JPH06166580A - Ceramic foam and its production - Google Patents

Ceramic foam and its production

Info

Publication number
JPH06166580A
JPH06166580A JP4341003A JP34100392A JPH06166580A JP H06166580 A JPH06166580 A JP H06166580A JP 4341003 A JP4341003 A JP 4341003A JP 34100392 A JP34100392 A JP 34100392A JP H06166580 A JPH06166580 A JP H06166580A
Authority
JP
Japan
Prior art keywords
perhydropolysilazane
foam
silicon
ceramic foam
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4341003A
Other languages
Japanese (ja)
Inventor
Toru Funayama
徹 舟山
Hirohiko Nakahara
浩彦 中原
Takeshi Isoda
武志 礒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tonen General Sekiyu KK
Original Assignee
Tonen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tonen Corp filed Critical Tonen Corp
Priority to JP4341003A priority Critical patent/JPH06166580A/en
Publication of JPH06166580A publication Critical patent/JPH06166580A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0022Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof obtained by a chemical conversion or reaction other than those relating to the setting or hardening of cement-like material or to the formation of a sol or a gel, e.g. by carbonising or pyrolysing preformed cellular materials based on polymers, organo-metallic or organo-silicon precursors

Abstract

PURPOSE:To simply produce a ceramic foam having heat resistance and strength. CONSTITUTION:A silicon-containing thermoplastic ceramic precursor (e.g. polycarbosilane or polysilastyrene) is mixed with a perhydropolysilazane (preferably having <=1500 number-average molecular weight) in a ratio of number of silicon atoms of (1/19) to (1/19) and the mixture is thermally decomposed at 300-1700 deg.C.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はセラミックス発泡体及び
その製造方法に係る。このセラミックス発泡体は、断熱
工業分野、自動車用触媒担体等の車両分野をはじめ、高
温での断熱性及び耐熱性を必要とする分野に好ましく適
用できる。
FIELD OF THE INVENTION The present invention relates to a ceramic foam and a method for producing the same. This ceramic foam can be preferably applied to the fields of heat insulation industry, vehicles such as catalyst carriers for automobiles, and fields requiring heat insulation and heat resistance at high temperatures.

【0002】[0002]

【従来の技術】発泡ポリスチレン、発泡ポリウレタン等
のプラスチック発泡体は断熱性、衝撃吸収性、電気絶縁
性等が優れ、熱伝導率、透湿率が低い。軽量である等の
特性を有することから、屋根や冷暖房機器の断熱材、凍
結防止用保温材、電気製品、スポーツ用品等に広く使用
されている。
2. Description of the Related Art Plastic foams such as expanded polystyrene and expanded polyurethane have excellent heat insulating properties, shock absorbing properties, electrical insulating properties, and the like, and have low thermal conductivity and moisture permeability. Because of its light weight and other characteristics, it is widely used as a heat insulating material for roofs and cooling / heating equipment, a heat insulating material for freeze prevention, electric products, sports equipment and the like.

【0003】高温用の断熱材として、アスベストをはじ
めとする針状結晶物質の成型体が用いられてきた。セラ
ミックスの発泡構造を得るために各種の工夫が試みられ
ている。
As a heat insulating material for high temperatures, a molded body of a needle-shaped crystal substance such as asbestos has been used. Various attempts have been made to obtain a foam structure of ceramics.

【0004】[0004]

【発明が解決しようとする課題】プラスチック発泡体は
高温での使用が不可能であり、アスベストをはじめとす
る針状結晶物質は人体に有害である。また、従来のセラ
ミックス発泡構造体を得る方法は複雑であり、またプラ
スチック発泡体のように均一薄肉の構造が得られないな
どの問題があった。
Plastic foams cannot be used at high temperatures, and needle-like crystal substances such as asbestos are harmful to the human body. Further, the conventional method for obtaining a ceramic foam structure is complicated, and there is a problem that a uniform thin structure such as a plastic foam cannot be obtained.

