JPH06163957A - Thin film solar cell and its manufacture - Google Patents
Thin film solar cell and its manufactureInfo
- Publication number
- JPH06163957A JPH06163957A JP43A JP33243792A JPH06163957A JP H06163957 A JPH06163957 A JP H06163957A JP 43 A JP43 A JP 43A JP 33243792 A JP33243792 A JP 33243792A JP H06163957 A JPH06163957 A JP H06163957A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- solar cell
- thin film
- film solar
- film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/545—Microcrystalline silicon PV cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/546—Polycrystalline silicon PV cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/548—Amorphous silicon PV cells
Landscapes
- Photovoltaic Devices (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は安価なガラス基板上に形
成されてなる大面積の薄膜太陽電池およびその製法に関
する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a large area thin film solar cell formed on an inexpensive glass substrate and a method for producing the same.
【0002】[0002]
【従来の技術】従来より、ガラス基板上に、透明導電
膜、PIN半導体層および裏面電極が、この順で形成さ
れてなる薄膜太陽電池においては、P層として、アモル
ファスシリコンカーバイド、アモルファスシリコン、ま
たは微結晶を含むアモルファスシリコンカーバイド若し
くはアモルファスシリコンが用いられてきている。2. Description of the Related Art Conventionally, in a thin film solar cell in which a transparent conductive film, a PIN semiconductor layer and a back electrode are formed in this order on a glass substrate, the P layer is formed of amorphous silicon carbide, amorphous silicon, or Amorphous silicon carbide or amorphous silicon containing fine crystals has been used.
【0003】かかるP層を用いた場合、次にI層である
a−Si:Hを成膜する際、P層中のボロンがI層へ拡
散したり、透明導電膜がP層やI層へ拡散する。そのた
め、高性能のアモルファスシリコン太陽電池を作成する
ために、成膜温度を250℃以下にして成膜がなされて
いる。When such a P layer is used, when the a-Si: H which is the I layer is formed next, boron in the P layer diffuses into the I layer, and the transparent conductive film forms the P layer or the I layer. Spread to. Therefore, in order to produce a high-performance amorphous silicon solar cell, film formation is performed at a film formation temperature of 250 ° C. or lower.
【0004】このI層の成膜温度が250℃以下に制限
されることにより、I層中には水素が15atom%程
度含有されることになる。そのため、長波長側の感度の
向上が望めないという問題や光劣化が大きい等の問題が
生じている。By limiting the film forming temperature of the I layer to 250 ° C. or less, hydrogen is contained in the I layer in an amount of about 15 atom%. As a result, there are problems that improvement in sensitivity on the long wavelength side cannot be expected and that photodegradation is large.
【0005】[0005]
【発明が解決しようとする課題】本発明はかかる従来技
術の問題点に鑑みなされたものであって、長波長側の感
度が向上され、しかも光劣化が小さい薄膜太陽電池およ
びその製法を提供することを目的としている。SUMMARY OF THE INVENTION The present invention has been made in view of the above problems of the prior art, and provides a thin film solar cell having improved sensitivity on the long wavelength side and less photodegradation, and a method for producing the same. Is intended.
【0006】[0006]
【課題を解決するための手段】本発明の薄膜太陽電池
は、ガラス基板上に、透明導電膜、PIN半導体層およ
び裏面電極が、この順で形成されてなる薄膜太陽電池で
あって、前記PIN半導体層のP層が、薄膜多結晶P型
シリコンからなり、前記PIN半導体層のI層が、I型
アモルファスシリコンからなり、前記PIN半導体層の
N層が、N型アモルファスシリコンまたはN型微結晶シ
リコンからなることを特徴としている。The thin film solar cell of the present invention is a thin film solar cell in which a transparent conductive film, a PIN semiconductor layer and a back electrode are formed in this order on a glass substrate. The P layer of the semiconductor layer is made of thin film polycrystalline P type silicon, the I layer of the PIN semiconductor layer is made of I type amorphous silicon, and the N layer of the PIN semiconductor layer is made of N type amorphous silicon or N type microcrystal. It is characterized by being made of silicon.
