JPH06164615A - Double ring transmission line communication system - Google Patents

Double ring transmission line communication system

Info

Publication number
JPH06164615A
JPH06164615A JP31739392A JP31739392A JPH06164615A JP H06164615 A JPH06164615 A JP H06164615A JP 31739392 A JP31739392 A JP 31739392A JP 31739392 A JP31739392 A JP 31739392A JP H06164615 A JPH06164615 A JP H06164615A
Authority
JP
Japan
Prior art keywords
path
node
nodes
transmission line
transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31739392A
Other languages
Japanese (ja)
Inventor
Yoshio Kajiyama
義夫 梶山
Nobuyuki Tokura
信之 戸倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP31739392A priority Critical patent/JPH06164615A/en
Publication of JPH06164615A publication Critical patent/JPH06164615A/en
Pending legal-status Critical Current

Links

Landscapes

  • Data Exchanges In Wide-Area Networks (AREA)
  • Small-Scale Networks (AREA)

Abstract

PURPOSE:To attain the effective operation of the network resources in the N:M type communication by providing a working path on one of both transmission lines with a stand-by path provided on the other transmission line and adding a transmission line restoring means to each node, thereby reducing the switching frequency of path identification numbers and economizing the transmission capacity. CONSTITUTION:The double ring transmission lines 50 and 60 are connected to the nodes 1-6 and transmit the information to the paths shown by the path identification numbers. The transmission and reception nodes are included in the nodes 1, 3 and 5. The counterclockwise line 50 includes a working path 10, and the clockwise line 60 includes a stand-by path 20 respectively. The path 10 joins an input path as all transmission nodes in the first round and then branches out at all nodes in the second round. Meanwhile the path 20 branches out at all reception nodes in the second round. Thus the number of nodes is decreased on both paths 10 and 20 when each node performs the loop- back restoration due to the detecting of the faults of the transmission lines.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ディジタル通信による
二重リング伝送路通信方式に利用する。本発明は、パッ
ケト通信、ATM(非同期転送モード)通信などのリン
グ伝送路の障害復旧に関する。特に、リング伝送路内の
送信ノードの数がNであり、受信ノードの数がMである
N:M型通信のループバックによるパス復旧方式に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is used in a dual ring transmission line communication system by digital communication. The present invention relates to failure recovery of a ring transmission line such as packet communication and ATM (asynchronous transfer mode) communication. In particular, the present invention relates to a path restoration method by loopback of N: M type communication in which the number of transmitting nodes in the ring transmission path is N and the number of receiving nodes is M.

【0002】[0002]

【従来の技術】従来、二重リング伝送路通信方式は、リ
ング伝送路内の送信ノードの数がNであり、受信ノード
の数が1であるN:1パス復旧法を用い複数のN:1パ
スを設定するか、または、リング伝送路内の送信ノード
の数が1であり、受信ノードの数がNである1:Nパス
復旧法を用い複数の1:Nパスを設定することにより等
価的にN:M型通信の復旧を行っていた(特願平4─1
14958号、本願出願時に未公開、参照)。
2. Description of the Related Art Conventionally, a dual ring transmission line communication system uses N: 1 path restoration method in which the number of transmitting nodes in the ring transmission line is N and the number of receiving nodes is 1, and a plurality of N: By setting one path, or by setting a plurality of 1: N paths using a 1: N path restoration method in which the number of transmitting nodes in the ring transmission line is 1 and the number of receiving nodes is N Equivalently, N: M type communication was restored (Japanese Patent Application No. 4-1.
No. 14958, unpublished at the time of filing of the present application, see).

【0003】まず、リング伝送路内の送信ノードの数が
Nであり、受信ノードの数が1であるN:1パス復旧法
を以下に説明する。
First, the N: 1 path restoration method in which the number of transmitting nodes in the ring transmission line is N and the number of receiving nodes is 1 will be described below.

【0004】図5は第一の従来例の二重リング伝送路通
信方式のN:1パスの復旧を行うためのパス設定を示す
図であり、6ノードを対向する二重リング伝送路で接続
した構成を示す。図5において、50は左回りのリング
伝送路、60は右回りのリング伝送路、1〜6はノー
ド、51は現用パスおよび61は予備パスである。ここ
で、ノード1、3、5を送信ノードとし、ノード1を受
信ノードとする。また、現用パス51の伝送路を基準と
して上流および下流を決める。
FIG. 5 is a diagram showing a path setting for restoring N: 1 paths of the first conventional dual ring transmission line communication system, in which six nodes are connected by opposing dual ring transmission lines. The configuration is shown below. In FIG. 5, 50 is a counterclockwise ring transmission line, 60 is a clockwise ring transmission line, 1 to 6 are nodes, 51 is a working path, and 61 is a backup path. Here, the nodes 1, 3, and 5 are transmission nodes, and the node 1 is a reception node. Further, upstream and downstream are determined based on the transmission path of the working path 51.

【0005】現用パス51は、ノード1を始点とし、ノ
ード3、5でリング伝送路外からのパスと合流し、ノー
ド1を終点とするように設定する。
The working path 51 is set so that the node 1 is the starting point, the nodes 3 and 5 join the paths from outside the ring transmission path, and the node 1 is the ending point.

【0006】予備パス61は、逆向きの伝送路に設定
し、現用パス51の終点のノード1の一つ上流ノードで
あるノード6を始点とし、ノード1で現用パス51の終
点と接続する。
The backup path 61 is set in a reverse transmission path, and the node 6 which is one upstream node of the node 1 at the end point of the working path 51 is used as a starting point, and the node 1 is connected to the end point of the working path 51.