【0005】本発明はかかる問題を解決し、優れた耐熱
性及び強度を有する均一なセラミックス発泡体及びその
簡易な製造法を提供することを目的とする。
An object of the present invention is to solve such problems and provide a uniform ceramic foam having excellent heat resistance and strength and a simple method for producing the same.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、本発明は、珪素含有熱可塑性セラミック前駆体とペ
ルヒドロポリシラザンとを珪素原子数比で19/1〜1
/19の割合で混合し、焼成してセラミックス発泡体を
得ることを特徴とするセラミックス発泡体の製造方法、
および珪素、窒素及び炭素を必須成分とし、酸素及び水
素を任意成分とし、各元素の比が原子比で表わして、N
/Si=0.01〜1、C/Si=0.1〜1.5、O
/Si=0.3以下、H/Si=0.1以下であって、
実質的に珪素、窒素及び炭素からなる非晶質または珪
素、窒素及び炭素からなる非晶質と結晶粒径が500Å
以下のβ−SiCの結晶質微粒子の集合体または混合系
よりなることを特徴とするセラミックス発泡体を提供す
る。
To achieve the above object, the present invention provides a silicon-containing thermoplastic ceramic precursor and perhydropolysilazane in a silicon atom number ratio of 19/1 to 1.
A method for producing a ceramic foam, which comprises mixing the mixture in a ratio of / 19 and firing to obtain a ceramic foam.
And silicon, nitrogen and carbon as essential components, oxygen and hydrogen as optional components, and the ratio of each element is represented by atomic ratio, N
/Si=0.01 to 1, C / Si = 0.1 to 1.5, O
/Si=0.3 or less and H / Si = 0.1 or less,
Amorphous consisting essentially of silicon, nitrogen and carbon or amorphous consisting of silicon, nitrogen and carbon with a crystal grain size of 500Å
Provided is a ceramic foam comprising the following aggregate of β-SiC crystalline fine particles or a mixed system.

【0007】本発明者らは、上記目的を達成するため鋭
意努力する過程で、熱可塑性セラミック前駆体ポリマー
と比較的低分子量の熱硬化性ペルヒドロポリシラザンと
を混合後、加熱すると、非晶質ないし結晶質のSi,
C,Nを主成分とする均質なセラミックス発泡体を得る
ことができることを見い出した。このようなセラミック
ス発泡体が得られるのは、熱可塑性セラミック前駆体ポ
リマーの軟化、ペルヒドロポリシラザンの硬化及びこれ
らのポリマーの熱分解がほぼ同時に起きるためである。
In the process of diligent efforts to achieve the above object, the inventors of the present invention mixed the thermoplastic ceramic precursor polymer with the thermosetting perhydropolysilazane having a relatively low molecular weight and then heated the mixture to give an amorphous material. Or crystalline Si,
It has been found that a homogeneous ceramic foam containing C and N as the main components can be obtained. Such ceramic foams are obtained because the softening of the thermoplastic ceramic precursor polymers, the hardening of the perhydropolysilazane and the thermal decomposition of these polymers occur at about the same time.

【0008】本発明で用いるペルヒドロポリシラザン
は、式−(SiH2 NH)−で表わされる繰り返し単位
からなる骨格を有する、すなわち側鎖がすべて水素原子
であるポリシラザンであり、主として鎖状であるが、環
状部分を含み、さらには架橋構造を有することができ
る。このようなペルヒドロポリシラザンとしては、ジク
ロロシラン・ピリジン錯体のアンモノリシスで得られる
ペルヒドロシラザンオリゴマー(特公昭63−1632
5号公報)、このオリゴマーを塩基性溶液中で加熱して
得られる無機高重合体(特開平1−138108号公
報)、オリゴマーをアンモニア等と反応させて得られる
改質ポリシラザン(特開平1−138107号公報)な
どを用いることができる。ペルヒドロポリシラザンはS
i−H、N−H結合があり、反応性が大きく、かつ熱硬
化性であるので、本発明の目的に最適である。
The perhydropolysilazane used in the present invention is a polysilazane having a skeleton composed of a repeating unit represented by the formula-(SiH 2 NH)-, that is, a side chain of which is all hydrogen atoms, and is mainly chain-like. , A cyclic portion, and may have a crosslinked structure. As such a perhydropolysilazane, a perhydrosilazane oligomer obtained by ammonolysis of a dichlorosilane / pyridine complex (Japanese Patent Publication No. 63-1632).
5), an inorganic high polymer obtained by heating this oligomer in a basic solution (JP-A-1-138108), and a modified polysilazane obtained by reacting the oligomer with ammonia (JP-A-1-138108). No. 138107) or the like can be used. Perhydropolysilazane is S
It has i-H and N-H bonds, is highly reactive, and is thermosetting, and is optimal for the purpose of the present invention.

