JPH0616430A - Die for glass bottle molding - Google Patents

Die for glass bottle molding

Info

Publication number
JPH0616430A
JPH0616430A JP17102192A JP17102192A JPH0616430A JP H0616430 A JPH0616430 A JP H0616430A JP 17102192 A JP17102192 A JP 17102192A JP 17102192 A JP17102192 A JP 17102192A JP H0616430 A JPH0616430 A JP H0616430A
Authority
JP
Japan
Prior art keywords
glass bottle
mold
molding
die
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17102192A
Other languages
Japanese (ja)
Inventor
Isao Arikata
勇夫 有方
Koji Akafuji
広治 赤藤
Katsutoshi Hokimoto
勝利 保木本
Hiroto Imamura
博人 今村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP17102192A priority Critical patent/JPH0616430A/en
Publication of JPH0616430A publication Critical patent/JPH0616430A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B9/00Blowing glass; Production of hollow glass articles
    • C03B9/30Details of blowing glass; Use of materials for the moulds
    • C03B9/48Use of materials for the moulds

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Containers Having Bodies Formed In One Piece (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

PURPOSE:To shorten the starting time when the molding is started, in a die for glass bottle molding and to improve the yield of product. CONSTITUTION:All parts constituting the die for glass bottle is composed of metallic materials whose thermal conductivities are <=0.07cal/cm.sec. deg.C and also the parts, which are subjected to higher thermal load at the time of molding the glass bottle among the whole parts, are arranged side by side with metallic materials whose thermal conductivities are >=0.9cal/cm.sec. deg.C, thus to constitute a combined structure.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ガラスびん成型用金型
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a glass bottle molding die.

【0002】[0002]

【従来の技術】従来のガラスびん用金型の各部品は、図
8(a),(b)及び図9に示すようにファンネル5、
粗型4、口型6、プランジャー11、バッフル7、仕上
型8、底型3から構成されている。ガラスびんの成型時
においてこれらの各部品は、高温のガラス材料との接触
時間が異なるため、又各部品の形状、肉厚の相異等のた
め各部品の成型面温度が異なる。
2. Description of the Related Art As shown in FIGS. 8 (a), 8 (b) and 9, each part of a conventional glass bottle mold has a funnel 5,
It comprises a rough mold 4, a mouth mold 6, a plunger 11, a baffle 7, a finishing mold 8, and a bottom mold 3. During molding of the glass bottle, these parts have different contact times with the high temperature glass material, and the molding surface temperature of each part is different due to the difference in shape and thickness of each part.

【0003】一般に口型、プランジャー、底型は、それ
以外の部品にくらべて接触時間が長いため、その分成型
面温度が高くなる。この成型面温度が高くなることは、
成型されるガラスびんの保有熱を速やかに奪い高速な成
型速度を確保する上で好ましくない。
Generally, since the contact time of the mouth die, the plunger and the bottom die is longer than that of other parts, the molding surface temperature becomes higher accordingly. This high molding surface temperature means
It is not preferable in order to quickly remove the retained heat of the glass bottle to be molded and to secure a high molding speed.

【0004】従って、従来のガラスびん用金型の各部品
材料は、前述した熱負荷が高く、成型時に成型面温度が
高くなる口型、プランジャー、底型等に適合した高い熱
伝導率0.1〜0.15cal/cm・sec ・℃の材料、例え
ば鋳鉄材料、Cu−Ni合金等をベースに全ての部品が
選定・使用されている。又、各部品に熱伝導率が異なる
異種材料を組み合わせて選定・使用することは、材料の
違いによる成型時の熱膨張の違いにより嵌合不良が発生
するため行われていない。
Therefore, the material for each component of the conventional glass bottle mold has a high thermal conductivity of 0, which is suitable for a mouth mold, a plunger, a bottom mold, etc., in which the above-mentioned heat load is high and the molding surface temperature becomes high during molding. All parts are selected and used based on materials of 1 to 0.15 cal / cm · sec · ° C, such as cast iron materials and Cu-Ni alloys. In addition, selection and use of different materials having different thermal conductivities in combination with each other have not been performed because a fitting failure occurs due to a difference in thermal expansion during molding due to a difference in material.

