, small intestine, lung) such as pig, cow, sheep, whale can be used. Usually, since commercially available heparin is treated with an alkali, it often loses the peptide or bridging structure at the reducing end, and even if the enzyme treatment according to the present invention is carried out, the unsaturated sugar at the binding site between sugar and protein is Often does not occur.

【0023】上記の酵素反応を行う具体的方法、反応条
件は各ヘパリン分解酵素について採用されている通常の
方法および条件であればよく特に限定されない。すなわ
ち、ヘパリンを含有する水性溶液(水溶液、任意の緩衝
剤(例えば、リン酸緩衝剤、酢酸緩衝剤、ホウ酸緩衝剤
など)を含む溶液)に各種ヘパリン分解酵素を全て混合
して添加し、インキュベートするか、単独または二種以
上混合したヘパリン分解酵素を任意の順序で順次添加し
てインキュベートすることができる。更に、単独または
二種以上の酵素を通常の方法(米国特願第196,72
0号)で固定化た固定化酵素(例えば、セファロース
(ファルマシア・ファインケミカル社製)に固定化した
固定化酵素)を用いて反応させることもできる。
The specific method and reaction conditions for carrying out the above-mentioned enzymatic reaction are not particularly limited as long as they are the usual methods and conditions adopted for each heparin-degrading enzyme. That is, an aqueous solution containing heparin (aqueous solution, a solution containing an arbitrary buffer (for example, a phosphate buffer, an acetate buffer, a borate buffer, etc.)) is added by mixing all of the various heparin degrading enzymes, Incubation can be performed, or heparin-degrading enzymes, which are used alone or as a mixture of two or more, can be sequentially added in any order and incubated. Further, a single method or two or more kinds of enzymes can be used by a conventional method (US Patent Application No. 196,72).
It is also possible to react using an immobilized enzyme immobilized with No. 0) (for example, immobilized enzyme immobilized on Sepharose (Pharmacia Fine Chemical Co.)).

【0024】反応条件は、二種以上の酵素を混合して用
いるときは各酵素のそれぞれが作用し得る条件を設定す
る必要があるが、二種以上の酵素を別々に作用させると
きは各酵素の最適の反応条件を選択して反応させること
ができる。反応時間は、本発明の不飽和4糖の生成をH
PLC等のクロマトグラフィーで分析することによって
当業者であれば容易に決定することができる。各ヘパリ
ン分解酵素の最適の反応条件(pH、温度)は以下の通
りである。
When two or more kinds of enzymes are mixed and used, it is necessary to set the reaction conditions such that each of the enzymes can act, but when two or more kinds of enzymes are acted separately, each enzyme can act. The reaction conditions can be selected by selecting the optimum reaction conditions. The reaction time depends on the production of the unsaturated tetrasaccharide of the present invention.
Those skilled in the art can easily determine by analyzing by chromatography such as PLC. The optimum reaction conditions (pH, temperature) for each heparin-degrading enzyme are as follows.

【0025】ヘパリチナーゼII:至適pH約7.5、至
適温度約40℃ ヘパリナーゼ:至適pH約7.0、至適温度約30℃ ヘパリチナーゼI:至適pH約6.5〜7.5、至適温
度約45℃ ヘパリチナーゼI0:至適pH約7.5、至適温度約45
℃ ヘパリチナーゼIV:至適pH約7.5、至適温度約40
℃ ヘパリチナーゼV:至適pH約7.0、至適温度約40
℃ 各酵素に共通する反応条件として、例えば、ヘパリン濃
度1.0〜100g/Lの基質溶液を用い、pH5〜
8、10〜40℃において0.1〜100時間反応させ
る条件が例示される。
Heparitinase II: optimum pH of about 7.5, optimum temperature of about 40 ° C. Heparinase: optimum pH of about 7.0, optimum temperature of about 30 ° C. Heparitinase I: optimum pH of about 6.5 to 7.5. Optimum temperature about 45 ° C Heparitinase I 0 : optimum pH about 7.5, optimum temperature about 45
℃ Heparitinase IV: optimum pH about 7.5, optimum temperature about 40
℃ Heparitinase V: optimum pH about 7.0, optimum temperature about 40
As the reaction conditions common to each enzyme, for example, a substrate solution having a heparin concentration of 1.0 to 100 g / L is used, and the pH is 5 to 5.
Examples of conditions include reaction at 8, 10 to 40 ° C. for 0.1 to 100 hours.