【0009】ペルヒドロポリシラザンの分子量として
は、液体状をなす程度が好ましく、数平均分子量Mnで
数1500以下、さらに好ましくは1200以下がよ
い。本発明では加熱時にペルヒドロポリシラザンの熱分
解ガスを利用して発泡を起こすものであるので、ペルヒ
ドロポリシラザンの分子量があまり大きいと熱分解して
も揮発せず、発泡ガスを生成しにくいので好ましくな
い。分子量(数平均)Mnは360以上、好ましくは5
00以上がよい。分子量が低すぎると揮発成分が多く、
熱分解収率が低くなり、良好な発泡体が得られない。ま
た、分子量が低すぎると、粘度が低く、熱可塑性ポリマ
ーとの混合後、ペルヒドロポリシラザンと、熱可塑性ポ
リマーが分解しやすく、そのため良好な発泡体が得られ
ないからである。
The molecular weight of perhydropolysilazane is preferably such that it forms a liquid state, and the number average molecular weight Mn is several 1500 or less, more preferably 1200 or less. In the present invention, since the thermal decomposition gas of perhydropolysilazane is used to cause foaming at the time of heating, if the molecular weight of perhydropolysilazane is too large, it does not volatilize even when thermally decomposed, and it is difficult to generate a foaming gas, which is preferable. Absent. The molecular weight (number average) Mn is 360 or more, preferably 5
00 or more is preferable. If the molecular weight is too low, there are many volatile components,
The thermal decomposition yield becomes low and a good foam cannot be obtained. On the other hand, if the molecular weight is too low, the viscosity is low, and after mixing with the thermoplastic polymer, the perhydropolysilazane and the thermoplastic polymer are easily decomposed, so that a good foam cannot be obtained.

【0010】本発明で用いる熱可塑性珪素含有セラミッ
ク前駆体は、熱軟化し、熱分解ガスにより発泡するもの
であり、熱可塑性ポリマーが存在しないと発泡体は得ら
れないものであるが、主鎖に珪素を含むポリシラン、ポ
リカルボシラン、ポリシロキサン、ポリシラザンなどで
あることができ、特に炭化珪素系前駆体ポリマーである
ポリカルボシラン、ポリシラスチレン、ポリカルボシラ
スチレン、メチルポリシラン、フェニルポリシラン、ポ
リチタノカルボシラン、ポリジルコノカルボシラン、ポ
リジシリラザン等を好ましく用いることができる。
The thermoplastic silicon-containing ceramic precursor used in the present invention is one which is softened by heat and foams by a pyrolysis gas, and a foam cannot be obtained without the presence of a thermoplastic polymer. It may be polysilane containing silicon, polycarbosilane, polysiloxane, polysilazane, and the like, and in particular, silicon carbide-based precursor polymers such as polycarbosilane, polysilastyrene, polycarbosilastyrene, methylpolysilane, phenylpolysilane, and polysilane. Titanocarbosilane, polyzirconocarbosilane, polydisililazane and the like can be preferably used.

【0011】熱可塑性珪素含有セラミック前駆体の分子
量は、液体状でも固体状でもよく、数平均分子量で60
0〜2000の範囲のものが好ましい。分子量があまり
小さいと熱分解収率が低く、良好な発泡体が得られず、
あまり大きいとゲル化し取扱いにくい。本発明では、ペ
ルヒドロポリシラザンと珪素含有熱可塑性セラミック前
駆体とを、珪素原子数比で19/1〜1/19の範囲の
割合で混合する。熱可塑性セラミック前駆体の量が多す
ぎる場合には熱硬化性が劣るため、泡径が大きくなりす
ぎ、ペルヒドロポリシラザンの量が多すぎる場合には熱
可塑性が足りないため、泡径が不均一になるからであ
る。より好ましい割合は8/1〜1/8である。
The molecular weight of the thermoplastic silicon-containing ceramic precursor may be liquid or solid, and the number average molecular weight is 60.
Those in the range of 0 to 2000 are preferable. If the molecular weight is too small, the thermal decomposition yield is low, and a good foam cannot be obtained.
If it is too large, it will gel and be difficult to handle. In the present invention, the perhydropolysilazane and the silicon-containing thermoplastic ceramic precursor are mixed in a ratio of the number of silicon atoms of 19/1 to 1/19. When the amount of the thermoplastic ceramic precursor is too large, the thermosetting property is poor, so the bubble diameter becomes too large, and when the amount of the perhydropolysilazane is too large, the thermoplasticity is insufficient, so the bubble size is uneven. Because. A more preferable ratio is 8/1 to 1/8.