【0007】本発明の薄膜太陽電池においては、前記P
層の粒径が200Å以上で、かつ、その電気抵抗率が1
00Ωcm以下であるのが好ましい。In the thin film solar cell of the present invention, the P
The particle size of the layer is more than 200Å and its electrical resistivity is 1
It is preferably 00 Ωcm or less.
【0008】また、本発明の薄膜太陽電池においては、
前記P層がレーザーアニール法、またはプラズマCVD
法による成膜と水素プラズマ処理との繰り返しにより形
成されてなるのが好ましい。In the thin film solar cell of the present invention,
The P layer is a laser annealing method or plasma CVD
It is preferably formed by repeating the film formation by the method and the hydrogen plasma treatment.
【0009】さらに、本発明の薄膜太陽電池において
は、前記P層の膜中の水素量が5atomic%以下で
あるのが好ましい。Further, in the thin film solar cell of the present invention, it is preferable that the amount of hydrogen in the film of the P layer is 5 atomic% or less.
【0010】その上、本発明の薄膜太陽電池において
は、前記透明導電膜と前記P層との間に、例えばPb、
Ti、W、Mo、TiC等の水素を吸蔵しない極薄の金
属膜が形成されてなるのが好ましい。Moreover, in the thin-film solar cell of the present invention, for example, Pb,
It is preferable that an ultrathin metal film that does not store hydrogen, such as Ti, W, Mo, or TiC, is formed.
【0011】本発明の薄膜太陽電池の製法は、ガラス基
板上に、透明導電膜、PIN半導体層および裏面電極
を、この順で形成する薄膜太陽電池の製法であって、前
記PIN半導体層のP層を、薄膜多結晶P型シリコンと
し、前記PIN半導体層のI層を、I型アモルファスシ
リコンとし、前記PIN半導体層のN層を、N型アモル
ファスシリコンまたはN型微結晶シリコンとすることを
特徴としている。The method for producing a thin film solar cell of the present invention is a method for producing a thin film solar cell in which a transparent conductive film, a PIN semiconductor layer and a back electrode are formed in this order on a glass substrate. The layer is thin-film polycrystalline P-type silicon, the I layer of the PIN semiconductor layer is I-type amorphous silicon, and the N layer of the PIN semiconductor layer is N-type amorphous silicon or N-type microcrystalline silicon. I am trying.
【0012】本発明発明の薄膜太陽電池の製法において
は、前記P層の粒径を200Å以上とし、かつその電気
抵抗率を100Ωcm以下とするが好ましい。In the method for producing a thin film solar cell of the present invention, it is preferable that the particle size of the P layer is 200 Å or more and the electrical resistivity thereof is 100 Ωcm or less.
【0013】また、本発明の薄膜太陽電池の製法におい
ては、前記P層をレーザーアニール法、またはプラズマ
CVD法による成膜と水素プラズマ処理との繰り返しに
より形成するのが好ましい。In the method of manufacturing a thin film solar cell of the present invention, it is preferable that the P layer is formed by repeating a film formation by a laser annealing method or a plasma CVD method and a hydrogen plasma treatment.
【0014】さらに、本発明の薄膜太陽電池の製法にお
いては、前記P層の膜中の水素量を5atomic%以
下とするのが好ましい。Further, in the method for producing a thin film solar cell of the present invention, it is preferable that the amount of hydrogen in the film of the P layer is 5 atomic% or less.
【0015】その上、本発明の薄膜太陽電池の製法にお
いては、前記透明導電膜と前記P層との間に、例えばP
b、Ti、W、Mo、TiC等の水素を吸蔵しない極薄
の金属膜を形成するのが好ましい。Moreover, in the method for producing a thin film solar cell of the present invention, for example, P is provided between the transparent conductive film and the P layer.
It is preferable to form an ultrathin metal film that does not store hydrogen, such as b, Ti, W, Mo, or TiC.