【0026】また、使用する酵素の量は、併用する酵素
の種類によって種々選択され得る。例えば、酵素とし
て、ヘパリチナーゼII、ヘパリチナーゼI、及びヘパリ
ナーゼまたはヘパリチナーゼIVを併用する場合、各酵素
量は、ヘパリン1gに対しヘパリチナーゼIIが10〜1
00ユニット、ヘパリチナーゼIが5〜50ユニット、
ヘパリナーゼまたはヘパリチナーゼIVが20〜200ユ
ニットが例示できる。ここで、ユニットとは、1分間に
1μモルの不飽和糖を生成せしめる力価を意味する。た
だし、力価測定にあたり、基質としては、ヘパリチナー
ゼI、I0、II、Vについては、ウシ腎臓由来のヘパラン
硫酸を用い、ヘパリナーゼおよびヘパリチナーゼIVにつ
いては、ブタ小腸由来のヘパリンを用いる。
The amount of enzyme used can be variously selected depending on the kind of enzyme used in combination. For example, when heparitinase II, heparitinase I, and heparinase or heparitinase IV are used in combination as the enzymes, the amount of each enzyme is 10 to 1 g of heparinase II for 1 g of heparin.
00 units, 5-50 units of heparitinase I,
20 to 200 units of heparinase or heparitinase IV can be exemplified. Here, the unit means a titer capable of producing 1 μmol of unsaturated sugar per minute. However, in the titer measurement, heparinase I, I 0 , II, V is used as a substrate, heparan sulfate derived from bovine kidney is used, and for heparinase and heparitinase IV, heparin derived from porcine small intestine is used.

【0027】酵素によるヘパリンの分解反応終了後、分
解生成オリゴ糖は、通常の分離精製方法、例えば、各種
クロマトグラフィーによって精製され、目的のヘパリン
不飽和4糖を分離精製することができる。例えば、通
常、該分解生成物は、初めゲル濾過によりほぼ4糖近辺
のオリゴ糖を粗分画し、次いで、HPLC(例えば、ポ
リアミン結合シリカゲルカラムを使用するHPLC)に
より化合物I〜III を分離、分画することが挙げられ
る。この場合、分取される分画は、本発明の一般式
(1)を満足する化合物から構成されるのであれば、必
ずしも単一な化合物のみである必要はなく、例えば、化
合物I〜III から選択される2種以上の混合物であって
もかまわない。また、化合物1〜III の各単品を精製す
る場合は、上記混合物等を再度精製すること等により行
ってもよい。
After completion of the heparin decomposition reaction by the enzyme, the decomposition-produced oligosaccharide can be purified by a usual separation and purification method, for example, various chromatographies, to separate and purify the target heparin unsaturated tetrasaccharide. For example, usually, the decomposition product is obtained by first roughly fractionating oligosaccharides in the vicinity of tetrasaccharide by gel filtration, and then separating compounds I to III by HPLC (for example, HPLC using a polyamine-bonded silica gel column). Fractionation can be mentioned. In this case, the fraction to be separated is not necessarily a single compound as long as it is composed of the compounds satisfying the general formula (1) of the present invention. It may be a mixture of two or more kinds selected. Further, when each of the compounds 1 to III is purified, it may be carried out by refining the above mixture or the like.

【0028】ゲル濾過法としては、分画分子量範囲50
0〜20,000のものが好ましい。また、HPLC
は、陰イオン交換クロマトグラフィーを採用することが
好ましい。 〔用途〕本発明の不飽和4糖は、化合物1〜III あるい
はその構成オリゴ糖、または単糖、特に残基1の3−O
−硫酸置換糖を貴重な各種試薬として提供できる。ま
た、ヘパリン不飽和4糖は、ATIII結合領域に関与す
る糖鎖の合成原料(素材)や血液凝固因子の新しい阻害
剤としての用途が期待できる。また、該不飽和4糖の還
元端または非還元端を他の糖類、リガンド、医用材料、
その他合成ポリマーに結合させた修飾物は、ATIII結
合性アフィニティー担体として各種クロマトグラフィー
や人工血管表面等の機能性素材として用いることが期待
できる。また、これらの修飾物は弱い抗凝固活性物質と
しての利用が可能である。
As the gel filtration method, a molecular weight cutoff range of 50
The thing of 0-20,000 is preferable. Also, HPLC
Preferably employs anion exchange chromatography. [Use] The unsaturated tetrasaccharide of the present invention is a compound 1 to III or its constituent oligosaccharide, or a monosaccharide, particularly 3-O of residue 1.
-Sulfuric acid-substituted sugar can be provided as various valuable reagents. In addition, heparin unsaturated tetrasaccharide can be expected to be used as a synthetic raw material (material) for sugar chains involved in the ATIII binding region and a new inhibitor of blood coagulation factors. In addition, the reducing or non-reducing end of the unsaturated tetrasaccharide is replaced with other saccharides, ligands, medical materials,
The modified product bound to other synthetic polymer can be expected to be used as a functional material for various chromatography and artificial blood vessel surface as an ATIII-binding affinity carrier. In addition, these modified products can be used as weak anticoagulant active substances.