【0012】ペルヒドロポリシラザンと熱可塑性セラミ
ック前駆体の混合は無溶媒でも行なうことができるが、
非反応性溶媒に各ポリマーを溶解後、混合、溶媒留去す
れば、より均一に混合できる。非反応性溶媒としては、
例えば塩化メチレン、クロロホルム、四塩化炭素、ブロ
モホルム、塩化エチレン、塩化エチリデン、トリクロロ
エタン、テトラクロロエタン等のハロゲン化炭化水素、
エチルエーテル、イソプロピルエーテル、エチルブチル
エーテル、ブチルエーテル、1,2−ジオキシエタン、
ジオキサン、ジメチルジオキサン、テトラヒドロフラ
ン、テトラヒドロピラン等のエーテル類、ペンタン、ヘ
キサン、イソヘキサン、メチルペンタン、ヘプタン、イ
ソヘプタン、オクタン、イソオクタン、シクロペンタ
ン、メチルシクロペンタン、シクロヘキサン、メチルシ
クロヘキサン、ベンゼン、トルエン、キシレン、エチル
ベンゼン等の炭化水素類である。
Although the mixing of the perhydropolysilazane and the thermoplastic ceramic precursor can be carried out without solvent,
If each polymer is dissolved in a non-reactive solvent and then mixed and the solvent is distilled off, more uniform mixing can be achieved. As a non-reactive solvent,
Halogenated hydrocarbons such as methylene chloride, chloroform, carbon tetrachloride, bromoform, ethylene chloride, ethylidene chloride, trichloroethane, tetrachloroethane, etc.,
Ethyl ether, isopropyl ether, ethyl butyl ether, butyl ether, 1,2-dioxyethane,
Ethers such as dioxane, dimethyldioxane, tetrahydrofuran, tetrahydropyran, pentane, hexane, isohexane, methylpentane, heptane, isoheptane, octane, isooctane, cyclopentane, methylcyclopentane, cyclohexane, methylcyclohexane, benzene, toluene, xylene, ethylbenzene. And other hydrocarbons.

【0013】ペルヒドロポリシラザンと熱可塑性セラミ
ック前駆体を混合後、焼成(熱処理)して熱分解させ
る。熱分解温度としては300℃〜1700℃の範囲内
で行なえばよい。1700℃を越える温度で行なえばペ
ルヒドロポリシラザンに由来する窒化珪素の揮発が起こ
り、高い結晶性を示すため、強度に優れた発泡体は得ら
れない。また、300℃以下ではセラミックス化が不十
分なため強度が得られず、また熱分解に伴うガス発生が
少ないため、良好な発泡体は得られない。好ましくは6
00℃〜1500℃の範囲内である。
After mixing the perhydropolysilazane and the thermoplastic ceramic precursor, they are fired (heat-treated) and thermally decomposed. The thermal decomposition temperature may be in the range of 300 ° C to 1700 ° C. If it is carried out at a temperature higher than 1700 ° C., silicon nitride derived from perhydropolysilazane will volatilize and exhibit high crystallinity, so that a foam having excellent strength cannot be obtained. Further, at 300 ° C. or lower, strength is not obtained because of insufficient ceramicization, and a small amount of gas is generated due to thermal decomposition, so that a good foam cannot be obtained. Preferably 6
It is within the range of 00 ° C to 1500 ° C.

【0014】昇温速度は1℃/分〜50℃/分の範囲内
で行なうことができる。熱可塑性ポリマーの軟化、ペル
ヒドロポリシラザンの融化、ポリマーの熱分解ガスによ
る発泡がほぼ同じ温度で起こるので良好なセラミックス
発泡体が得られるが、熱分解中にこの温度領域で一定の
時間の滞留が必要である。60℃/分超の昇温速度では
均一な発泡が得られず、1℃/分未満の昇温速度では発
泡が不十分で発泡体が得られない。また、1℃/分未満
の昇温速度では生産性が悪い。より好ましい昇温速度は
2℃/分〜20℃/分の範囲である。
The heating rate may be in the range of 1 ° C./minute to 50 ° C./minute. A good ceramic foam can be obtained because softening of the thermoplastic polymer, melting of the perhydropolysilazane, and foaming of the polymer by pyrolysis gas occur at approximately the same temperature, but during pyrolysis, a certain time residence in this temperature range is necessary. At a heating rate of more than 60 ° C./minute, uniform foaming cannot be obtained, and at a heating rate of less than 1 ° C./minute, foaming is insufficient and a foam cannot be obtained. Further, if the heating rate is less than 1 ° C./minute, the productivity is poor. A more preferable temperature rising rate is in the range of 2 ° C / minute to 20 ° C / minute.

【0015】焼成の雰囲気は特に制限はないが、N2
Ar,He等でよい。また、O2 や空気中で熱分解を行
えば成分にOを含むセラミックス発泡体が得られる。な
お、熱分解ガス量が足りない場合には発泡助剤を添加す
ると発泡体が生成しやすくなる。発泡助剤としては有機
高分子、例えばポリスチレン、ポリエチレン、ポリプロ
ピレン、ポリウレタン、ABS樹脂、塩化ビニル、酢酸
セルロースなどであり、これらの1種又は2種以上を用
いることができる。
The firing atmosphere is not particularly limited, but N 2 ,
Ar, He or the like may be used. Further, if it is pyrolyzed in O 2 or air, a ceramic foam containing O as a component can be obtained. It should be noted that when the amount of pyrolysis gas is insufficient, addition of a foaming aid facilitates formation of a foam. Examples of the foaming aid include organic polymers such as polystyrene, polyethylene, polypropylene, polyurethane, ABS resin, vinyl chloride, and cellulose acetate, and one or more of these can be used.