【0016】[0016]
【作用】本発明の薄膜太陽電池は、P層に多結晶薄膜シ
リコンを用いているので、I層を高温で成膜することが
できる。そのため、長波長側の感度が向上し、光劣化特
性も改善される。Since the thin film solar cell of the present invention uses the polycrystalline thin film silicon for the P layer, the I layer can be formed at a high temperature. Therefore, the sensitivity on the long wavelength side is improved, and the photodegradation property is also improved.
【0017】[0017]
【実施例】以下、添付図面を参照しながら本発明を実施
例に基づいて説明するが、本発明はかかる実施例のみに
限定されるものではない。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will now be described based on embodiments with reference to the accompanying drawings, but the present invention is not limited to such embodiments.
【0018】図1は本発明の一実施例の概略図、図2は
本発明の他の実施例の概略図である。図において、1は
ガラス基板、2は透明導電膜(透明電極)、3は薄膜多
結晶P層、4はアモルファスシリコンI層、5はN型ア
モルファスシリコンまたはN型微結晶シリコン、6は裏
面電極、7は水素を吸蔵しない金属薄膜を示す。FIG. 1 is a schematic view of an embodiment of the present invention, and FIG. 2 is a schematic view of another embodiment of the present invention. In the figure, 1 is a glass substrate, 2 is a transparent conductive film (transparent electrode), 3 is a thin film polycrystalline P layer, 4 is amorphous silicon I layer, 5 is N-type amorphous silicon or N-type microcrystalline silicon, and 6 is a back electrode. , 7 are metal thin films which do not occlude hydrogen.
【0019】本発明の薄膜太陽電池は、図1に示される
ごとく、ガラス基板1上に、透明導電膜(透明電極)
2、薄膜多結晶P層3、アモルファスシリコンI層4、
N型アモルファスシリコンまたはN型微結晶アモルファ
スシリコン5、裏面電極6がこの順で形成されてなるも
のでぁる。As shown in FIG. 1, the thin film solar cell of the present invention comprises a transparent conductive film (transparent electrode) on a glass substrate 1.
2, thin film polycrystalline P layer 3, amorphous silicon I layer 4,
The N-type amorphous silicon or the N-type microcrystalline amorphous silicon 5 and the back surface electrode 6 are formed in this order.
【0020】ここで、薄膜多結晶P層の粒径は200Å
以上とされ、またその電気抵抗率が100Ωcm以下と
されている。これは、この太陽電池のVocを向上させる
こと、およびI層を高温で成膜する際、I層中の水素が
P層中に拡散するのを妨げるためである。Here, the grain size of the thin film polycrystalline P layer is 200Å
Above, the electrical resistivity is set to 100 Ωcm or less. This is to improve the V oc of this solar cell and to prevent hydrogen in the I layer from diffusing into the P layer when the I layer is formed at a high temperature.
【0021】このように、本発明の太陽電池は、P層3
に、かかる薄膜多結晶シリコンを用いることに特徴を有
し、またこのP層3の形成方法に最大の特徴がある。As described above, the solar cell of the present invention has the P layer 3
In addition, the use of such thin film polycrystalline silicon is characteristic, and the method of forming the P layer 3 has the greatest characteristic.
【0022】このP層3は、透明電極2上に直接形成さ
れてもよいが、図2に示すように、透明電極2上に形成
された30Å以下の水素を吸蔵しない金属の極薄膜7上
に形成されるのが透明電極2へのダメージが少ない点か
ら好ましい。The P layer 3 may be directly formed on the transparent electrode 2, but as shown in FIG. 2, it is formed on the ultrathin metal film 7 formed on the transparent electrode 2 and not storing hydrogen up to 30 Å. It is preferable that the transparent electrode 2 is formed in order to reduce the damage to the transparent electrode 2.
【0023】この水素を吸蔵しない金属としては、P
d,Ti,W,Mo,TiCなどがある。As a metal that does not absorb hydrogen, P
d, Ti, W, Mo, TiC and the like.