【0029】[0029]

【実施例】以下、本発明の具体的実施例を説明するが、
本発明は、これに限定されるものではない。また、各ヘ
パリン分解酵素の呼称は前述の「新生化学実験講座3、
糖質II、プロテオグリカンとグリコサミノグリカン」の
記載にしたがっている。 実施例1:ブタ小腸由来のヘパリン500mgを20m
L(ミリリットル)の20mM酢酸緩衝液(pH7.
0)(2mM酢酸カルシウム含有)に溶解した。この液
にフラボバクテリウム・ヘパリナム由来のヘパリナーゼ
30ユニット、ヘパリナーゼII 12ユニットおよび
ヘパリチナーゼI 6ユニットを加えて37℃で5時間
消化した。反応終了後、沸騰浴中にて3分間加熱して酵
素を変性させ、生じた不溶物を3000rpm、10分
遠心分離して除去した。
EXAMPLES Hereinafter, specific examples of the present invention will be described.
The present invention is not limited to this. In addition, the name of each heparin-degrading enzyme is the above-mentioned "Shinsei Chemistry Experiment Course 3,
Carbohydrate II, proteoglycans and glycosaminoglycans ”. Example 1: 20 mg of heparin 500 mg derived from porcine small intestine
L (milliliter) of 20 mM acetate buffer (pH 7.
0) (containing 2 mM calcium acetate). To this solution, 30 units of heparinase derived from Flavobacterium heparinum, 12 units of heparinase II and 6 units of heparitinase I were added and digested at 37 ° C for 5 hours. After completion of the reaction, the enzyme was denatured by heating in a boiling bath for 3 minutes, and the resulting insoluble matter was removed by centrifugation at 3000 rpm for 10 minutes.

【0030】この上清液に食塩を添加して0.2モル濃
度とし、セルロファインGCL−90m(生化学工業株
式会社)カラム(4.5×105cm)に負荷して、
0.2M食塩溶液にてゲル濾過を行った。4糖相当画分
を分取して濃縮した後で2mLの蒸留水に溶解、セルロ
ファインGCL−25(生化学工業株式会社)カラム
(2×45cm)を用いて脱塩し、凍結乾燥した。 凍
結乾燥物を1mLの20mM酢酸緩衝液(pH7.0)
(2mM酢酸カルシウム含有)に溶解し、ヘパリチナー
ゼII 2ユニットを加えて37℃で3時間消化した。以
後、前記と同様に酵素を変性させ、生じた不溶物を30
00rpm、10分遠心分離して除去し、セルロファイ
ンGCL−90mカラム(3×100cm)で4糖を回
収し、セルロファインGCL−25カラム(2×45c
m)を用いて脱塩、凍結乾燥して化合物I、II、III を
含むヘパリン不飽和4糖の混合物を得た。
Salt was added to this supernatant liquid to make a 0.2 molar concentration, which was loaded on a Cellulofine GCL-90m (Seikagaku Corporation) column (4.5 × 105 cm),
Gel filtration was performed with a 0.2 M sodium chloride solution. The tetrasaccharide-equivalent fraction was collected and concentrated, then dissolved in 2 mL of distilled water, desalted using Cellulofine GCL-25 (Seikagaku Corporation) column (2 × 45 cm), and freeze-dried. Lyophilized product was added to 1 mL of 20 mM acetate buffer (pH 7.0).
It was dissolved in (containing 2 mM calcium acetate), 2 units of heparitinase II was added, and digested at 37 ° C. for 3 hours. Thereafter, the enzyme was denatured in the same manner as above, and the resulting insoluble matter was removed by 30
Centrifugation was performed at 00 rpm for 10 minutes to remove, and the tetrasaccharide was recovered with a Cellulofine GCL-90m column (3 x 100 cm), and the cellulofine GCL-25 column (2 x 45c).
m) was used for desalting and lyophilization to obtain a mixture of heparin unsaturated tetrasaccharides containing compounds I, II and III.