【0016】こうして得られるセラミックス発泡体の気
泡は0.1〜2mm径の範囲にあることが好ましく、この
範囲にあれば強度を有する発泡体となる。気泡の均一性
は昇温速度により1℃/分〜50℃/分の範囲にあれば
気泡の均一な分布が得られる。気泡の寸法はペルヒドロ
ポリシラザンと熱可塑性ポリマーの混合比により調整可
能である。すなわち、ペルヒドロポリシラザン量を多く
するにつれ、発泡体中の気泡は小さくなり、熱可塑性ポ
リマー量が多くなれば気泡は大きくなる。
The cells of the ceramic foam thus obtained are preferably in the range of 0.1 to 2 mm in diameter, and in this range, the foam has strength. If the uniformity of bubbles is in the range of 1 ° C./min to 50 ° C./min depending on the heating rate, a uniform distribution of bubbles can be obtained. The size of the cells can be adjusted by the mixing ratio of perhydropolysilazane and thermoplastic polymer. That is, as the amount of perhydropolysilazane increases, the bubbles in the foam become smaller, and as the amount of thermoplastic polymer increases, the bubbles become larger.

【0017】また、本発明によれば、上記の製造法によ
り製造されるセラミックス発泡体として炭化珪素質セラ
ミックス発泡体を提供する。このセラミックス発泡体
は、珪素、窒素及び炭素を必須成分とし、酸素及び水素
を任意成分とする無機成形体であり、結晶性について
は、結晶又は非晶質の如何を問わないが、実質的に非晶
質であるものが好ましい。即ち、X線回析分析による非
晶質のものまたは結晶子の大きさ(X線回析半値巾法
(JONES法)を用いて測定)がすべての方位で50
0Å以下の微結晶相(β−SiC)を含有するものが好
ましい。
Further, according to the present invention, there is provided a silicon carbide based ceramic foam as the ceramic foam manufactured by the above manufacturing method. This ceramic foam is an inorganic molded body containing silicon, nitrogen and carbon as essential components and oxygen and hydrogen as optional components, and its crystallinity may be crystalline or amorphous. Those that are amorphous are preferred. That is, the amorphous or crystallite size (measured using the X-ray diffraction half width method (JONES method)) by X-ray diffraction analysis is 50 in all directions.
Those containing a fine crystal phase (β-SiC) of 0 Å or less are preferable.

【0018】本発明の炭化珪素質成形体を構成する各元
素の比率は原子比で表わして、 N/Si 0.01〜1 C/Si 0.1〜1.5 O/Si 0.3以下 であり、好ましい原子比は、 N/Si 0.05〜0.8 C/Si 0.2〜1.2 O/Si 0.25以下 である。更に好ましい原子比は、 N/Si 0.1〜0.7 C/Si 0.5〜1.0 O/Si 0.2以下 である。
The ratio of each element constituting the silicon carbide molding of the present invention is expressed by atomic ratio: N / Si 0.01 to 1 C / Si 0.1 to 1.5 O / Si 0.3 or less And the preferable atomic ratio is N / Si 0.05 to 0.8 C / Si 0.2 to 1.2 O / Si 0.25 or less. A more preferable atomic ratio is N / Si 0.1 to 0.7 C / Si 0.5 to 1.0 O / Si 0.2 or less.

【0019】元素比が上記の範囲に包含されない場合、
機械的強度、耐熱性及び耐酸化性が低下する。
When the element ratio is not included in the above range,
Mechanical strength, heat resistance and oxidation resistance decrease.

【0020】[0020]

【作用】珪素含有熱可塑性セラミック前駆体と熱硬化性
ペルヒドロポリシラザンとのミクロ状態での混合物を熱
分解することにより、珪素含有熱可塑性セラミック前駆
体の軟化、ペルヒドロポリシラザンの硬化、及び熱分解
ガスの発生がほぼ同時に起こることにより、良好なセラ
ミックス発泡体が得られる。
By softening a mixture of a silicon-containing thermoplastic ceramic precursor and a thermosetting perhydropolysilazane in a micro state, softening of the silicon-containing thermoplastic ceramic precursor, hardening of the perhydropolysilazane, and thermal decomposition A good ceramic foam can be obtained by the gas generation occurring almost at the same time.