【0024】これらの極薄膜金属膜7は、例えば蒸着
法、スパッタリング法等により形成される。These ultra-thin metal films 7 are formed by, for example, a vapor deposition method, a sputtering method or the like.
【0025】次に、P型薄膜多結晶シリコン3の形成方
法について説明する。このP型薄膜多結晶シリコン3の
形成方法は、大別して2つの方法がある。Next, a method of forming the P-type thin film polycrystalline silicon 3 will be described. There are roughly two methods for forming the P-type thin film polycrystalline silicon 3.
【0026】(1)プラズマCVD法によるアモルファ
スシリコンの成膜と、水素プラズマ処理の繰り返しによ
り、P型薄膜多結晶シリコン3を得る方法である。(1) A method of obtaining a P-type thin film polycrystalline silicon 3 by repeating film formation of amorphous silicon by the plasma CVD method and hydrogen plasma treatment.
【0027】具体的には、RFプラズマCVD法により
基板温度150℃〜500℃にてボロンをドープしたa
−Si:Hを5Å〜50Å程度成膜し、ECR水素プラ
ズマを10秒〜60秒行ない水素プラズマ処理を行う。Specifically, boron-doped a was deposited at a substrate temperature of 150 ° C. to 500 ° C. by the RF plasma CVD method.
-Si: H is deposited to a film thickness of about 5Å to 50Å, and ECR hydrogen plasma is performed for 10 seconds to 60 seconds to perform hydrogen plasma treatment.
【0028】この水素プラズマ処理における重要なポイ
ントは、基板表面に到達する水素原子フラックス量の調
整である。この水素原子フラックス量は、4×1015a
tom/cm2 ・sec、好ましくは1×1016ato
m/cm2 ・sec以上必要である。An important point in this hydrogen plasma treatment is adjustment of the amount of hydrogen atom flux reaching the substrate surface. This hydrogen atom flux amount is 4 × 10 15 a
tom / cm 2 · sec, preferably 1 × 10 16 ato
m / cm 2 · sec or more is required.
【0029】この成膜と水素プラズマ処理を繰り返すこ
とによりP型薄膜多結晶シリコン3を得る。この膜厚
は、100Å〜1000Å、好ましくは100Å〜50
0Åである。By repeating this film formation and hydrogen plasma treatment, the P-type thin film polycrystalline silicon 3 is obtained. This film thickness is 100Å to 1000Å, preferably 100Å to 50
It is 0Å.
【0030】(2)レーザーアニール法によりP型薄膜
多結晶シリコン3を得る方法である。(2) A method of obtaining the P-type thin film polycrystalline silicon 3 by the laser annealing method.
【0031】具体的には、プラズマCVD法により、ボ
ロンをドープしたa−Si:Hを100Å〜1000Å
蒸着し、ついでエキシマーレーザーを用いてエネルギー
密度を100mJ/cm2 〜400mJ/cm2 にてa
−Si:Hをレーザーアニールし再結晶化するものであ
る。ここで、エキシマーレーザーとしては、KrF,A
rF,XeCl,F2 が用いられる。またレーザーアニ
ールの際、基板温度は室温から500℃とされる。Concretely, 100-Å to 1000Å of boron-doped a-Si: H is formed by a plasma CVD method.
Deposited, then a energy density by using an excimer laser at 100mJ / cm 2 ~400mJ / cm 2
-Si: H is laser-annealed to recrystallize. Here, as the excimer laser, KrF, A
rF, XeCl, F 2 are used. The substrate temperature is set to room temperature to 500 ° C. during laser annealing.
【0032】次に、P層3成膜後にI層4を成膜する
が、I層4は通常の方法にてa−Si:HのI層が形成
される。Next, the I layer 4 is formed after the P layer 3 is formed. The I layer 4 is formed of an a-Si: H I layer by a usual method.