【0031】この混合物を0.5mLの16mMリン酸
2水素ナトリウム溶液に溶解し、HPLCカラム(アミ
ノシリカゲルカラム、PA03 4.6×250mm、
YMC社製)に負荷して、HPLCでリン酸2水素ナト
リウム濃度を200mMから800mMまで直線的に上
昇せしめて溶出させ、紫外部吸収232nmで追跡して
3成分I、II、III を分取した(図1参照)。
This mixture was dissolved in 0.5 mL of a 16 mM sodium dihydrogen phosphate solution, and an HPLC column (amino silica gel column, PA03 4.6 × 250 mm,
(Manufactured by YMC Co., Ltd.), the concentration of sodium dihydrogen phosphate was linearly increased by HPLC from 200 mM to 800 mM for elution, and the three components I, II, and III were separated by tracing at 232 nm ultraviolet absorption. (See Figure 1).

【0032】いずれの成分も濃縮乾固した後、少量の蒸
留水に溶解、セルリファインGCL−25カラムで脱
塩、凍結乾燥してヘパリン不飽和4糖I、II、III を得
た。それぞれの乾燥物を蒸留水に溶解し、その1部を
0.01規定の塩酸溶液で希釈して、232nmにおけ
る紫外部吸収を求めた。この値を不飽和2糖のモル分子
吸光係数で除してモル濃度を概算した結果、ヘパリン5
00mgからの収量は、Iは、3.8mg、IIは、1
6.8mg、III は、2.8mgであった。得られたヘ
パリン不飽和4糖の500MHz 1H-NMR スペクトルとプロト
ンの帰属から構造が確認された。
All the components were concentrated to dryness, dissolved in a small amount of distilled water, desalted with a Cellrefine GCL-25 column, and freeze-dried to obtain heparin unsaturated tetrasaccharides I, II and III. Each dried product was dissolved in distilled water, and one part thereof was diluted with a 0.01 N hydrochloric acid solution to determine the ultraviolet absorption at 232 nm. This value was divided by the molar molecular extinction coefficient of unsaturated disaccharide to estimate the molar concentration.
Yield from 00 mg is 3.8 mg for I and 1 for II.
6.8 mg and III were 2.8 mg. The structure was confirmed from the 500 MHz 1 H-NMR spectrum and proton assignment of the obtained heparin unsaturated tetrasaccharide.

【0033】各構造の1H-NMRスペクトルのδ値を表1に
まとめて示す。尚、各シグナルの帰属は、二次元HOH
AHA(Homonuclear Hartmann-Hahn Spectroscopy) 、
COSY(Corelation Spectroscopy; 同種核シフト相関
2次元NMR)で行った。
Table 1 shows the δ values of the 1 H-NMR spectrum of each structure. In addition, the attribution of each signal is two-dimensional HOH
AHA (Homonuclear Hartmann-Hahn Spectroscopy),
COSY (Corelation Spectroscopy; homonuclear nuclear shift correlation two-dimensional NMR) was used.

【0034】[0034]

【表1】 [Table 1]

【0035】実施例2:ブタ小腸由来のヘパリン500
mgを20mL(ミリリットル)の20mM酢酸緩衝液
(pH7.0)(2mM酢酸カルシウム含有)に溶解し
た。この液にフラボバクテリウム sp. Hp206
由来のヘパリチナーゼIV 25ユニット、フラボバクテ
リウム・ヘパリナム由来のヘパリチナーゼII 15ユニ
ットおよびヘパリチナーゼI 5ユニットを加えて37
℃で5時間消化した。後は、実施例1と同様に処理し
た。ヘパリン500mgからの収量は、Iは、4.2m
g、IIは、17.5mg、III は、3.1mgであっ
た。
Example 2: Heparin 500 from porcine small intestine
mg was dissolved in 20 mL (milliliter) of 20 mM acetate buffer (pH 7.0) (containing 2 mM calcium acetate). Flavobacterium sp. Hp206
Heparitinase IV (25 units), flavobacterium heparinum-derived heparitinase II (15 units) and heparitinase I (5 units)
Digested at ℃ for 5 hours. After that, the same treatment as in Example 1 was performed. The yield from 500 mg heparin is I is 4.2 m.
g and II were 17.5 mg, and III was 3.1 mg.