【0005】[0005]

【発明が解決しようとする課題】ガラスびん成型時の立
ち上げにおいて、前記のガラスびん用金型の各部品の成
型面温度は、常温のため低くこの状態のままでガラスび
んの成型を行うと、温度の高いガラス材料が前記成型面
温度の低い金型によって急冷されるため、ガラス材料の
延伸性が著しく悪くなりその結果、成型されるガラスび
んに偏肉欠陥が発生し製品品質が低下する。そこで、従
来は、成型時の立ち上げにおいて、各部品が目標の成型
面温度に達するまで、高温のガラス材料を前記金型に通
しウォーミングアップを行っている。
When the glass bottle is molded at the time of start-up, the molding surface temperature of each part of the glass bottle mold is low because it is room temperature. Since a glass material having a high temperature is rapidly cooled by the mold having a low molding surface temperature, the stretchability of the glass material is significantly deteriorated, and as a result, an uneven thickness defect occurs in the molded glass bottle and the product quality is deteriorated. . Therefore, conventionally, at the time of start-up at the time of molding, a warm glass material is warmed up by passing a high-temperature glass material through the mold until each component reaches a target molding surface temperature.

【0006】しかしながら前記のとおり、従来のガラス
びん金型を構成する全ての部品は、ガラスびんの生産性
の向上を狙い高速な成型速度を確保させるよう、ガラス
びん成型時に熱負荷の高くなる部品に適合する高い熱伝
導率を有する材料であるため、通常操業時の高速な成型
速度は満足されるが、ガラスびん成型時の立ち上げにお
いて、例えば熱負荷が低い粗型、仕上型等は、目標の成
型面温度に達するまでに多くの時間が必要である。
However, as described above, all of the components constituting the conventional glass bottle mold have a high heat load during the molding of the glass bottle so as to secure a high molding speed in order to improve the productivity of the glass bottle. Since it is a material with a high thermal conductivity that conforms to, the high molding speed at the time of normal operation is satisfied, but at the time of start-up during glass bottle molding, for example, a rough mold with a low heat load, a finishing mold, etc. It takes a lot of time to reach the target molding surface temperature.

【0007】また、この目標の成型面温度に達するまで
にガラス材料で成型されたガラスびんは、前記のとおり
偏肉欠陥があり製品として不適で、全体としてのガラス
びん製品歩留を大幅に低くしている。
Further, the glass bottle molded from the glass material by the time the temperature reaches the target molding surface temperature is unsuitable as a product due to the uneven thickness defect as described above, and the overall yield of the glass bottle product is significantly reduced. is doing.

【0008】[0008]

【課題を解決するための手段】本発明のガラスびん成型
用金型は、ファンネル、粗型、口型、プランジャー、バ
ッフル、仕上型、底型から構成されるガラスびん成型用
金型において、前記全ての部品を熱伝導率が0.07ca
l/cm・sec ・℃以下の金属材料で構成するとともに、前
記全ての部品のうちガラスびん成型時の熱負荷が高い部
品に熱伝導率が0.90cal/cm・sec ・℃以上の金属材
料を併設し、複合構造にしたことを特徴とする。
A glass bottle molding die of the present invention is a glass bottle molding die comprising a funnel, a rough die, a mouth die, a plunger, a baffle, a finishing die and a bottom die. The thermal conductivity of all the above parts is 0.07ca
l / cm ・ sec ・ ° C or less Metallic material, and the thermal conductivity of 0.90 cal / cm ・ sec ・ ° C or higher for all the above-mentioned parts that have high heat load when molding glass bottles It is characterized by having a combined structure with the.

【0009】[0009]

【作用】前記ガラスびん成型用金型を構成する全ての部
品の材料選定において、ガラスびん成型時に熱負荷の低
い部品、例えば粗型、仕上型等を基準として、金型全体
の材料を熱伝導率の低いものを選定し、一方口型、底型
等の熱負荷の高い部品については、前記選定された材料
と熱伝導率の高い材料との複合構造にする。
In the selection of the materials of all the parts constituting the glass bottle molding die, the material of the entire die is thermally conducted on the basis of the parts having a low heat load when molding the glass bottle, for example, the rough mold and the finishing mold. A material having a low thermal conductivity is selected, and a component having a high heat load, such as a one-sided mold or a bottom mold, has a composite structure of the selected material and a material having a high thermal conductivity.