【0033】その際の基板温度は、アモルファスシリコ
ンのP層を用いた場合、P層中のボロンの拡散、透明電
極の拡散により250℃以下に制限されるが、P層に多
結晶シリコンを用いた場合、500℃までの成膜が可能
である。When the amorphous silicon P layer is used, the substrate temperature is limited to 250 ° C. or lower due to the diffusion of boron in the P layer and the diffusion of the transparent electrode, but polycrystalline silicon is used for the P layer. In that case, film formation up to 500 ° C. is possible.
【0034】一般的には、I層4はプラズマCVD法に
て、基板温度を250℃〜450℃、好ましくは250
℃〜350℃として成膜される。In general, the I layer 4 is formed by plasma CVD at a substrate temperature of 250 ° C. to 450 ° C., preferably 250 ° C.
The film is formed at a temperature of ℃ to 350 ℃.
【0035】N層5の形成は、N型のa−SiHまたは
微結晶シリコンを含むN型のa−Si:Hにより形成さ
れる。The N layer 5 is formed by N-type a-SiH or N-type a-Si: H containing microcrystalline silicon.
【0036】最後に裏面電極6が形成されて、太陽電池
が完成される。Finally, the back electrode 6 is formed to complete the solar cell.
【0037】ここで注目すべき点として薄膜多結晶P層
シリコン3上に形成したI層4のアモルファスシリコン
は、特に界面において結晶上で成長することから、水素
量が少なく高品質のアモルファスシリコンが形成され
る。そのため、太陽電池の光劣化特性を改善させる上で
重要な、P/I界面での光劣化の小さなアモルファスシ
リコンが形成可能となる。It should be noted that the amorphous silicon of the I layer 4 formed on the thin film polycrystalline P-layer silicon 3 grows on the crystal especially at the interface, so that the amount of hydrogen is small and high-quality amorphous silicon is obtained. It is formed. Therefore, it is possible to form amorphous silicon, which is important for improving the photodegradation characteristics of the solar cell and has a small photodegradation at the P / I interface.
【0038】以下、より具体的な実施例に基づいて、本
発明をより詳細に説明する。Hereinafter, the present invention will be described in more detail based on more specific examples.
【0039】実施例1 SnO2 2が形成されたガラス基板1上に、下記の成膜
条件により、RFプラズマCVD法によるP型a−S
i:H膜の成膜とECR水素プラズマ処理の繰り返しに
より、薄膜多結晶P型シリコン膜3を形成した。Example 1 On a glass substrate 1 on which SnO 2 2 was formed, a P-type a-S by RF plasma CVD method was formed under the following film forming conditions.
The thin film polycrystalline P-type silicon film 3 was formed by repeating the formation of the i: H film and the ECR hydrogen plasma treatment.
【0040】RFプラズマCVD法による成膜は、基板
温度230℃、SiH4 =20SCCM、H2 =200
SCCM、B2 H6 (1000ppmに希釈したもの)
=2SCCM、反応室圧力0.5Torr、RFパワー
密度30mW/cm2 にて40秒間行った。これにより
得られた膜厚は20Åであった。The film formation by the RF plasma CVD method is carried out at a substrate temperature of 230 ° C., SiH 4 = 20 SCCM, H 2 = 200.
SCCM, B 2 H 6 (diluted to 1000ppm)
= 2 SCCM, reaction chamber pressure 0.5 Torr, RF power density 30 mW / cm 2 for 40 seconds. The film thickness thus obtained was 20Å.
【0041】ついでECR水素プラズマ処理を行う。こ
の処理は、H2 =200SCCM、反応室圧力20mT
orr、ECRパワー450Wにて30秒間行った。こ
のとき基板1に到達している水素原子フラックスは、1
×1016atom/cm2 ・sec以上であった。Then, ECR hydrogen plasma treatment is performed. This treatment is H 2 = 200 SCCM, reaction chamber pressure is 20 mT
Orr and ECR power 450W performed for 30 seconds. At this time, the hydrogen atom flux reaching the substrate 1 is 1
× 10 16 atom / cm 2 · sec or more.
