JPH06164040A - Magnetic-pulse compression circuit - Google Patents

Magnetic-pulse compression circuit

Info

Publication number
JPH06164040A
JPH06164040A JP31004392A JP31004392A JPH06164040A JP H06164040 A JPH06164040 A JP H06164040A JP 31004392 A JP31004392 A JP 31004392A JP 31004392 A JP31004392 A JP 31004392A JP H06164040 A JPH06164040 A JP H06164040A
Authority
JP
Japan
Prior art keywords
magnetic
pulse compression
compression circuit
saturable
reset
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31004392A
Other languages
Japanese (ja)
Inventor
Fumihiko Endo
文彦 遠藤
Katsuya Okamura
勝也 岡村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP31004392A priority Critical patent/JPH06164040A/en
Publication of JPH06164040A publication Critical patent/JPH06164040A/en
Pending legal-status Critical Current

Links

Landscapes

  • Lasers (AREA)

Abstract

PURPOSE:To provide a magnetic-pulse compression circuit wherein it makes the number of setting stages of the operating voltage of a magnetic switch maximum with reference to the number of saturable reactors, it is small-sized and its cost is low. CONSTITUTION:In a magnetic-pulse compression circuit, a magnetic switch, in one stage, which is constituted of a plurality of pieces (n) of saturable reactors SR1, SR2, SR3 is provided, reset circuits RC1, RC2, RC3 which respectively reset the residual magnetic flux of the saturable reactor SR1, SR2, SR3 are provided, the saturable reactors SR1, SR2, SR3 are operated selectively by individually controlling the reset circuits RC1, RC2, RC3 and the operating voltage of magnetic switches can be changed stepwise by changing the total saturation magnetic flux amount of the magnetic switches SW1, SW2, SW3. In the magnetic-pulse compression circuit, the ratio of the saturation magnetic flux amount of the individual saturable reactors SR1, SR2, SR3 is set at 1:2:4:...:2<(2-1)>.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、放電励起レ―ザ装置の
励起用電源に使用される磁気パルス圧縮回路に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic pulse compression circuit used as a power source for excitation of a discharge excitation laser device.

【0002】[0002]

【従来の技術】放電励起レ―ザ装置に使われるパルス電
源では、しばじは励起電流の立上がりを100ns以下と
いう超高速が要求され、その要求に答えるために磁気パ
ルス圧縮回路が良く用いられている。磁気パルス圧縮回
路とは、磁性体の非線形性を利用した装置で鉄心入りの
リアクトルの非飽和時の大きなインダクタンスと飽和時
の低インダクタンスという性質の違いを利用し、高速の
スイッチとして用いるものである。ところが、磁気パル
ス圧縮回路のスイッチの動作点は、入力される電圧の高
さと波形によって決り、入力電圧を大きく変えると正常
に動作しなくなという欠点がある。その為にレ―ザ等の
装置において調整の電圧を可変にして動作させようとす
るときはその都度、磁気パルス圧縮回路を作り直さなけ
ればならなかった。この欠点を解消するために例えば特
開平3―142980号のような回路が提案されてい
る。
2. Description of the Related Art In a pulse power supply used in a discharge excitation laser device, the shibashi is required to have an ultrahigh speed of 100 ns or less for the rise of the excitation current, and a magnetic pulse compression circuit is often used to meet the demand. ing. A magnetic pulse compression circuit is a device that uses the nonlinearity of a magnetic material, and it is used as a high-speed switch by taking advantage of the difference in the characteristics of a reactor with an iron core, which is a large inductance when not saturated and a low inductance when saturated. . However, the operating point of the switch of the magnetic pulse compression circuit is determined by the height and the waveform of the input voltage, and there is a drawback that it will not operate normally if the input voltage is greatly changed. For this reason, the magnetic pulse compression circuit had to be recreated each time a device such as a laser was operated with a variable adjustment voltage. In order to solve this drawback, a circuit as disclosed in, for example, JP-A-3-142980 has been proposed.