【0007】図6は第一の従来例の二重リング伝送路通
信方式のN:1パスに伝送路故障が生じ場合の復旧処理
を示す図であり、100は伝送路故障箇所を示す。パス
の復旧は、故障伝送路の上流のノード4において、下流
のノード5からの伝送路故障通知信号を受信後または自
ノード4で伝送路故障を検出後に、現用パス51を予備
パス61に接続することにより行う。
FIG. 6 is a diagram showing a restoration process when a transmission line failure occurs in the N: 1 path of the first conventional dual ring transmission line communication system, and 100 indicates a transmission line failure point. The path is restored by connecting the working path 51 to the backup path 61 after receiving the transmission path failure notification signal from the downstream node 5 at the node 4 upstream of the failure transmission path or after detecting the transmission path failure at the own node 4. By doing.

【0008】図7は第二の従来例の二重リング伝送路通
信方式のN:1パスを組み合わせることにより等価的に
N:Mパスの復旧を行うパス設定を示す図であり、1、
3、5は送信ノードおよび受信ノード、55は分配手段
である。また、51はノード1、3、5を送信ノードと
し、ノード1を受信ノードとする場合の現用パスであ
り、61は現用パス51の予備パスである。さらに、5
2はノード1、3、5を送信ノードとし、ノード3を受
信ノードとする場合の現用パスであり、62は現用パス
52の予備パスである。また、53はノード1、3、5
を送信ノードとし、ノード5を受信ノードとする場合の
現用パスであり、63は現用パス53の予備パスであ
る。
FIG. 7 is a diagram showing a path setting for restoring N: M paths equivalently by combining N: 1 paths in the second conventional dual ring transmission line communication system.
Reference numerals 3 and 5 are a transmitting node and a receiving node, and 55 is a distributing means. Further, 51 is a working path when the nodes 1, 3 and 5 are transmitting nodes and the node 1 is a receiving node, and 61 is a backup path of the working path 51. Furthermore, 5
Reference numeral 2 is a working path when the nodes 1, 3 and 5 are transmitting nodes and the node 3 is a receiving node, and 62 is a backup path of the working path 52. Also, 53 is the node 1, 3, 5
Is a transmitting node and node 5 is a receiving node, and 63 is a backup path of the working path 53.

【0009】図7に示すように、N:1パスの復旧法を
用いて等価的にN:M通信の復旧を行う場合に、現用パ
スとして18のパス識別番号(VPI、Virtual
Path Identifier)を必要とし、予備
パスとして15のパス識別番号を必要とする。また、入
力パス三つに分岐されるために3倍の伝送容量が必要で
ある。
As shown in FIG. 7, when N: M communication is restored equivalently using the N: 1 path restoration method, 18 path identification numbers (VPI, Virtual) are used as working paths.
Path Identifier) and a path identification number of 15 as a backup path. In addition, the transmission capacity is tripled because the input paths are branched into three.

【0010】次に、リング伝送路内の送信ノードの数が
1であり、受信ノードの数がNである1:Nパス復旧法
について説明する。
Next, a 1: N path restoration method in which the number of transmitting nodes in the ring transmission line is 1 and the number of receiving nodes is N will be described.

【0011】図8は第三の従来例の二重リング伝送路通
信方式の1:Nパスの復旧を行う場合のパス設定を示す
図であり、6ノードを対向する二重リング伝送路で接続
した構成である。50は左回りのリング伝送路、60は
右回のリング伝送路、1〜6はノード、71は現用パス
および81は予備パスである。
FIG. 8 is a diagram showing the path setting when the 1: N path is restored in the third conventional dual ring transmission line communication system, in which six nodes are connected to each other by the opposing double ring transmission line. It is a configuration. Reference numeral 50 is a counterclockwise ring transmission line, 60 is a rightward ring transmission line, 1 to 6 are nodes, 71 is a working path, and 81 is a backup path.

【0012】ここで、ノード1を送信ノードとし、ノー
ド1、3、5を受信ノードとする。現用パス71は、ノ
ード1を始点とし、ノード3、5で分岐し、ノード1を
終点とするように設定する。
Here, the node 1 is a transmitting node and the nodes 1, 3 and 5 are receiving nodes. The working path 71 is set so that the node 1 is the starting point, the nodes 3 and 5 branch off, and the node 1 is the ending point.

【0013】予備パス81は、逆向きの伝送路に設定
し、現用パス71の終点ノードの一つ上流ノードである
ノード6を始点とし、現用パス71の最下流受信ノード
であるノード6を最初の分岐点とし、各受信ノードで分
岐し、現用パス71の最上流の受信ノードであるノード
3で現用パス71の終点と接続する。
The backup path 81 is set in the reverse transmission path, and the node 6 which is one upstream node of the end point node of the working path 71 is set as a starting point, and the node 6 which is the most downstream receiving node of the working path 71 is set first. The receiving node branches at each receiving node, and is connected to the end point of the working path 71 at node 3, which is the most upstream receiving node of the working path 71.

【0014】図9は第三の従来例二重リング伝送路通信
方式の1:Nパスに伝送路故障が生じた場合の復旧処理
を示す図であり、100は伝送路故障箇所である。
FIG. 9 is a diagram showing a recovery process when a transmission line failure occurs in a 1: N path of the third conventional dual ring transmission line communication system, and 100 is a transmission line failure point.

【0015】パスの復旧は、故障伝送路の上流のノード
4において、下流のノード5からの伝送路故障通知信号
を受信後に、または自ノード4において伝送路故障検出
後に現用パス71を予備パス81に接続することにより
行う(二重に設定されている場合には上流側)。
To recover the path, the node 4 upstream of the failed transmission line receives the transmission line failure notification signal from the downstream node 5 or the local node 4 detects the transmission line failure, and the active path 71 is replaced by the backup path 81. By connecting to (upstream side if duplex is set).