【0010】金型全体の材料をガラスびん成型時に熱負
荷の低い部品を基準として熱伝導率の低いものに選定し
ているので、ガラスびんの成型時の立ち上げにおいて、
従来の材料に比べ目標の成型面温度に達する時間が大幅
に短縮される。また、このような複合構造にすることに
より、通常操業時において、従来の材料並の高速な成型
速度が確保できる。
Since the material of the entire mold is selected to have a low thermal conductivity based on the parts having a low heat load when molding the glass bottle, when starting the glass bottle at the time of molding,
Compared with conventional materials, the time to reach the target molding surface temperature is greatly shortened. Further, by using such a composite structure, a high molding speed comparable to that of conventional materials can be secured during normal operation.

【0011】[0011]

【実施例】表1及び図1〜図7を参照して、従来例1,
2、比較例1,2,3、本発明の実施例1,2,3を説
明する。表1に示す金型の構成及び材質を用い、実際の
ガラスびん成型ラインにて、ドリンク用ガラスびんを成
型した。
EXAMPLES Referring to Table 1 and FIGS. 1 to 7, the conventional example 1,
2, Comparative Examples 1, 2, 3 and Examples 1, 2, 3 of the present invention will be described. Using the composition and material of the mold shown in Table 1, a glass bottle for drink was molded on an actual glass bottle molding line.

【0012】[0012]

【表1】 [Table 1]

【0013】[0013]

【表2】 [Table 2]

【0014】表1に示す成型時の立ち上げ必要時間と
は、金型を構成する全ての部品が目標の成型面温度に到
達するまでの時間を示し、前記部品が成型面温度に到達
したかどうかは、成型されたガラスびんの品質、具体的
には、寸法、形状で判断した。又、立ち上げ後の最大生
産量とは、立ち上げ後、通常の成型時に成型されるガラ
スびんが偏肉、変形等の品質不良を起すことなく生産可
能な最大の生産量を示す。
The required start-up time at the time of molding shown in Table 1 is the time required for all the parts constituting the mold to reach the target molding surface temperature, and whether the parts have reached the molding surface temperature. It was judged based on the quality of the molded glass bottles, specifically, the size and shape. Further, the maximum production amount after the start-up refers to the maximum production amount that can be produced after the start-up without causing quality defects such as uneven thickness and deformation of the glass bottle that is molded during normal molding.

【0015】比較例2、本発明の実施例1、実施例2、
実施例3において、複合構造にした金型の部品は、口型
と底型であり、図1は、口型部品を示し、1は金型のベ
ース合金で熱伝導率が0.07cal/cm・sec ・℃以下で
ある炭素量0.4%以下のオーステナイト系耐熱鋼、フ
ェライト系炭素鋼及び13%クロム鋼を使用した。2
は、立ち上げ後のガラスびんの生産量をアップさせるた
め熱伝導率をアップさせる金属で銅を配設・使用した。
Comparative Example 2, Example 1 of the present invention, Example 2,
In Example 3, the parts of the mold having the composite structure are the mouth part and the bottom part, and FIG. 1 shows the mouth part, where 1 is a base alloy of the mold and has a thermal conductivity of 0.07 cal / cm. -Sec-Used austenitic heat-resisting steel having a carbon content of 0.4% or less, ferritic carbon steel, and 13% chromium steel, which are less than or equal to ° C. Two
In order to increase the production volume of glass bottles after startup, copper was installed and used as a metal to increase the thermal conductivity.

【0016】図3は、底型部品を示し、その材質は、前
記の口型部品と同様に9を金型のベース合金で炭素量
0.4%以下のオーステナイト系耐熱鋼、フェライト系
炭素鋼及び13%クロム鋼を使用し、10に銅を使用し
た。
FIG. 3 shows a bottom die part, the material of which is 9 as in the die die base alloy, which is a base alloy of a die, and which has a carbon content of 0.4% or less. And 13% chrome steel and 10 for copper.

【0017】このような条件のもとで実施した実際のガ
ラス成型ラインでのドリンク用ガラスびんの成型の結
果、表1に示す供試結果から以下のことが明らかとなっ
た。
As a result of molding a glass bottle for a drink in an actual glass molding line carried out under such conditions, the following results have been clarified from the test results shown in Table 1.