【0021】[0021]

【発明の効果】本発明のセラミックス発泡体は均一に泡
が分散した構造を有するものであり、優れた耐熱性をも
有する。本発明のセラミックス発泡体の製造法によれ
ば、アスベスト等の人体に有害な物質を用いることな
く、断熱材を所望の形状に容易に製造できる。また、開
気泡を持つ発泡体は耐熱性が必要な触媒担体として用い
ることができる。これら高温断熱材、触媒担体等を安全
に容易に製造できる利点がある。
The ceramic foam of the present invention has a structure in which bubbles are uniformly dispersed, and also has excellent heat resistance. According to the method for producing a ceramic foam of the present invention, the heat insulating material can be easily produced in a desired shape without using a substance harmful to the human body such as asbestos. Further, the foam having open cells can be used as a catalyst carrier which requires heat resistance. There is an advantage that these high temperature heat insulating materials and catalyst carriers can be manufactured safely and easily.

【0022】[0022]

【実施例】参考例1 内容積11の四つ口フラスコにガス吹きこみ管、メカニ
カルスターラー、ジュワーコンデンサーを装置した。反
応器内部を脱酸素した乾燥窒素で置換した後、四つ口フ
ラスコに脱気した乾燥ピリジン490mlを入れ、これを
氷冷した。次にジクロロシラン51.6gを加えると白
色固体状のアダクト(SiH2 Cl2 ・2C5 5 N)
が生成した。反応混合物を氷冷し、攪拌しながら、水酸
化ナトリウム管及び活性炭管を通して精製したアンモニ
ア51.0gを吹き込んだ。
EXAMPLES Reference Example 1 A four-necked flask having an internal volume of 11 was equipped with a gas blowing tube, a mechanical stirrer, and a dewar condenser. After replacing the inside of the reactor with deoxygenated dry nitrogen, 490 ml of degassed dry pyridine was put into a four-necked flask, and this was ice-cooled. Next, 51.6 g of dichlorosilane was added to produce a white solid adduct (SiH 2 Cl 2 · 2C 5 H 5 N).
Was generated. The reaction mixture was ice-cooled and, while stirring, 51.0 g of purified ammonia was bubbled through a sodium hydroxide tube and an activated carbon tube.

【0023】反応終了後、反応混合物を遠心分離し、乾
燥ピリジンを用いて洗浄した後、更に窒素雰囲気下で濾
過して、濾液850mlを得た。濾液5mlから溶媒を減圧
留去すると樹脂固体ペルヒドロポリシラザン0.102
gが得られた。得られたポリマーの数平均分子量はGP
Cにより測定したところ、980であった。また、この
ポリマーのIR(赤外吸収)スペクトル(溶媒:乾燥o
−キシレン;ペルヒドロポリシラザンの濃度:10.2
g/1)を検討すると、波数(cm-1)3350及び11
75のNHに基づく吸収;2170のSiHに基づく吸
収;1020〜820のSiH及びSiNSiに基づく
吸収を示すことが確認された。またこのポリマーの 1
NMR(プロトン核磁気共鳴)スペクトル(60MHz、
溶媒CDCl3 /基準物質TMS)を検討すると、いず
れも幅広い吸収を示していることが確認された。即ちδ
4.8及び4.4(br, SiH);1.5(br,NH)
の吸収が確認された。
After completion of the reaction, the reaction mixture was centrifuged, washed with dry pyridine and then filtered under a nitrogen atmosphere to obtain 850 ml of a filtrate. The solvent was distilled off from 5 ml of the filtrate under reduced pressure to give a resin solid of perhydropolysilazane 0.102.
g was obtained. The number average molecular weight of the obtained polymer is GP
It was 980 when measured by C. In addition, the IR (infrared absorption) spectrum of this polymer (solvent: dry o
-Xylene; Perhydropolysilazane concentration: 10.2
g / 1), the wave number (cm -1 ) 3350 and 11
It was confirmed to exhibit NH-based absorption of 75; SiH-based absorption of 2170; SiH and SiNSi-based absorption of 1024 to 820. Also 1 H of this polymer
NMR (proton nuclear magnetic resonance) spectrum (60 MHz,
When the solvent CDCl 3 / reference substance TMS) was examined, it was confirmed that all exhibited a wide absorption. That is δ
4.8 and 4.4 (br, SiH); 1.5 (br, NH)
Was confirmed to be absorbed.

【0024】実施例1 ポリカルボシラン(信越化学製)10gを100mlのo
−キシレンに溶解し、参考例1で得られたペルヒドロポ
リシラザンのo−キシレン溶液200ml(12wt%、ペ
ルヒドロポリシラザン21g)を加え混合した。ロータ
リーエバポレーターにより溶媒を除いたところ、淡黄色
固体が得られた。この固体の熱分解をAr中、5℃/mi
n で1200℃まで昇温し、1200℃で3時間保持の
条件で行なった。
Example 1 10 g of polycarbosilane (manufactured by Shin-Etsu Chemical Co., Ltd.) was added to 100 ml of o.
-Dissolved in xylene, 200 ml of an o-xylene solution of perhydropolysilazane obtained in Reference Example 1 (12 wt%, perhydropolysilazane 21 g) was added and mixed. When the solvent was removed by a rotary evaporator, a pale yellow solid was obtained. Thermal decomposition of this solid in Ar at 5 ° C / mi
The temperature was raised to 1200 ° C. by n and the operation was performed at 1200 ° C. for 3 hours.