【0016】図10は第四の従来例の二重リング伝送路
通信方式の1:Nパスを組み合わせることにより等価的
にN:Mパスの復旧を行うパス設定を示す図であり。図
10において、1、3、5は送信ノードまたは受信ノー
ドおよび75は多重手段である。また、71はノード1
を送信ノードとし、ノード1、3、5を受信ノードとす
る場合の現用パスおよび81は現用パス71の予備パス
である。72はノード3を送信ノードとし、ノード1、
3、5を受信ノードとする場合の現用パスおよび82は
現用パス72の予備パスである。さらに、73はノード
5を送信ノードとし、ノード1、3、5を受信ノードと
する場合の現用パスおよび83は現用パス73の予備パ
スである。
FIG. 10 is a diagram showing a path setting for recovering an N: M path equivalently by combining 1: N paths in the fourth conventional dual ring transmission line communication system. In FIG. 10, reference numerals 1, 3, and 5 are transmitting nodes or receiving nodes, and 75 is a multiplexing means. 71 is the node 1
Is a transmitting node and nodes 1, 3 and 5 are receiving nodes, the working path and 81 are backup paths of the working path 71. 72 uses node 3 as a transmitting node, and node 1,
The working path and 82 when the nodes 3 and 5 are the receiving nodes are backup paths of the working path 72. Further, 73 is a working path when node 5 is a transmitting node and nodes 1, 3 and 5 are receiving nodes, and 83 is a backup path of the working path 73.

【0017】図10に示すように、1:Nパス復旧法を
用いて等価的にN:M型通信の復旧を行う場合には、現
用パスとして18のパス識別番号を必要とし、予備パス
として27のパス識別番号を必要とする。また、パスの
数が多いために、多くの伝送容量が必要である。
As shown in FIG. 10, when the N: M type communication is restored equivalently by using the 1: N path restoration method, 18 path identification numbers are required as the working path and the backup path is used. Requires a path identification number of 27. Also, since there are many paths, a large amount of transmission capacity is required.

【0018】[0018]

【発明が解決しようとする課題】しかし、このような従
来例の二重リング伝送路通信方式では、前述のように
N:1復旧法または1:N復旧法を用いて等価的にN:
M型通信の復旧を行う場合には多くのパス識別番号を必
要とし、また多くの伝送容量を必要とするために効率的
に網を運用することができない問題点があった。
However, in such a conventional dual ring transmission line communication method, the N: 1 restoration method or the 1: N restoration method is equivalently used as N:
When recovering M-type communication, many path identification numbers are required, and a large transmission capacity is required, so that there is a problem that the network cannot be operated efficiently.

【0019】図11は二重リング伝送路通信方式のセル
の構成図である。
FIG. 11 is a block diagram of a cell of the dual ring transmission line communication system.

【0020】ここで、各ノードでは図11に示すセルを
受信した場合にパス識別番号を自ノードのパス識別番号
に書き換えて次ノードに送出するために、パス識別番号
の数が多いとその書き換えの処理が複雑になりノードの
処理負荷が増大する。また、割り付けるパス識別番号の
数が大きくなるから、パス識別番号の桁数を大きくとら
ねばならい。これらはいづれも伝送容量を制限すること
になる。
Here, when each node receives the cell shown in FIG. 11, it rewrites the path identification number to the path identification number of its own node and sends it to the next node. Processing becomes complicated and the processing load on the node increases. Also, since the number of path identification numbers to be assigned becomes large, the number of digits of the path identification number must be large. Each of these limits the transmission capacity.

【0021】本発明は上記の問題点を解決するもので、
パス識別番号の入れ換え回数を少なくし、かつ伝送容量
を経済化して二重リング伝送路上のN:M型通信で網資
源を効率的に運用できる二重リング伝送路通信方式を提
供することを目的とする。
The present invention solves the above problems,
An object of the present invention is to provide a dual ring transmission line communication method which can reduce the number of times of exchanging path identification numbers, make the transmission capacity economical, and efficiently operate network resources in N: M type communication on the dual ring transmission line. And

【0022】[0022]

【課題を解決するための手段】本発明は、複数のノ─ド
が接続されパス識別番号に示されるパスに情報を伝送す
る対向する二重リング伝送路を備え、この複数のノード
のうちには送信ノードおよび受信ノードを含むATM網
の二重リング伝送路通信方式において、前記二重リング
伝送路の一方の伝送路は、一周目では最初の送信ノード
としてあらかじめ定められた送信ノードを始点としてす
べての送信ノードで入力パスと合流し、二周目ではこの
最初の送信ノードを含むノードの受信ノードからすべて
の受信ノードで分岐し最終の受信ノードを終点とするよ
うに設定された現用パスを備え、前記一方の伝送路とは
逆向きの他方の伝送路は、前記現用パスの最終の受信ノ
ードから前記一方の伝送路上で一つ上流のノードを始点
とし、二周で前記現用パスの最終の受信ノードからすべ
ての受信ノードで分岐し前記現用パスの最初の受信ノー
ドを終点とするように設定された予備パスを備え、前記
ノードはそれぞれ、前記一方の伝送路上で一つ下流のノ
ードとの間の伝送路の故障検出結果に基づきその伝送路
を復旧する復旧手段を含むことを特徴とする。
SUMMARY OF THE INVENTION The present invention comprises a pair of opposing dual ring transmission lines to which a plurality of nodes are connected and which transmits information to a path indicated by a path identification number. In a dual ring transmission line communication system of an ATM network including a transmission node and a reception node, one transmission line of the double ring transmission line starts from a transmission node predetermined as a first transmission node in the first round. All the sending nodes join the input path, and on the second round, the working path is set so that all the receiving nodes branch from the receiving node of the node including this first sending node and end at the final receiving node. The other transmission path in the opposite direction to the one transmission path, starting from a node upstream from the final receiving node of the working path on the one transmission path, and in two rounds, A backup path that is set so that all receiving nodes branch from the last receiving node of the working path and end at the first receiving node of the working path, and each of the nodes has one on the one transmission path. It is characterized by including a recovery means for recovering the transmission path based on the failure detection result of the transmission path to the downstream node.