【0018】成型時の立ち上げ必要時間を短縮するため
にガラスびん成型用金型のベース合金として、熱伝導率
が0.07cal/cm・sec ・℃以下のオーステナイト系耐
熱鋼、フェライト系炭素鋼及び13%クロム鋼を使用し
立ち上げ後の最大生産量を従来並に確保するために熱伝
導率が0.90cal/cm・sec ・℃以上の銅等を使用する
ことにより、従来の金型に比較して、立ち上げ後の最大
生産量が従来並で、成型時の立ち上げ必要時間が大幅に
短縮される金型の提供が可能となり、ガラスびん金型の
成型性を大幅に向上させることが可能である。
As a base alloy of a glass bottle molding die in order to shorten the time required for start-up at the time of molding, austenitic heat resistant steel having a thermal conductivity of 0.07 cal / cm · sec · ° C or less, ferritic carbon steel And, by using 13% chrome steel and using copper, etc. with a thermal conductivity of 0.90 cal / cm ・ sec ・ ° C or higher to ensure the maximum production amount after startup, which is the same as before, the conventional mold Compared to, the maximum production amount after startup is comparable to the conventional one, and it becomes possible to provide a mold in which the required startup time at the time of molding is greatly shortened, and the moldability of the glass bottle mold is greatly improved. It is possible.

【0019】尚、本実施例において、ガラスびん金型を
構成する各部品のうち複合構造にした部品は、口型、底
型の2つの部品であったが、本発明はこれに限られるも
のではなく、生産されるガラスびんの形状、寸法あるい
は金型の形状、寸法等によって異なってくる金型の熱負
荷によって、適宜複合構造にする部品を選定・使用すれ
ばよい。
In this embodiment, the composite structure among the components constituting the glass bottle mold was two components, a mouth mold and a bottom mold, but the present invention is not limited to this. Instead, a component having a composite structure may be appropriately selected and used according to the heat load of the mold which varies depending on the shape and size of the glass bottle to be produced or the shape and size of the mold.

【0020】例えば、粗型の肉厚が大きく成型面温度が
高くなりすぎる場合には、粗型背面に前記熱伝導率の高
い銅等を配設し複合構造とすることにより、冷却能を高
めることができる。
For example, when the wall thickness of the rough mold is large and the molding surface temperature becomes too high, the cooling ability is enhanced by disposing copper or the like having high thermal conductivity on the rear surface of the rough mold to form a composite structure. be able to.

【0021】また複合構造とする形状の設定について
は、ガラスびん用金型の形状、寸法、金型を構成する2
種類の材料の高,低熱伝導率の値、成型条件(成型速
度、溶融ガラスの温度)等により、通常の伝熱解析を行
って対象とする構成部品の成型面において、成型時に金
型の焼けすぎ、冷えすぎが生じないよう最適形状を設定
すればよい。
Regarding the setting of the shape of the composite structure, the shape and size of the mold for the glass bottle and the mold are configured.
Depending on the values of high and low thermal conductivity of various types of materials, molding conditions (molding speed, temperature of molten glass), etc., ordinary heat transfer analysis is performed and the mold surface of the target component is burnt during molding. The optimum shape may be set so that it does not become too cold or too cold.

【0022】高熱伝導率部材の併設の仕方については、
成型時、1000℃を超す高温のガラスと接触しない位
置に行うことにより、金型の変形、溶損を防止すればよ
い。図4,図5は、切欠きを設けたもの、図6は孔を設
けたもので、空気との接触により更に冷却効果が向上す
る。図7は、底型における他の複合構造の例を示す。
Regarding how to install the high thermal conductivity member,
The molding may be carried out at a position where it does not come into contact with the glass having a temperature higher than 1000 ° C. to prevent deformation and melting damage of the mold. 4 and 5 are provided with a notch, and FIG. 6 is provided with a hole, and the cooling effect is further improved by contact with air. FIG. 7 shows an example of another composite structure in the bottom mold.