【0036】[0036]

【発明の効果】本発明は、一般式(1)で表されるヘパ
リン不飽和4糖を提供するものであり、これは還元末端
がグルコサミン−3−O−硫酸で非還元末端が不飽和グ
ルクロン酸を含む新規な構造であって、ヘパリンの抗凝
固活性の制御に係わる部位を含む非常に有用な構造を提
供する。このヘパリン不飽和4糖は、ヘパリンを本発明
による選択した酵素により分解し、生成した混合物を分
画することにより非常に容易に構造が単一な化合物とし
て大量に製造することができる。従って、本発明は、こ
の分野においては非常に高価な試薬の低コスト化が可能
であると共に本発明の化合物を基本とした各種医用材料
あるいは医薬の有用な原料を安価に提供できる。
The present invention provides a heparin unsaturated tetrasaccharide represented by the general formula (1), wherein the reducing end is glucosamine-3-O-sulfate and the non-reducing end is unsaturated glucuron. A novel structure containing an acid, which is a very useful structure containing sites involved in the regulation of heparin's anticoagulant activity. This heparin-unsaturated tetrasaccharide can be very easily produced in a large amount as a compound having a single structure by degrading heparin by the enzyme of the present invention and fractionating the resulting mixture. Therefore, the present invention can reduce the cost of an extremely expensive reagent in this field and can inexpensively provide useful raw materials for various medical materials or pharmaceuticals based on the compound of the present invention.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1におけるHPLCの結果を示すクロマ
トグラムである。
FIG. 1 is a chromatogram showing the results of HPLC in Example 1.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 下記化1の一般式(1)で表されること
を特徴とするヘパリン不飽和4糖およびその塩。 【化1】 (式中、R1は、SO3 - またはCOCH3 を表し、R2は、SO3 -
またはHを表す。)
1. A heparin unsaturated tetrasaccharide and a salt thereof represented by the following general formula (1). [Chemical 1] (In the formula, R 1 represents SO 3 or COCH 3 , and R 2 represents SO 3 −.
Or represents H. )
【請求項2】 ヘパリンを、フラボバクテリウム由来の
ヘパリチナーゼIIを少なくとも用いて分解し、この分解
生成物から分取することを特徴とする請求項1記載のヘ
パリン不飽和4糖およびその塩の製造法。
2. The production of heparin unsaturated tetrasaccharide and a salt thereof according to claim 1, wherein heparin is decomposed by using at least Heparitinase II derived from Flavobacterium and fractionated from the decomposition product. Law.
【請求項3】 ヘパリチナーゼIIと下記aの群から選択
される1種以上の酵素とbの群から選択される1種以上
の酵素とを併用することを特徴とする請求項2のヘパリ
ン不飽和4糖の製造法。 a:ヘパリナーゼ及びヘパリチナーゼIV b:ヘパリチナーゼI、ヘパリチナーゼI0及びヘパリチ
ナーゼV
3. Heparin unsaturation according to claim 2, wherein heparitinase II is used in combination with one or more enzymes selected from the following group a and one or more enzymes selected from group b. Method for producing tetrasaccharide. a: Heparinase and Heparitinase IV b: Heparitinase I, Heparitinase I 0 and Heparitinase V
【請求項4】 ヘパリチナーゼIIと、ヘパリチナーゼI
と、ヘパリナーゼまたはヘパリチナーゼIVとを併用する
ことを特徴とする請求項2または3のヘパリン不飽和4
糖の製造法。
4. Heparitinase II and heparitinase I
And heparinase or heparitinase IV in combination with heparin unsaturation 4 according to claim 2 or 3.
Method of manufacturing sugar.
JP19900492A 1992-07-03 1992-07-03 Heparin unsaturated tetrasaccharide and method for producing the same Expired - Lifetime JP3522775B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19900492A JP3522775B2 (en) 1992-07-03 1992-07-03 Heparin unsaturated tetrasaccharide and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19900492A JP3522775B2 (en) 1992-07-03 1992-07-03 Heparin unsaturated tetrasaccharide and method for producing the same