【0023】また、本発明は、前記ノードはそれぞれ、
自ノードで前記一方の伝送路上で一つ下流のノードとの
間の伝送路の故障を検出しその故障検出結果をその復旧
手段に与えるように構成できる。
According to the present invention, each of the nodes is
The self-node can be configured to detect a failure of a transmission path between the node on the one side and a downstream node on the one transmission path, and provide the failure detection result to the restoration means.

【0024】さらに、本発明は、前記ノードはそれぞ
れ、前記一方の伝送路上で一つ上流のノードとの間の伝
送路の故障を検出しその検出結果をこの一つ上流のノー
ドの復旧手段に通知するように構成できる。
Further, according to the present invention, each of the nodes detects a failure in a transmission path between the node and an upstream node on the one transmission path, and the detection result is used as a recovery means for the upstream node. Can be configured to notify.

【0025】また、本発明は、前記復旧手段は、前記ノ
ードのうちの2本の出力する現用パスを含むノードの場
合には、故障検出結果に基づこの2本の出力する現用パ
スのうちの一周目を分岐してセルコピーして前記2本の
予備パスにそれぞれ接続し、この2本出力する現用パス
のうちの二周目をこの2本の予備パスのうちの一周目に
接続するように構成できる。
Further, according to the present invention, in the case of a node including the working paths output by two of the nodes, the restoration means selects one of the two working paths output based on the failure detection result. The first round is branched and cell copied to be connected to each of the two backup paths, and the second round of the two output working paths is connected to the first round of the two backup paths. Can be configured as

【0026】さらに、本発明は、前記復旧手段は、前記
ノードのうちの1本の出力する現用パスおよび1本の出
力する予備パスを含むノードの場合には、故障検出結果
に基づきこの1本の出力する現用パスをこの1本の予備
パスに接続するように構成できる。
Further, according to the present invention, in the case where the restoration means is a node including one working path output by one of the nodes and one protection path outputted by the node, one of the nodes is based on the failure detection result. Can be configured to connect the working path output by the above to this one backup path.

【0027】また、本発明は、前記復旧手段は、前記ノ
ードのうちの1本の出力する現用パスおよび2本の出力
する予備パスを含むノードの場合には、故障検出結果に
基づきこの1本の出力する現用パスをこの2本の出力す
る予備パスのうちの一周目に接続するように構成でき
る。
Further, according to the present invention, in the case of a node including the working path output by one of the nodes and the backup path output by two of the nodes, the restoration means is based on the failure detection result. Can be configured to connect the working path output by the first path of the two output backup paths.

【0028】[0028]

【作用】現用パスは一周目ではすべての送信ノードで入
力パスと合流し二周目ではすべての受信ノードで分岐
し、予備パスは二周ですべての受信ノードで分岐するの
で、各ノードは伝送路故障検出結果によりループバック
復旧を行う場合に、現用パスおよび予備パスの数が少な
くなり、パス識別番号の入れ換え回数が少なくなり、か
つループの伝送容量を従来技術より経済化して二重リン
グ伝送路上のN:M型通信で網資源を効率的に運用でき
る。
[Function] The working path merges with the input path at all transmitting nodes on the first round, branches at all receiving nodes on the second round, and the backup path branches at all receiving nodes on the second round, so each node transmits. When performing loopback recovery based on the result of path failure detection, the number of working paths and protection paths is reduced, the number of times the path ID numbers are replaced is reduced, and the ring transmission capacity is made more economical than the conventional technology to achieve double ring transmission. Network resources can be efficiently operated by N: M type communication on the road.

【0029】[0029]

【実施例】本発明の実施例について図面を参照して説明
する。図1は本発明一実施例二重リング伝送路通信方式
の送信ノードの数がNであり、受信ノードの数がMであ
るN:Mパスの復旧を行うためのパス設定を示す図であ
る。
Embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a diagram showing a path setting for restoring an N: M path in which the number of transmitting nodes is N and the number of receiving nodes is M in the dual ring transmission line communication system according to an embodiment of the present invention. .

【0030】図1において、二重リング伝送路通信方式
は、複数のノ─ド1〜6が接続されパス識別番号に示さ
れるパスに情報を伝送する対向する二重リング伝送路5
0、60を備え、ノード1〜6のうちのノード1、3、
5には送信ノードおよび受信ノードを含む。
In FIG. 1, the dual ring transmission line communication system is a method in which a plurality of nodes 1 to 6 are connected and an opposing dual ring transmission line 5 for transmitting information to the path indicated by the path identification number.
0, 60, nodes 1 to 3 of nodes 1 to 6,
5 includes a transmitting node and a receiving node.

【0031】ここで本発明の特徴とするところは、二重
リング伝送路50、60の一方の伝送路として左回りの
リング伝送路50は、一周目では最初の送信ノードとし
てあらかじめ定められた送信ノードを始点としてすべて
の送信ノードで入力パスと合流し、二周目ではこの最初
の送信ノードを含むノード1の受信ノードからすべての
受信ノードで分岐し最終の受信ノードを終点とするよう
に設定された現用パス10を備え、左回りのリング伝送
路50とは逆向きの他方の伝送路として右回りのリング
伝送路60は、現用パス10の最終の受信ノードから左
回りのリング伝送路50上で一つ上流のノード4を始点
とし、二周で現用パス10の最終の受信ノードからすべ
ての受信ノードで分岐し現用パス10の最初の受信ノー
ドを終点とするように設定された予備パス20を備え、
ノード1〜6はそれぞれ、左回りの伝送路50上で一つ
下流のノードとの間の伝送路の故障検出結果に基づきそ
の伝送路を復旧する復旧手段を含むことにある。
A feature of the present invention is that the counterclockwise ring transmission line 50 as one of the double ring transmission lines 50 and 60 is a transmission node which is predetermined as the first transmission node in the first round. The node is set as the starting point and all the sending nodes join the input path. On the second round, the receiving node of node 1 including this first sending node branches at all the receiving nodes and the final receiving node is set as the end point. The right-handed ring transmission line 60, which is the other transmission line in the opposite direction to the left-handed ring transmission line 50, is provided from the last receiving node of the working path 10 to the left-handed ring transmission line 50. In the above, the upstream node 4 is the starting point, and in the second round, all receiving nodes branch from the last receiving node of the working path 10 and the first receiving node of the working path 10 is the ending point. Comprising a backup path 20 that is set to,
Each of the nodes 1 to 6 is to include a restoration unit that restores the transmission path on the counterclockwise transmission path 50 on the basis of the failure detection result of the transmission path between the node and the downstream node.