【0023】本発明の前記実施例において、成型時の立
ち上げ必要時間を短縮するためにガラスびん成型用金型
の全ての構成部品の材料として、熱伝導率が0.07ca
l/cm・sec ・℃以下のオーステナイト系耐熱鋼、フェラ
イト系炭素鋼、13%クロム鋼等を使用したが、他の適
用例として例えば含アルミ鋳鉄、含アルミ耐熱鋼も適用
できる。
In the above-mentioned embodiment of the present invention, the thermal conductivity is 0.07 ca as a material for all the constituent parts of the mold for molding a glass bottle in order to shorten the time required for starting at the time of molding.
Although austenitic heat-resistant steel, ferritic carbon steel, 13% chrome steel, etc. having a temperature of l / cm · sec · ° C or less were used, other examples of applications include, for example, aluminum-containing cast iron and aluminum-containing heat-resistant steel.

【0024】[0024]

【発明の効果】本発明の金型を、実際のガラスびん成型
用金型に適用することにより、従来の金型に比べ、成型
時の立ち上げ必要時間を大幅に短縮し、生産性の向上が
確認され、工業的にも、多大な価値を有する。
By applying the mold of the present invention to an actual mold for glass bottle molding, compared with the conventional mold, the time required for start-up at the time of molding is greatly shortened and the productivity is improved. Has been confirmed and has great value industrially.

【図面の簡単な説明】[Brief description of drawings]

【図1】(A)は本発明のガラスびん金型の口型の1実
施例を示す横断面図、(B)は縦断面図である。
FIG. 1A is a cross-sectional view showing an embodiment of a mouth mold of a glass bottle mold of the present invention, and FIG. 1B is a vertical cross-sectional view.

【図2】(A)は本発明のガラスびん金型の口型の他の
実施例を示す横断面図、(B)は縦断面図である。
FIG. 2 (A) is a horizontal sectional view showing another embodiment of the mouth die of the glass bottle mold of the present invention, and FIG. 2 (B) is a vertical sectional view.

【図3】本発明のガラスびん金型の底型の1実施例を示
す断面図である。
FIG. 3 is a cross-sectional view showing one embodiment of the bottom mold of the glass bottle mold of the present invention.

【図4】(A)は本発明のガラスびん金型の口型の他の
実施例を示す横断面図、(B)は縦断面図である。
FIG. 4A is a cross-sectional view showing another embodiment of the mouth die of the glass bottle mold of the present invention, and FIG. 4B is a vertical cross-sectional view.

【図5】(A)は本発明のガラスびん金型の口型の他の
実施例を示す横断面図、(B)は縦断面図である。
5A is a cross-sectional view showing another embodiment of the mouth die of the glass bottle mold of the present invention, and FIG. 5B is a vertical cross-sectional view.

【図6】(A)は本発明のガラスびん金型の口型の他の
実施例を示す横断面図、(B)は縦断面図である。
FIG. 6A is a cross-sectional view showing another embodiment of the mouth die of the glass bottle mold of the present invention, and FIG. 6B is a vertical cross-sectional view.

【図7】本発明のガラスびん金型の底型の他の例の断面
図である。
FIG. 7 is a cross-sectional view of another example of the bottom mold of the glass bottle mold of the present invention.

【図8】(A),(B)は従来の製びん機のブロー成型
によるびんの粗型製造工程を示す断面図である。
8 (A) and 8 (B) are cross-sectional views showing a rough mold manufacturing process of a bottle by blow molding of a conventional bottle making machine.

【図9】粗型製造工程から仕上工程へ移す場合を示す断
面図である。
FIG. 9 is a cross-sectional view showing a case of transferring from a rough die manufacturing process to a finishing process.

【符号の説明】[Explanation of symbols]

1 口型本体 2 口型本体冷却促進用部材 3 底型 4 粗型 5 ファンネル 6 口型 7 バッフル 8 仕上型 9 底型本体 10 底型本体冷却促進用部材 11 プランジャー 12 溶融ガラスとの接触面 1 Mouth type body 2 Mouth type body cooling promoting member 3 Bottom type 4 Coarse type 5 Funnel 6 Mouth type 7 Baffle 8 Finishing type 9 Bottom type body 10 Bottom type body cooling promoting member 11 Plunger 12 Contact surface with molten glass

───────────────────────────────────────────────────── フロントページの続き (72)発明者 今村 博人 北九州市戸畑区大字中原46−59 新日本製 鐵株式会社機械・プラント事業部内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hiroto Imamura 46-59 Nakahara, Tobata-ku, Kitakyushu City Nippon Steel Corporation Machinery & Plant Division