Publications (2)

Publication Number Publication Date
JPH0616687A true JPH0616687A (en) 1994-01-25
JP3522775B2 JP3522775B2 (en) 2004-04-26

Family

ID=16400508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19900492A Expired - Lifetime JP3522775B2 (en) 1992-07-03 1992-07-03 Heparin unsaturated tetrasaccharide and method for producing the same

Country Status (1)

Country Link
JP (1) JP3522775B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1070503A1 (en) * 1999-07-23 2001-01-24 Laboratorios Farmaceuticos Rovi, S.A. Compositions comprising very low molecular weight Heparin
JP2001187802A (en) * 1999-07-23 2001-07-10 Lab Farmaceuticos Rovi Sa Very low molecular weight heparin composition
JP2002327002A (en) * 2000-08-07 2002-11-15 Seikagaku Kogyo Co Ltd Oligosaccharide having sulfate group
US8153614B2 (en) 2006-12-05 2012-04-10 Glycoscience Laboratories, Inc. Treatment of osteoarthritis

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1070503A1 (en) * 1999-07-23 2001-01-24 Laboratorios Farmaceuticos Rovi, S.A. Compositions comprising very low molecular weight Heparin
JP2001187802A (en) * 1999-07-23 2001-07-10 Lab Farmaceuticos Rovi Sa Very low molecular weight heparin composition
JP2002327002A (en) * 2000-08-07 2002-11-15 Seikagaku Kogyo Co Ltd Oligosaccharide having sulfate group
US8153614B2 (en) 2006-12-05 2012-04-10 Glycoscience Laboratories, Inc. Treatment of osteoarthritis

Also Published As

Publication number Publication date
JP3522775B2 (en) 2004-04-26

Similar Documents

Publication Publication Date Title
Loganathan et al. Structural variation in the antithrombin III binding site region and its occurrence in heparin from different sources
US4916219A (en) Oligosaccharide heparin fragments as inhibitors of complement cascade
US5013724A (en) Process for the sulfation of glycosaminoglycans, the sulfated glycosaminoglycans and their biological applications
Oldberg et al. Characterization of platelet endoglycosidase degrading heparin-like polysaccharides
Pervin et al. Preparation and structural characterization of large heparin-derived oligosaccharides
CA1171375A (en) Oligosaccharides having selective anticoagulation activity
EP0014184B1 (en) Heparin fragments having a selective anticoagulation activity and process for their preparation
Desai et al. Substrate specificity of the heparin lyases from Flavobacterium heparinum
US4401758A (en) Process for making oligosaccharides having anti-Xa activity and the resulting oligosaccharides
Linhardt et al. Search for the heparin antithrombin III-binding site precursor.
Goupille et al. Preparation and structure of heparin lyase-derived heparan sulfate oligosaccharides
HU214986B (en) Process for producing preparation containing n,o-sulfated heparosanes
CA2132750A1 (en) Oligosaccharides having growth factor binding affinity
JPH07501684A (en) Anticoagulants and their preparation methods
Chi et al. Mass spectrometry for the analysis of highly charged sulfated carbohydrates
Linhardt et al. Low molecular weight dermatan sulfate as an antithrombotic agent structure-activity relationship studies
Sugahara et al. Structure determination of the octa-and decasaccharide sequences isolated from the carbohydrate-protein linkage region of porcine intestinal heparin
JP2007501305A (en) Polysaccharide derivatives with high antithrombotic activity in plasma
US20080207895A1 (en) Methods for synthesizing polysaccharides
Linhardt et al. New methodologies in heparin structure analysis and the generation of LMW heparins
AU6287594A (en) Heparan sulphate oligosaccharides having hepatocyte growth factor binding affinity
JP3522775B2 (en) Heparin unsaturated tetrasaccharide and method for producing the same
EP1694714B1 (en) Low molecular weight polysaccharides having antithrombotic activity
Larnkjaer et al. Isolation and charaterization of hexasaccharides derived from heparin. Analysis by HPLC and elucidation of structure by 1H NMR
Danishefsky Synthesis and properties of heparin derivatives

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20040128

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040205

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20080220

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20090220

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090220

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100220

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20110220

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 9

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 9