【0032】また、ノード1〜6はそれぞれ、自ノード
で左回りのリング伝送路50上で一つ下流のノードとの
間の伝送路の故障を検出しその故障検出結果をその復旧
手段に与える手段を含む。
Each of the nodes 1 to 6 detects a fault in the transmission line between the node 1 and the downstream node on the counterclockwise ring transmission line 50 at its own node and gives the fault detection result to the restoration means. Including means.

【0033】さらに、ノード1〜6はそれぞれ、左回の
リング伝送路50上で一つ上流のノードとの間の伝送路
の故障を検出しその検出結果をこの一つ上流のノードの
復旧手段に通知する手段を含む。
Further, each of the nodes 1 to 6 detects a failure of the transmission path to the upstream node on the left-hand ring transmission path 50, and the detection result is used as a recovery means for the upstream node. Including means to notify.

【0034】また、前記復旧手段は、ノード1〜6のう
ちの2本の出力する現用パス10を含むノードの場合に
は、故障検出結果に基づこの2本の出力する現用パス1
0のうちの一周目を分岐してセルコピーして2本の予備
パス20にそれぞれ接続し、この2本の出力する現用パ
ス10のうちの二周目をこの2本の予備パス20のうち
の一周目に接続する手段を含む。
Further, in the case of the node including the working paths 10 output from two of the nodes 1 to 6, the restoration means outputs these two working paths 1 based on the failure detection result.
The first round of 0 is branched and cell copied to be connected to two backup paths 20, and the second round of the two output working paths 10 is connected to the two backup paths 20. Including means to connect to the first round.

【0035】さらに、前記復旧手段は、ノード1〜6の
うちの1本の出力する現用パス10および1本の出力す
る予備パス20を含むノードの場合には、故障検出結果
に基づきこの1本の出力する現用パス10をこの1本の
予備パス20に接続する手段を含む。
Further, in the case of the node including the working path 10 that outputs one of the nodes 1 to 6 and the backup path 20 that outputs one of the nodes 1 to 6, the restoration means is based on the failure detection result. And a means for connecting the working path 10 output by the above to this one backup path 20.

【0036】また、前記復旧手段は、ノード1〜6のう
ちの1本の出力する現用パス10および2本の出力する
予備パス20を含むノードの場合には、故障検出結果に
基づきこの1本の出力する現用パス10をこの2本の出
力する予備パス20のうちの一周目に接続する手段を含
む。
Further, in the case of the node including the working path 10 that outputs one of the nodes 1 to 6 and the backup path 20 that outputs two of the nodes 1 to 6, the restoration means is based on the failure detection result. And a means for connecting the working path 10 output by the first path of the two output backup paths 20.

【0037】このような構成の二重リング伝送路通信方
式について説明する。
A dual ring transmission line communication system having such a configuration will be described.

【0038】図1は、6ノードを対向する二重リング伝
送路で接続した構成であり、1〜6はノード、1、3、
5は送信ノードおよび受信ノード、50は左回りのリン
グ伝送路、60は右回りのリング伝送路、10は現用パ
スおよび20は予備パスである。
FIG. 1 shows a configuration in which 6 nodes are connected by opposing double ring transmission lines, and 1 to 6 are nodes 1, 3,
5 is a transmitting node and a receiving node, 50 is a counterclockwise ring transmission line, 60 is a clockwise ring transmission line, 10 is a working path, and 20 is a backup path.

【0039】N:M型通信の現用パスの設定法について
説明する。
A method of setting a working path for N: M type communication will be described.

【0040】図1に示すように、片側リング(リング伝
送路50)に、あらかじめ定めた送信ノード(図1では
ノード1)を現用パス10の始点とし、順に各送信ノー
ドで入力パスと合流し、全ての送信ノードを通過後に、
各受信ノードにおいて、分岐し、最終受信ノードを終点
とする。
As shown in FIG. 1, a predetermined transmission node (node 1 in FIG. 1) is set as a starting point of the working path 10 on one side ring (ring transmission line 50), and the transmission paths are sequentially joined to the input paths. , After passing all the sending nodes,
Each receiving node branches and the final receiving node is the end point.

【0041】次に、予備パスの設定法について説明す
る。
Next, a method of setting a backup path will be described.

【0042】図1に示すように、現用パス10の対向リ
ング(リング伝送路60)上に予備パス60を設定し、
現用パス10の終点の一つ上流のノード4を始点とし、
現用パスの終点のノード5を通過後に、各受信ノードで
現用パス10に分岐するように設定し最終受信ノードを
終点とする。
As shown in FIG. 1, a backup path 60 is set on the opposing ring (ring transmission line 60) of the working path 10,
Starting from the node 4 one upstream of the end point of the working path 10,
After passing through the node 5 at the end of the working path, each receiving node is set to branch to the working path 10 and the final receiving node is set as the ending point.

【0043】次に伝送路故障復旧例について説明する。Next, an example of transmission line failure recovery will be described.

【0044】図2は本発明の二重リング伝送路通信方式
の現用パスが二重設定されている場合の伝送路故障時の
復旧処理を示す図である。
FIG. 2 is a diagram showing a recovery process in the event of a transmission line failure when the working paths of the dual ring transmission line communication system of the present invention are set to be duplicated.