【0003】図4は上記の特開平3―142980号公
報に記載されている回路を簡略に示したものである。こ
の回路によれば、一段の磁気スイッチは同等の飽和磁束
量を持つ3個の可飽和リアクトルSR1,SR2,SR
3から構成され、各可飽和リアクトルには、残留磁束を
リセットするためのリセット巻線とスイッチと直流電源
から成るリセット回路がそれぞれ接続されている。この
ように構成すると、スイッチの切換えにより各々の可飽
和リアクトルに選択的にリセット電流を流すことがで
き、磁気スイッチの動作に寄与する可飽和リアクトルを
選ぶことができる。例えばSR1のリセット回路だけを
動作させた場合、磁気スイッチの動作に寄与する可飽和
リアクトルはSR1のみとなり実質的に飽和磁束量の小
さな可飽和リアクトルと同等の性能が得られるので入力
電圧を小さくしても正常な回路動作が行われる。
FIG. 4 schematically shows the circuit described in the above-mentioned Japanese Patent Laid-Open No. 142942/1993. According to this circuit, the one-stage magnetic switch has three saturable reactors SR1, SR2, SR having the same saturation magnetic flux amount.
3, each saturable reactor is connected to a reset winding for resetting the residual magnetic flux, a reset circuit including a switch and a DC power supply. With this configuration, a reset current can be selectively passed through each saturable reactor by switching the switch, and a saturable reactor that contributes to the operation of the magnetic switch can be selected. For example, when only the reset circuit of SR1 is operated, the only saturable reactor that contributes to the operation of the magnetic switch is SR1, and the performance equivalent to that of a saturable reactor with a small amount of saturation magnetic flux can be obtained. However, normal circuit operation is performed.

【0004】[0004]

【発明が解決しようとする課題】従来の回路方式により
磁気スイッチの動作電圧を段階的に変化することが可能
となる。本方式では、動作電圧をより滑らかに変化でき
るようにする場合、磁気スイッチを構成する可飽和リア
クトルの個数を増やせばよい。しかし、可飽和リアクト
ルの個数が多くなると、それに伴なってリセット回路の
個数も増加するため磁気パルス圧縮回路の構成は非常に
繁雑となり、装置の大形化を招くばかりでなくコストも
増大するという問題を発生する。
According to the conventional circuit system, the operating voltage of the magnetic switch can be changed stepwise. In this method, in order to change the operating voltage more smoothly, the number of saturable reactors forming the magnetic switch may be increased. However, as the number of saturable reactors increases, the number of reset circuits also increases, which complicates the configuration of the magnetic pulse compression circuit, which not only leads to an increase in the size of the device but also increases the cost. Cause a problem.

【0005】本発明は以上のような従来の磁気パルス圧
縮回路の欠点を除去するためになされたもで、可飽和リ
アクトルの個数に対して磁気スイッチの動作電圧の設定
段階数が最大となる小型で安価な磁気パルス圧縮回路を
提供することを目的とする。
The present invention has been made in order to eliminate the above-mentioned drawbacks of the conventional magnetic pulse compression circuit, and is compact in that the number of steps for setting the operating voltage of the magnetic switch is maximum with respect to the number of saturable reactors. And an inexpensive magnetic pulse compression circuit.

【0006】[0006]

【課題を解決するための手段】本発明は前記目的を達成
するため、磁気スイッチを飽和磁束量及び非飽和時のイ
ンダクタンスの比率がともに1:2:4:…:2(n-1)
であるn個の可飽和リアクトルにより構成し、各可飽和
リアクトルには残留磁束をリセットするリセット巻線
と、可飽和リアクトルを選択的にリセットするためのス
イッチとリセット電源より構成されたリセット回路を設
け、磁気パルス圧縮回路を構成する。
In order to achieve the above object, the present invention provides a magnetic switch in which the ratio of the saturation magnetic flux amount and the non-saturation inductance is both 1: 2: 4: ...: 2 (n-1).
Each of the saturable reactors has a reset winding configured to reset the residual magnetic flux, a switch for selectively resetting the saturable reactor, and a reset power supply. And a magnetic pulse compression circuit.

【0007】[0007]

【作用】前述のように構成することにより、磁気スイッ
チを構成するn個の可飽和リアクトルの内のいくつかを
選択動作させることにより、磁気スイッチの動作電圧
を、2n −1段階に変化させることができる。
With the above-mentioned configuration, the operating voltage of the magnetic switch is set to 2 n by selectively operating some of the n saturable reactors that form the magnetic switch. It can be changed to -1 step.