【0042】このRFプラズマによる成膜とECR水素
プラズマ処理を12回繰り返して、膜厚200ÅのP型
薄膜多結晶シリコン膜3を得た。The film formation by the RF plasma and the ECR hydrogen plasma treatment were repeated 12 times to obtain a P-type thin film polycrystalline silicon film 3 having a film thickness of 200 Å.
【0043】次に、このP型シリコン膜3を真空中にて
搬送し、I層4のアモルファスシリコン膜をプラズマC
VD法にて形成した。Next, the P-type silicon film 3 is transported in a vacuum, and the amorphous silicon film of the I layer 4 is plasma C
It was formed by the VD method.
【0044】成膜条件としては、SiH4 =20SCC
M、基板温度300℃、反応室圧力0.2Torr、R
Fパワー密度20mW/cm2 にて行い、膜厚を400
0Åとした。As film forming conditions, SiH 4 = 20 SCC
M, substrate temperature 300 ° C., reaction chamber pressure 0.2 Torr, R
F power density is 20 mW / cm 2 and film thickness is 400
It was 0Å.
【0045】N層5も同様にプラズマCVD法にて形成
した。成膜条件としては、基板温度270℃、反応室圧
力1Torr、SiH4 =10SCCM、PH3 (10
00ppmに希釈したもの)=100SCCM、H2 =
200SCCM、RFパワー密度0.2W/cm2 にて
行い、膜厚を250Åとした。The N layer 5 was similarly formed by the plasma CVD method. The film forming conditions are as follows: substrate temperature 270 ° C., reaction chamber pressure 1 Torr, SiH 4 = 10 SCCM, PH 3 (10
(Diluted to 00 ppm) = 100 SCCM, H 2 =
The film thickness was set to 250 Å, with 200 SCCM and RF power density of 0.2 W / cm 2 .
【0046】このN層5の上に、ZnO薄膜800Åお
よびAl薄膜1000Åからなる複合電極(裏面電極)
6を形成して太陽電池を完成させ、この太陽電池を50
℃にて500時間AM1.5、100mWのソーラシミ
ュレータにより光劣化させた後の効率の変化を調査し、
結果を表1に示した。On this N layer 5, a composite electrode (back surface electrode) consisting of a ZnO thin film 800Å and an Al thin film 1000Å
6 to form a solar cell,
Investigate the change in efficiency after photo-deterioration with a solar simulator of AM1.5, 100mW for 500 hours at ℃,
The results are shown in Table 1.
【0047】通常のアモルファスP層を用いた場合、後
述する比較例と比べて劣化率が大幅に低減されているこ
とがわかる。It can be seen that when the normal amorphous P layer is used, the deterioration rate is significantly reduced as compared with the comparative example described later.
【0048】実施例2 プラズマCVD法によりSiH4 =20SCCM、B2
H6 (1000ppmに希釈したもの)=5SCCM、
反応室圧力0.1Torr、基板温度200℃、RFパ
ワー密度30mW/cm2 にて、P型アモルファスシリ
コン膜をガラス基板1の透明導電膜2上に400Å形成
した。Example 2 SiH 4 = 20 SCCM, B 2 by plasma CVD method
H 6 (diluted to 1000 ppm) = 5 SCCM,
A P-type amorphous silicon film was formed on the transparent conductive film 2 of the glass substrate 1 at a pressure of 400 Torr at a reaction chamber pressure of 0.1 Torr, a substrate temperature of 200 ° C., and an RF power density of 30 mW / cm 2 .
【0049】ついで、エキシマーレーザー(KrF)を
用い基板温度350℃にてレーザーアニールを行った。
このレーザーアニールはKrFの波長を248nmと
し、レーザーエネルギー密度を200mJ/cm2 とし
て真空中で行った。Next, laser annealing was performed at a substrate temperature of 350 ° C. using an excimer laser (KrF).
This laser annealing was performed in vacuum with the KrF wavelength of 248 nm and the laser energy density of 200 mJ / cm 2 .