【0045】図2に示すように、故障伝送路の上流のノ
ード5において、下流のノード5からの伝送路故障通知
信号を受信後、または自ノードにおいて伝送路故障を検
出後に、一周目の現用パス10をセルコピーして分岐し
た後に、リング伝送路上にある二つの予備パス20の両
方に接続してセルを分配する。
As shown in FIG. 2, in the node 5 upstream of the failed transmission line, after receiving the transmission line failure notification signal from the downstream node 5 or after detecting the transmission line failure in the own node, the active node of the first round is used. After the path 10 is cell copied and branched, the path 10 is connected to both of the two backup paths 20 on the ring transmission line to distribute the cells.

【0046】一方、二周目の現用パス10は、対向伝送
路上にある一周目の予備パス20に接続する。前記のパ
ス接続を行うことにより、伝送路故障時において、N:
M型通信の復旧を行ことができる。
On the other hand, the working path 10 of the second round is connected to the backup path 20 of the first round on the opposite transmission path. By performing the above-mentioned path connection, N:
The M-type communication can be restored.

【0047】図3は本発明の二重リング伝送路通信方式
の現用パスが一つのみ設定され対向伝送路上に予備パス
が一本のみ有る場合の伝送路故障時の復旧処理を示す図
である。
FIG. 3 is a diagram showing a recovery process at the time of transmission line failure when only one working path is set in the dual ring transmission line communication system of the present invention and only one backup path is provided on the opposite transmission line. .

【0048】図3に示すように、故障伝送路の上流のノ
ード6において、下流のノード1からの伝送路故障通知
信号を受信後、または自ノードにおいて、伝送路故障を
検出後に、現用パス10を対向伝送路上にある予備パス
に接続する。前記のパス接続を行うことにより、前記と
同様に伝送路故障時において、N:M型通信を行うこと
ができる。
As shown in FIG. 3, the node 6 upstream of the failed transmission line receives the transmission line failure notification signal from the downstream node 1 or, after detecting a transmission line failure at its own node, the working path 10 Is connected to a backup path on the opposite transmission path. By performing the above-mentioned path connection, N: M type communication can be performed at the time of transmission line failure as in the above case.

【0049】図4は本発明の二重リング伝送路通信方式
の現用パスが一つのみ設定され対向伝送路上に予備パス
が二本ある場合の伝送路故障時の復旧処理を示す図であ
る。
FIG. 4 is a diagram showing a recovery process at the time of transmission line failure when only one working path is set in the dual ring transmission line communication method of the present invention and two backup paths are provided on the opposite transmission line.

【0050】図4は、ノード6を受信ノードとし、ノー
ド7を新たに設けた場合である。最終送信ノードはノー
ド5であるので、ノード6が最初の受信ノードとなり、
ノード6からノード1までの間は現用パス1本および予
備パス2本の構成になる。図4に示すように、故障伝送
路の上流のノード7において、下流のノード1からの伝
送路故障通知信号を受信後に、または自ノードにおいて
伝送路故障を検出後に、現用パスを対向伝送路上にある
一周目の予備パス(予備パスが2本ある場合)に接続す
る。前記のパス接続を行うことにより、同様に、伝送路
故障時において、N:M型通信の復旧ができる。
FIG. 4 shows the case where the node 6 is the receiving node and the node 7 is newly provided. Since the final transmitting node is the node 5, the node 6 becomes the first receiving node,
Between node 6 and node 1, there is one working path and two protection paths. As shown in FIG. 4, in the upstream node 7 of the failed transmission path, after receiving the transmission path failure notification signal from the downstream node 1 or after detecting the transmission path failure in the own node, the working path is set on the opposite transmission path. Connect to a certain first round backup path (when there are two backup paths). By performing the path connection described above, it is possible to recover N: M type communication in the same manner when a transmission line fails.

【0051】前述のように、本実施例は現用パスのパス
識別番号の数を10および予備のパス識別番号の数を9
に少なくすることができ、また入力パスを1本の現用パ
スで合流するので伝送路容量を少なくすることができ
る。
As described above, in this embodiment, the number of path identification numbers of the working path is 10 and the number of backup path identification numbers is 9.
In addition, since the input paths are joined by one working path, the transmission line capacity can be reduced.

【0052】[0052]

【発明の効果】以上説明したように、本発明は、現用パ
スおよび予備パスの数を少なくして復旧時のパス識別番
号の入れ換え回数を小さくし、かつセルがノードに止ま
る時間を小さくする。また、パス識別番号の割り付け数
を小さくできるのでセルを小さくでき、現用パスおよび
予備パスの数を少なくできるので用意すべき伝送容量を
経済化することができる。したがって二重リング伝送路
上のN:M型通信で網資源を効率的に運用できる優れた
効果がある。
As described above, according to the present invention, the number of working paths and backup paths is reduced to reduce the number of times the path identification numbers are replaced at the time of restoration, and the time during which a cell stays at a node is shortened. Also, since the number of path identification numbers assigned can be reduced, the cells can be made smaller, and the number of working paths and backup paths can be reduced, so that the transmission capacity to be prepared can be made economical. Therefore, there is an excellent effect that network resources can be efficiently operated by N: M type communication on the dual ring transmission line.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明一実施例二重リング伝送路通信方式の
N:Mパスの復旧を行うためのパス設定を示す図。
FIG. 1 is a diagram showing a path setting for restoring an N: M path in a dual ring transmission line communication system according to an embodiment of the present invention.

【図2】本発明の二重リング伝送路通信方式の現用パス
が二重設定されている場合の伝送路故障時の復旧処理を
示す図。
FIG. 2 is a diagram showing a recovery process at the time of a transmission line failure when a dual working path is set in the dual ring transmission line communication method of the present invention.

【図3】本発明の二重リング伝送路通信方式の現用パス
が一つのみ設定され対向伝送路上に予備パスが一本のみ
有る場合の伝送路故障時の復旧処理を示す図。
FIG. 3 is a diagram showing a recovery process at the time of transmission line failure when only one working path is set in the dual ring transmission line communication method of the present invention and only one backup path is present on the opposite transmission line.