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 ファンネル、粗型、口型、プランジャ
ー、バッフル、仕上型、底型から構成されるガラスびん
成型用金型において、前記全ての部品を熱伝導率が0.
07cal/cm・sec ・℃以下の金属材料で構成するととも
に、前記全ての部品のうちガラスびん成型時の熱負荷が
高い部品に熱伝導率が0.90cal/cm・sec ・℃以上の
金属材料を併設し、複合構造にしたことを特徴とするガ
ラスびん成型用金型。
1. A glass bottle molding die comprising a funnel, a rough die, a mouth die, a plunger, a baffle, a finishing die and a bottom die, all of which have a thermal conductivity of 0.
It is composed of a metal material with a temperature of less than 07 cal / cm ・ sec ・ ℃, and a metal material with a thermal conductivity of 0.90 cal / cm ・ sec A mold for glass bottle molding, which is characterized by having a composite structure.
JP17102192A 1992-06-29 1992-06-29 Die for glass bottle molding Pending JPH0616430A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17102192A JPH0616430A (en) 1992-06-29 1992-06-29 Die for glass bottle molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17102192A JPH0616430A (en) 1992-06-29 1992-06-29 Die for glass bottle molding

Publications (1)

Publication Number Publication Date
JPH0616430A true JPH0616430A (en) 1994-01-25

Family

ID=15915623

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17102192A Pending JPH0616430A (en) 1992-06-29 1992-06-29 Die for glass bottle molding

Country Status (1)

Country Link
JP (1) JPH0616430A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8640501B2 (en) 2008-04-08 2014-02-04 Owens-Brockway Glass Container Inc. Neck ring and method of making for a glass container forming machine
JP2018168067A (en) * 2018-08-10 2018-11-01 東洋ガラス株式会社 Bottom die, glass vessel manufactured using the same, and method for manufacturing glass vessel using bottom die

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01143738A (en) * 1987-11-30 1989-06-06 Hitachi Metals Ltd High thermal conductivity complex die

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01143738A (en) * 1987-11-30 1989-06-06 Hitachi Metals Ltd High thermal conductivity complex die

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8640501B2 (en) 2008-04-08 2014-02-04 Owens-Brockway Glass Container Inc. Neck ring and method of making for a glass container forming machine
JP2018168067A (en) * 2018-08-10 2018-11-01 東洋ガラス株式会社 Bottom die, glass vessel manufactured using the same, and method for manufacturing glass vessel using bottom die

Similar Documents

Publication Publication Date Title
CN104259438A (en) Copper-steel bimetal casting improved technology
JP4082217B2 (en) Magnesium alloy material and method for producing the same
CN104308123A (en) Copper and steel bimetallic casting application technology
JP2016020530A (en) WARM MOLDING METHOD FOR Al-Mg-Si BASED ALLOY ROLLED SHEET
JP2006144059A (en) Magnesium alloy sheet superior in press formability, and manufacturing method therefor
JP2002536183A (en) Cooling element manufacturing mold and cooling element manufactured using the mold
JP2006144043A (en) Method for producing magnesium alloy sheet having excellent press moldability
US4971134A (en) Mold casting process and apparatus, and method for producing mechanical parts
CN106881353A (en) A kind of gold alloy foil solder preparation method
JPH0616430A (en) Die for glass bottle molding
JP2007270195A (en) Method for producing spheroidal graphite cast-iron article, and spheroidal graphite cast-iron article
US6106641A (en) Aluminum alloy sheet for cross fin and production thereof
JPH0515935A (en) Ultra-high-temperature hot forging method
CN103290283A (en) Thermal insulation board of automobile exhaust pipe and manufacturing method thereof
JP2008114291A (en) Magnesium alloy material and method of manufacturing the alloy material
US1347481A (en) Process of making castings
JPH0262337B2 (en)
JP3575600B2 (en) Method and apparatus for manufacturing thin metal products
JP2673000B2 (en) Method for manufacturing tire molding die
JPS62286637A (en) Hot forging method for titanium alloy ingot
JPH07179909A (en) Method for forging powder
RU2133283C1 (en) Ingot heating method
US781914A (en) Manufacture of chilled castings.
KR0165927B1 (en) Al-alloy processing superior strength and manufacturing method for the same
JP2559320B2 (en) Temperature gradient ultra high temperature hot forging method

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19961112