【0025】黒色のセラミックス発泡体が80重量%の
収率で得られた。得られたセラミックス発泡体の顕微鏡
写真(20倍)を図1に示す。粉末X線回析により、こ
の発泡体は非晶質であった。元素分析の結果は、Si:
62.9重量%、C:13.5重量%、N:23.6重
量%であった。
A black ceramic foam was obtained with a yield of 80% by weight. A micrograph (× 20) of the obtained ceramic foam is shown in FIG. The foam was amorphous by powder X-ray diffraction. The result of elemental analysis is Si:
It was 62.9% by weight, C: 13.5% by weight, N: 23.6% by weight.

【0026】また、この発泡体の気泡は0.2〜0.5
mm径の範囲で均一な寸法を有し、密度0.49g/c
m3 、気孔率80%であった。実施例2 ポリシラスチレン(日本曹達製)40gを300mlのo
−キシレンに溶解し、参考例1で得られたペルヒドロポ
リシラザンのo−キシレン溶液30ml(12wt%、ペル
ヒドロポリシラザン3.2g)を加え混合した。ロータ
リーエバポレーターにより溶媒を除いたところ、淡黄色
固体が得られた。この固体の熱分解をN2 中、10℃/
min で1500℃まで昇温し、1500℃で1時間保持
の条件で行った。
The bubbles of this foam are 0.2 to 0.5.
With uniform dimensions in the mm diameter range, density 0.49 g / c
It was m 3 , and the porosity was 80%. Example 2 40 g of polysilastyrene (manufactured by Nippon Soda) was added to 300 ml of o.
-Dissolved in xylene, 30 ml of an o-xylene solution of perhydropolysilazane obtained in Reference Example 1 (12 wt%, perhydropolysilazane 3.2 g) was added and mixed. When the solvent was removed by a rotary evaporator, a pale yellow solid was obtained. Pyrolysis of this solid in N 2 at 10 ° C /
The temperature was raised to 1500 ° C. at min, and the temperature was maintained at 1500 ° C. for 1 hour.

【0027】黒色のセラミックス発泡体が75重量%の
収率で得られた。粉末X線回析により、ブロードなβ−
SiC(結晶子径40Å)が認められた。元素分析結果
は、Si:55.3重量%、C:40.6重量%、N:
4.1重量%であった。発泡体の気泡は0.6〜1.0
mm径の範囲で均一で、気孔率82%、密度0.43g/
cm3 であった。
A black ceramic foam was obtained with a yield of 75% by weight. Broad X-ray analysis by powder X-ray diffraction
SiC (crystallite diameter 40Å) was observed. The elemental analysis results are Si: 55.3% by weight, C: 40.6% by weight, N:
It was 4.1% by weight. Foam bubbles are 0.6-1.0
Uniform in mm diameter range, porosity 82%, density 0.43 g /
It was cm 3 .

【0028】比較例 実施例1と同様な方法及び割合でポリカルボシランとペ
ルヒドロポリシラザンとを混合して得た淡黄色固体をA
r中、0.1℃/min で1200℃まで昇温し、120
0℃で3時間保持した。黒色のセラミックスが82重量
%の収率で得られた。均一な発泡は認められず、密度
1.90g/cm3 、気孔率79%であった。
The pale yellow solid obtained by mixing a polycarbosilane with perhydropolysilazane in the same manner and proportions as Comparative Example Example 1 A
In r, the temperature was raised to 1200 ° C at 0.1 ° C / min, and
Hold at 0 ° C. for 3 hours. Black ceramics were obtained with a yield of 82% by weight. No uniform foaming was observed, the density was 1.90 g / cm 3 and the porosity was 79%.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は実施例で製造したセラミックス発泡体の
構造を表わす顕微鏡写真である。
FIG. 1 is a photomicrograph showing the structure of a ceramic foam produced in an example.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成5年7月28日[Submission date] July 28, 1993

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】図面の簡単な説明[Name of item to be corrected] Brief description of the drawing

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は実施例で製造した発泡体セラミック材料
の組織を表わす顕微鏡写真である。
FIG. 1 is a foam ceramic material produced in an example.
2 is a micrograph showing the structure of