【図4】本発明の二重リング伝送路通信方式の現用パス
が一つのみ設定され対向伝送路上に予備パスが二本ある
場合の伝送路故障時の復旧処理を示す図。
FIG. 4 is a diagram showing a recovery process in the event of a transmission line failure when only one working path is set in the dual ring transmission line communication method of the present invention and two backup paths are provided on the opposite transmission line.

【図5】第一の従来例の二重リング伝送路通信方式の
N:1パスの復旧を行うためのパス設定を示す図。
FIG. 5 is a diagram showing a path setting for restoring the N: 1 path of the dual ring transmission line communication method of the first conventional example.

【図6】第一の従来例の二重リング伝送路通信方式の
N:1パスに伝送路故障が生じ場合の復旧処理を示す
図。
FIG. 6 is a diagram showing a restoration process when a transmission line failure occurs in an N: 1 path of the dual ring transmission line communication system of the first conventional example.

【図7】第二の従来例の二重リング伝送路通信方式の
N:1パスを組み合わせることにより等価的にN:Mパ
スの復旧を行うパス設定を示す図。
FIG. 7 is a diagram showing a path setting for recovering an N: M path equivalently by combining N: 1 paths in the second conventional dual ring transmission line communication system.

【図8】第三の従来例の二重リング伝送路通信方式の
1:Nパスの復旧を行う場合のパス設定を示す図。
FIG. 8 is a diagram showing a path setting when a 1: N path is restored in the dual ring transmission line communication method of the third conventional example.

【図9】第三の従来例の二重リング伝送路通信方式の
1:Nパスに伝送路故障が生じた場合の復旧処理を示す
図。
FIG. 9 is a diagram showing a recovery process when a transmission line failure occurs in a 1: N path of a third conventional dual ring transmission line communication system.

【図10】第四の従来例の二重リング伝送路通信方式の
N:Mパスを組み合わせることにより等価的にN:Mパ
スの復旧を行うパス設定を示す図。
FIG. 10 is a diagram showing a path setting for recovering an N: M path equivalently by combining N: M paths of a dual ring transmission line communication system of a fourth conventional example.

【図11】二重リング伝送路通信方式のセルの構成図。FIG. 11 is a block diagram of a cell of a dual ring transmission line communication system.

【符号の説明】[Explanation of symbols]

1〜6 ノード 10 1、3、5を始点、ノード1、3、5を終点とす
るN:M型通信の現用パス 20 現用パス10の予備パス 50 左回りのリング伝送路 51、52、53 ノード1、3、5を始点、ノード1
を終点とするN:1型通信の現用パス 55 分配手段 60 右回りのリング伝送路 61 現用パス51の予備パス 62 現用パス52の予備パス 63 現用パス53の予備パス 71 ノード1を始点、ノード1、3、5を終点とする
1:N型通信の現用パス 72 ノード3を始点、ノード1、3、5を終点とする
1:N型通信の現用パス 73 ノード5を始点、ノード1、3、5を終点とする
1:N型通信の現用パス 75 多重手段 81 現用パス71の予備パス 82 現用パス72の予備パス 83 現用パス72の予備パス 100 伝送路故障点
1 to 6 Nodes 10 1, 3, 5 as starting points and nodes 1, 3, 5 as end points N: M type communication working path 20 Working path 10 backup path 50 Counterclockwise ring transmission path 51, 52, 53 Nodes 1, 3 and 5 as starting points, node 1
N-1 type communication working path 55 distant means 60 clockwise ring transmission path 61 working path 51 backup path 62 working path 52 backup path 63 working path 53 backup path 71 node 1 starting point, node 1: N-type communication working path with 1, 3 and 5 as end points 72 Starting point with node 3, 1: N-type communication working path with nodes 1, 3, and 5 as end points 73 Starting point with node 5 and node 1, 1: N-type communication working path with 3 and 5 as end points 75 Multiplexing means 81 Backup path of working path 71 82 Backup path of working path 72 83 Backup path of working path 72 100 Transmission line failure point