【0008】[0008]

【実施例】以下本発明の一実施例を図1の回路構成図を
参照して説明する。本発明では、磁気スイッチMSが3
個の可飽和リアクトルSR1,SR2,SR3で構成さ
れているのは従来例と同様である。但し、本発明では可
飽和リアクトルSR1,SR2,SR3の飽和磁束量及
び非飽和時のインダクタンスの比率はともに1:2:4
である。各可飽和リアクトルSR1,SR2,SR3に
は、残留磁束をそれぞれ個別にリセットする、リセット
巻線RW1,RW2,RW3と選択的にリセット電流を
流すスイッチSW1,SW2,SW3とリセット電源P
S1,PS2,PS3から構成されたリセット回路RC
1,RC2,RC3が設けられている。磁気スイッチの
入力端子Aは入力コンデンサCに接続され、出力端子B
は負荷Zに及び放電安定化リアクトルLに接続される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the circuit configuration diagram of FIG. In the present invention, the magnetic switch MS has three
The saturable reactors SR1, SR2 and SR3 are the same as in the conventional example. However, in the present invention, the ratio of the saturation magnetic flux amount of the saturable reactors SR1, SR2, SR3 and the inductance when not saturated is 1: 2: 4.
Is. In each of the saturable reactors SR1, SR2, SR3, reset windings RW1, RW2, RW3 for individually resetting residual magnetic flux and switches SW1, SW2, SW3 for selectively flowing a reset current and a reset power supply P
Reset circuit RC composed of S1, PS2 and PS3
1, RC2, RC3 are provided. The input terminal A of the magnetic switch is connected to the input capacitor C, and the output terminal B
Is connected to the load Z and to the discharge stabilization reactor L.

【0009】磁気スイッチMSを構成する可飽和リアク
トルSR1,SR2,SR3には個別にリセット回路R
C1,RS2,RS3が設けられており、各スイッチS
W1,SW2,SW3を選択的にオンさせることにより
適当な数の可飽和リアクトルを選択動作させ、磁気スイ
ッチの全飽和磁束量を段階的に制御することができる。
このように飽和磁束量の異る複数個の可舗飽和リアクト
ルを直列接続して動作させる場合、各可飽和リアクトル
のスイッチングタイミングを揃える必要がある。可飽和
リアクトルの飽和磁束量Φは Φ=V(t)dt V(t) :可飽和リアクトル端子電圧 で表される。磁気バルス圧縮回路では、磁気スイッチに
はパルス状の電圧が印加されるため、各可飽和リアクト
ルの端子電圧は非飽和時のインダクタンスの比率で分圧
される。これらのことから、動作する全ての可飽和リア
クトルが同じタイミングで飽和するためには、各可飽和
リアクトルの端子電圧の比率が飽和磁束量の比率と同等
である必要がある。
The saturable reactors SR1, SR2 and SR3 constituting the magnetic switch MS are individually provided with reset circuits R.
C1, RS2, RS3 are provided, and each switch S
By selectively turning on W1, SW2, and SW3, an appropriate number of saturable reactors can be selectively operated, and the total saturation magnetic flux amount of the magnetic switch can be controlled stepwise.
When a plurality of saturable saturable reactors having different saturation magnetic fluxes are connected in series as described above and operated, the switching timing of each saturable reactor needs to be aligned. The saturation magnetic flux amount Φ of the saturable reactor is represented by Φ = V (t) dt V (t): saturable reactor terminal voltage. In the magnetic pulse compression circuit, since a pulsed voltage is applied to the magnetic switch, the terminal voltage of each saturable reactor is divided by the ratio of the non-saturated inductance. From these facts, in order to saturate all of the operating saturable reactors at the same timing, the ratio of the terminal voltage of each saturable reactor needs to be equal to the ratio of the saturation magnetic flux amount.

【0010】図2は例として、3個の可飽和リアクトル
SR1,SR2,SR3の全てが動作したときの各可飽
和リアクトル両端の電圧波形を示した図で、VSR1 ,V
SR2VSR3 は可飽和リアクトルSR1,SR2,SR3
のそれぞれの端子電圧、VMSは端子A,B間の電圧あ
る。本発明では可飽和リアクトルのインダクタンスの比
率を飽和磁束量の比率と同等としているため、各可飽和
リアクトルを同じタイミングでスイッチングさせること
が可能となる。本発明の構成を用いた場合のリセット回
路の動作と磁気スイッチの全飽和磁束量の関係は下記の
ようになる。 設定段階 SW1 SW2 SW3 全飽和磁束量 1 ON OFF OFF 1/7 2 OFF ON OFF 2/7 3 ON ON OFF 3/7 4 OFF OFF ON 4/7 5 ON OFF ON 5/7 6 OFF ON ON 6/7 7 ON ON ON 1(基準)
As an example, FIG. 2 is a diagram showing voltage waveforms across the saturable reactors when all three saturable reactors SR1, SR2 and SR3 are operated, and VSR1 and VSR
SR2VSR3 is a saturable reactor SR1, SR2, SR3
, VMS is the voltage between terminals A and B. In the present invention, the ratio of the inductance of the saturable reactor is made equal to the ratio of the amount of saturated magnetic flux, so that each saturable reactor can be switched at the same timing. The relationship between the operation of the reset circuit and the total saturation magnetic flux amount of the magnetic switch when the configuration of the present invention is used is as follows. Setting stage SW1 SW2 SW3 Total saturation magnetic flux 1 ON ON OFF OFF 1/7 2 OFF ON ON OFF 2/7 3 ON ON OFF OFF 3/7 4 OFF OFF ON ON 4/7 5 ON ON OFF ON 5/7 6 OFF OFF ON ON 6 / 7 7 ON ON ON 1 (reference)