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 珪素含有熱可塑性セラミック前駆体とペ
ルヒドロポリシラザンとを珪素原子数比で19/1〜1
/19の割合で混合し、焼成してセラミックス発泡体を
得ることを特徴とするセラミックス発泡体の製造方法。
1. A silicon-containing thermoplastic ceramic precursor and perhydropolysilazane in a silicon atom number ratio of 19/1 to 1
A method for producing a ceramic foam, which comprises mixing and firing at a ratio of / 19 to obtain a ceramic foam.
【請求項2】 珪素、窒素及び炭素を必須成分とし、酸
素及び水素を任意成分とし、各元素の比が原子比で表わ
して、N/Si=0.01〜1、C/Si=0.1〜
1.5、O/Si=0.3以下、H/Si=0.1以下
であって、実質的に珪素、窒素及び炭素からなる非晶質
または珪素、窒素及び炭素からなる非晶質と結晶粒径が
500Å以下のβ−SiCの結晶質微粒子の集合体また
は混合系よりなることを特徴とするセラミックス発泡
体。
2. Silicon, nitrogen and carbon as essential components, oxygen and hydrogen as optional components, and the ratio of each element is expressed by atomic ratio, N / Si = 0.01 to 1, C / Si = 0. 1 to
1.5, O / Si = 0.3 or less, H / Si = 0.1 or less, and substantially amorphous including silicon, nitrogen and carbon or amorphous including silicon, nitrogen and carbon. A ceramic foam comprising an aggregate or mixed system of β-SiC crystalline fine particles having a crystal grain size of 500 Å or less.
JP4341003A 1992-11-30 1992-11-30 Ceramic foam and its production Pending JPH06166580A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4341003A JPH06166580A (en) 1992-11-30 1992-11-30 Ceramic foam and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4341003A JPH06166580A (en) 1992-11-30 1992-11-30 Ceramic foam and its production

Publications (1)

Publication Number Publication Date
JPH06166580A true JPH06166580A (en) 1994-06-14

Family

ID=18342309

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4341003A Pending JPH06166580A (en) 1992-11-30 1992-11-30 Ceramic foam and its production

Country Status (1)

Country Link
JP (1) JPH06166580A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120160801A1 (en) * 2010-12-27 2012-06-28 Munirathna Padmanaban Superfine Pattern Mask, Method for Production Thereof, and Method Employing the Same for forming Superfine Pattern

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120160801A1 (en) * 2010-12-27 2012-06-28 Munirathna Padmanaban Superfine Pattern Mask, Method for Production Thereof, and Method Employing the Same for forming Superfine Pattern
US8796398B2 (en) * 2010-12-27 2014-08-05 Az Electronic Materials Usa Corp. Superfine pattern mask, method for production thereof, and method employing the same for forming superfine pattern

Similar Documents

Publication Publication Date Title
US4720532A (en) Organopolysilazane precursors to silicon nitride-rich mixed SiC/Si3 N4
US5376595A (en) Silicon carboxide ceramics from spirosiloxanes
US5872070A (en) Pyrolysis of ceramic precursors to nanoporous ceramics
US8114919B2 (en) Microwave foam
EP0030145B1 (en) Sintered ceramic body and process for production thereof
JPH01138107A (en) Modified polysilazane, its production and use thereof
EP0684217B1 (en) Microporous ceramics and synthesis thereof
US4594330A (en) Fine amorphous powder and process for preparing fine powdery mixture of silicon nitride and silicon carbide
CA1281838C (en) Cross-linked organosilazane polymers
JPH0764642B2 (en) Manufacturing method of nitride ceramics
JPH0577603B2 (en)
EP0212485A2 (en) Process for producing shaped silicon carbide article from the same
Hasegawa Si-C fiber prepared from polycarbosilane cured without oxygen
JPH06166580A (en) Ceramic foam and its production
Yu et al. Pyrolysis of titanium‐metal‐filled poly (siloxane) preceramic polymers: effect of atmosphere on pyrolysis product chemistry
JP3080104B2 (en) Thermosetting copolymer and method for producing the same
JPS61232269A (en) Manufacture of boron-containing silicon carbide powder
JP3142886B2 (en) Method for producing SiC-based ceramic precursor
Thorne et al. Chemically designed, UV curable polycarbosilane polymer for the production of silicon carbide
JPS6225603B2 (en)
Manocha et al. Thermal evolution of hybrid organic-inorganic gels derived from reaction of 1, 4 butanediol with tetraethoxysilane
JPH0558733A (en) Silicon carbide molded body and its production
JP3477490B2 (en) Method for producing polyborosilazane
JPH05320356A (en) Polyborisilazane and its production
OTOISHI et al. Preparation of Si3N4 whiskers from polycarbosilane