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 複数のノ─ドが接続されパス識別番号に
示されるパスに情報を伝送する対向する二重リング伝送
路を備え、この複数のノードのうちには送信ノードおよ
び受信ノードを含むATM網の二重リング伝送路通信方
式において、 前記二重リング伝送路の一方の伝送路は、一周目では最
初の送信ノードとしてあらかじめ定められた送信ノード
を始点としてすべての送信ノードで入力パスと合流し、
二周目ではこの最初の送信ノードを含むノードの受信ノ
ードからすべての受信ノードで分岐し最終の受信ノード
を終点とするように設定された現用パスを備え、 前記一方の伝送路とは逆向きの他方の伝送路は、前記現
用パスの最終の受信ノードから前記一方の伝送路上で一
つ上流のノードを始点とし、二周で前記現用パスの最終
の受信ノードからすべての受信ノードで分岐し前記現用
パスの最初の受信ノードを終点とするように設定された
予備パスを備え、 前記ノードはそれぞれ、前記一方の伝送路上で一つ下流
のノードとの間の伝送路の故障検出結果に基づきその伝
送路を復旧する復旧手段を含むことを特徴とする二重リ
ング伝送路通信方式。
1. A dual ring transmission line is provided, which is connected to a plurality of nodes and transmits information to a path indicated by a path identification number. The plural nodes include a transmission node and a reception node. In an ATM network dual ring transmission line communication method, one transmission line of the dual ring transmission line is an input path at all transmission nodes starting from a transmission node predetermined as a first transmission node in the first round. Join up,
On the second lap, it is equipped with a working path that is set so that all receiving nodes branch off from the receiving nodes of the node including this first transmitting node, and the final receiving node is the end point. The other transmission line of the above, starting from a node one upstream on the one transmission line from the last receiving node of the working path, branches at all receiving nodes from the last receiving node of the working path in two rounds. A backup path is set so that the first receiving node of the working path is set as an end point, and each of the nodes is based on a failure detection result of a transmission path between the node and a downstream node on the one transmission path. A dual ring transmission line communication system including a recovery means for recovering the transmission line.
【請求項2】 前記ノードはそれぞれ、自ノードで前記
一方の伝送路上で一つ下流のノードとの間の伝送路の故
障を検出しその故障検出結果をその復旧手段に与える手
段を含む請求項1記載の二重リング伝送路通信方式。
2. Each of the nodes includes means for detecting a failure of a transmission path between itself and one downstream node on the one transmission path, and providing the failure detection result to the recovery means. 1. The dual ring transmission line communication method described in 1.
【請求項3】 前記ノードはそれぞれ、前記一方の伝送
路上で一つ上流のノードとの間の伝送路の故障を検出し
その検出結果をこの一つ上流のノードの復旧手段に通知
する手段を含む請求項1記載の二重リング伝送路通信方
式。
3. Each of the nodes has means for detecting a failure in a transmission path between the upstream transmission node and the one upstream transmission path on the one transmission path, and notifying the detection result to the recovery means of the upstream node. The dual ring transmission line communication system according to claim 1, including the above.
【請求項4】 前記復旧手段は、前記ノードのうちの2
本の出力する現用パスを含むノードの場合には、故障検
出結果に基づこの2本の出力する現用パスのうちの一周
目を分岐してセルコピーして前記2本の予備パスにそれ
ぞれ接続し、この2本出力する現用パスのうちの二周目
をこの2本の予備パスのうちの一周目に接続する手段を
含む請求項1記載の二重リング伝送路通信方式。
4. The recovery means is configured to operate in two of the nodes.
In the case of a node including a working path output by a book, based on the failure detection result, the first round of the two working paths output is branched and cell copied and connected to the two backup paths respectively. 2. The dual ring transmission line communication system according to claim 1, further comprising means for connecting the second round of the two working paths output to the first round of the two backup paths.
【請求項5】 前記復旧手段は、前記ノードのうちの1
本の出力する現用パスおよび1本の出力する予備パスを
含むノードの場合には、故障検出結果に基づきこの1本
の出力する現用パスをこの1本の予備パスに接続する手
段を含む請求項1記載の二重リング伝送路通信方式。
5. The restoration means is one of the nodes.
In the case of a node including a working path output by a book and one protection path output by a book, a means for connecting the one working path output to the one protection path based on a failure detection result is included. 1. The dual ring transmission line communication method described in 1.
【請求項6】 前記復旧手段は、前記ノードのうちの1
本の出力する現用パスおよび2本の出力する予備パスを
含むノードの場合には、故障検出結果に基づきこの1本
の出力する現用パスをこの2本の出力する予備パスのう
ちの一周目に接続する手段を含む請求項1記載の二重リ
ング伝送路通信方式。
6. The restoration means is one of the nodes.
In the case of a node including a working path output by a book and two protection paths output by the book, the one working path output based on the failure detection result is used as the first round of the two protection paths output. The dual ring transmission line communication system according to claim 1, further comprising means for connecting.
JP31739392A 1992-11-26 1992-11-26 Double ring transmission line communication system Pending JPH06164615A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31739392A JPH06164615A (en) 1992-11-26 1992-11-26 Double ring transmission line communication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31739392A JPH06164615A (en) 1992-11-26 1992-11-26 Double ring transmission line communication system

Publications (1)

Publication Number Publication Date
JPH06164615A true JPH06164615A (en) 1994-06-10

Family

ID=18087755

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31739392A Pending JPH06164615A (en) 1992-11-26 1992-11-26 Double ring transmission line communication system

Country Status (1)

Country Link
JP (1) JPH06164615A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998021855A1 (en) * 1996-11-12 1998-05-22 Kabushiki Kaisha Toshiba Loop-type network system and controlling of path thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998021855A1 (en) * 1996-11-12 1998-05-22 Kabushiki Kaisha Toshiba Loop-type network system and controlling of path thereof
US6195704B1 (en) 1996-11-12 2001-02-27 Kabushiki Kaisha Toshiba Methods and systems for a loop-type network using a spare communications path

Similar Documents

Publication Publication Date Title
Finn Resynch procedures and a fail-safe network protocol
JPH0484535A (en) Atm communication system in dual ring network
WO2012086019A1 (en) Communications device, communications system and communications method
JP2002094538A (en) Packet processing method utilizing anti-multiple fault network structure
JPH06164615A (en) Double ring transmission line communication system
JP4190170B2 (en) Detour route setting system
JP2856505B2 (en) Virtual path switching device
JP4212973B2 (en) Non-instantaneous transmission system and node equipment for dual ring network
JPH11355314A (en) Node device for atm communication network and failure alarm notifying method
CN105577484A (en) EAPS failure detection method and system, and EAPS network
JP2856514B2 (en) Virtual path switching device
JPH05327710A (en) Bidirectional retrieving type self-healing method
JP7452635B2 (en) Route switching method, transfer device, and communication system
JP2000031978A (en) Call control system and call control method
JPH06237262A (en) Path restoring system for plural ring transmission networks
JPH05316132A (en) 1:n path loopback method for ring transmission line network
JP2001036558A (en) Bus switching method and priority control method
CN1997029A (en) A system and device for load sharing in the primary and slave access mode
JPH0496447A (en) Virtual path switching device
CN115412424A (en) Method and device for detecting double main devices in MLAG environment
JPH04344743A (en) Fault restoration control system
JP3541486B2 (en) Broadcast connection control method
JP2001223727A (en) Multi-ring path switching system
JPH03145840A (en) Transmission line control system for ring network
JP2001053772A (en) Branch insertion node, ring network connecting the plural nodes, and fault restoration method for the ring network