【0011】このように、本発明の構成によれば磁気ス
イッチの動作電圧を7段階に設定することが可能とな
り、より高い分解能でなめらかに変化することが可能と
なる。また、本発明の構成では磁気スイッチの動作電圧
を7段階に制御するのに3個の可飽和リアクトルで実現
できるのに対し、可飽和リアクトルの比率を等分とした
磁気スイッチでは7個の可飽和リアクトルが必要とな
る。可飽和リアクトルには各々リセット回路が必要であ
るため、本発明の構成によりリセット回路の個数を3/
7に減少することができ、装置の小形化、コストダウン
を図ることができる。 ここでは、説明を簡単にするた
めに、可飽和リアクトルの個数が3個の場合を例に挙げ
説明したが、一般的に磁気スイッチがn個の可飽和リア
クトルで構成されている場合、磁気スイッチの動作電圧
は2n −1段階に制御でき、また、同等の段階数を得る
場合、従来例に比べリセット回路の数をn/(2n
1)に減少することが可能であることは明らかである。
As described above, according to the configuration of the present invention, it is possible to set the operating voltage of the magnetic switch in seven steps, and it is possible to change smoothly with a higher resolution. Further, in the configuration of the present invention, the operating voltage of the magnetic switch can be controlled in seven steps by using three saturable reactors, whereas in the magnetic switch in which the ratio of the saturable reactor is equally divided, seven can be used. A saturated reactor is needed. Since each saturable reactor needs a reset circuit, the number of reset circuits is 3 /
The number can be reduced to 7, and the device can be downsized and the cost can be reduced. Here, in order to simplify the description, the case where the number of saturable reactors is 3 has been described as an example, but in general, when the magnetic switch is configured by n saturable reactors, the magnetic switch Operating voltage is 2 n In the case where the number of reset circuits can be controlled in -1 steps and the same number of steps can be obtained, the number of reset circuits is n / (2 n compared to the conventional example.
It is clear that it can be reduced to 1).

【0012】[0012]

【発明の効果】以上説明したように本発明によれば、可
飽和リアクトルの個数に対して磁気スイッチの動作電圧
の設定段階数が最大となる、小型で安価な磁気パルス圧
縮回路を得ることができる。
As described above, according to the present invention, it is possible to obtain a compact and inexpensive magnetic pulse compression circuit in which the number of setting steps of the operating voltage of the magnetic switch is maximum with respect to the number of saturable reactors. it can.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す磁気パルス圧縮回路の
回路構成図。
FIG. 1 is a circuit configuration diagram of a magnetic pulse compression circuit showing an embodiment of the present invention.

【図2】本発明の磁気パルス圧縮回路動作時の可飽和リ
アクトル両端の電圧波形図。
FIG. 2 is a voltage waveform diagram across the saturable reactor during operation of the magnetic pulse compression circuit of the present invention.

【図3】従来の磁気パルス圧縮回路の回路構成図。FIG. 3 is a circuit configuration diagram of a conventional magnetic pulse compression circuit.

【符号の説明】[Explanation of symbols]

PS1,PS2,PS3 ……リセット電源 SR1,SR2,SR3 ……可飽和リアクトル RC1,RC2,RC3 ……リセット回路 RW1,RW2,RW3 ……リセット巻線 SW1,SW2,SW3 ……スイッチ PS1, PS2, PS3 ... reset power supply SR1, SR2, SR3 ... saturable reactor RC1, RC2, RC3 ... reset circuit RW1, RW2, RW3 ... reset winding SW1, SW2, SW3 ... switch

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 複数個の可飽和リアクトルを用いて
構成される一段の磁気スイッチと前記可飽和リアクトル
の残留磁束をそれぞれリセットするリセット回路を有
し、前記リセット回路を個別制御して可飽和リアクトル
を選択的に動作させ磁気スイッチの全飽和磁束量を変化
させることにより磁気スイッチの動作電圧を段階的に変
化可能にする磁気パルス圧縮回路において、前記各可飽
和リアクトルの飽和磁束量の比率を不等分としたことを
特徴とする磁気パルス圧縮回路。
1. A saturable reactor having a one-stage magnetic switch composed of a plurality of saturable reactors and a reset circuit for resetting the residual magnetic flux of the saturable reactor, and controlling the reset circuits individually. In the magnetic pulse compression circuit that can change the operating voltage of the magnetic switch stepwise by changing the total saturation magnetic flux amount of the magnetic switch selectively. A magnetic pulse compression circuit characterized by being divided into equal parts.
【請求項2】 前記磁気スイッチがn個の可飽和リ
アクトルで構成されている場合、各可飽和リアクトルの
飽和磁束量の比率を 1:2:4:…:2(n-1) とし、磁気スイッチの動作電圧を2n −1段階に変化で
きるようにしたことを特徴とする請求項1に記載の磁気
パルス圧縮回路。
2. The magnetic switch comprises n saturable resistors.
When configured with an actuator, each saturable reactor
The ratio of saturated magnetic flux is 1: 2: 4: ...: 2(n-1)  And the operating voltage of the magnetic switch is 2n -1 step change
The magnetic field according to claim 1, characterized in that
Pulse compression circuit.
【請求項3】 前記各可飽和リアクトルの非飽和時
のインダクタンスの比率が飽和磁束量の比率に等しくな
るようにしたことを特徴とする請求項1又は請求項2に
記載の磁気パルス圧縮回路。
3. The magnetic pulse compression circuit according to claim 1, wherein the ratio of the inductance of each saturable reactor when not saturated is equal to the ratio of the saturation magnetic flux amount.
JP31004392A 1992-11-19 1992-11-19 Magnetic-pulse compression circuit Pending JPH06164040A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31004392A JPH06164040A (en) 1992-11-19 1992-11-19 Magnetic-pulse compression circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31004392A JPH06164040A (en) 1992-11-19 1992-11-19 Magnetic-pulse compression circuit

Publications (1)

Publication Number Publication Date
JPH06164040A true JPH06164040A (en) 1994-06-10

Family

ID=18000479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31004392A Pending JPH06164040A (en) 1992-11-19 1992-11-19 Magnetic-pulse compression circuit

Country Status (1)

Country Link
JP (1) JPH06164040A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5729562A (en) * 1995-02-17 1998-03-17 Cymer, Inc. Pulse power generating circuit with energy recovery
US5940421A (en) * 1997-12-15 1999-08-17 Cymer, Inc. Current reversal prevention circuit for a pulsed gas discharge laser

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5729562A (en) * 1995-02-17 1998-03-17 Cymer, Inc. Pulse power generating circuit with energy recovery
US5940421A (en) * 1997-12-15 1999-08-17 Cymer, Inc. Current reversal prevention circuit for a pulsed gas discharge laser

Similar Documents

Publication Publication Date Title
GB2188801A (en) Control circuit for a brushless dc motor
US4928049A (en) Circuit for controlling current switching in multiple inductive loads, with single current detector, particularly for windings of step motors
EP0026068B1 (en) Circuits for electromagnet energisation control
JPH06164040A (en) Magnetic-pulse compression circuit
US4447741A (en) Base drive circuit for power transistors
US3588664A (en) Multiphase dc chopper circuit
KR970051065A (en) Current switching circuit in inductive load
JP3324203B2 (en) Reset control circuit for multiple saturable reactors
US4163191A (en) Magnetic phase shifter control system
JPH05344778A (en) Dc motor
JPH05335161A (en) Magnetic pulse compressing circuit
US3004245A (en) Magnetic core digital circuit
JPH05343779A (en) Magnetic pulse compression circuit
US3444389A (en) Magnetic core commutator circuit
SU517117A1 (en) Device for regulating AC voltage
SU1352591A1 (en) Voltage converter
SU1436228A2 (en) Stabilized power supply source
US1681435A (en) Motor controller
CA1178336A (en) Base drive circuit for power transistors
JPH06334492A (en) Magnetic switch circuit
SU1156239A1 (en) Power amplifier with protection
SU1115195A1 (en) Multimotor drive
SU1531224A1 (en) Decoder
SU1069163A1 (en) Magnetic transistor switch
JPH0274196A (en) Drive circuit of electromagnetic driving means