【0050】このレーザーアニールによりP型薄膜多結
晶シリコン3が膜厚で400Åが得られた。By this laser annealing, P-type thin film polycrystalline silicon 3 having a film thickness of 400 Å was obtained.
【0051】得られた膜3を真空中に保持した状態に
て、I層4、N層5、裏面電極6を実施例1と同様の方
法により作成し、太陽電池を完成させた。得られた実施
例2の太陽電池の光劣化特性を実施例1と同様に調査
し、その結果を表1に併せて示した。With the obtained film 3 held in vacuum, I layer 4, N layer 5 and back electrode 6 were formed by the same method as in Example 1 to complete a solar cell. The photodegradation characteristics of the obtained solar cell of Example 2 were investigated in the same manner as in Example 1, and the results are also shown in Table 1.
【0052】実施例3 SnO2 2が形成されたガラス基板1上にPdを電子ビ
ーの蒸着法により、基板温度250℃にて20Å蒸着
し、水素を吸蔵しない金属薄膜7を形成した。Example 3 Pd was vapor-deposited on a glass substrate 1 on which SnO 2 2 was formed at a substrate temperature of 250 ° C. by an electron beam vapor deposition method at a temperature of 20Å to form a metal thin film 7 that does not absorb hydrogen.
【0053】次に、実施例1と同様の方法にて、RFプ
ラズマCVDとECR水素プラズマ処理を同一条件にて
行いP層3を形成した。I層4、N層5、裏面電極6も
同一条件にて作成して太陽電池を完成させた。得られた
実施例3の太陽電池の光劣化特性を実施例1と同様に調
査し、その結果を表1に併せて示した。Next, in the same manner as in Example 1, RF plasma CVD and ECR hydrogen plasma treatment were performed under the same conditions to form a P layer 3. The I layer 4, the N layer 5, and the back electrode 6 were also formed under the same conditions to complete the solar cell. The photodegradation characteristics of the obtained solar cell of Example 3 were examined in the same manner as in Example 1, and the results are also shown in Table 1.
【0054】比較例 SnO2 が形成されたガラス基板上に、RFプラズマC
VD法によりP型のa−SiC:H膜を基板温度200
℃にて膜厚150Åにて形成した。Comparative Example RF plasma C was formed on a glass substrate on which SnO 2 was formed.
A P-type a-SiC: H film was formed at a substrate temperature of 200 by the VD method.
It was formed at a film thickness of 150Å at ℃.
【0055】成膜条件としては、SiH4 =20SCC
M、CH4 =40SCCM、H2 =200SCCM、B
2 H6 (1000ppmに希釈したもの)=10SCC
M、反応室圧力0.5Torr、RFパワー密度30m
W/cm2 とした。As film forming conditions, SiH 4 = 20 SCC
M, CH 4 = 40 SCCM, H 2 = 200 SCCM, B
2 H 6 (diluted to 1000 ppm) = 10 SCC
M, reaction chamber pressure 0.5 Torr, RF power density 30 m
It was set to W / cm 2 .
【0056】実施例1と同様にN層、I層および裏面電
極を作製して太陽電池を完成させた。得られた太陽電池
の光劣化特性を調査し、その結果を表1に併せて示し
た。In the same manner as in Example 1, the N layer, the I layer and the back surface electrode were prepared to complete the solar cell. The photodegradation characteristics of the obtained solar cell were investigated, and the results are also shown in Table 1.
【0057】ここで、I層の成膜温度を300℃にて成
膜すると、P層がアモルファスであることから、P層中
のボロンがI層中に拡散し、初期特性の大幅な劣化を生
じる。また光劣化後においても、P/I界面の黒さから
劣化後の性能も悪い。Here, when the film formation temperature of the I layer is 300 ° C., since the P layer is amorphous, boron in the P layer diffuses into the I layer, and the initial characteristics are greatly deteriorated. Occurs. Further, even after light deterioration, the performance after deterioration is poor due to the blackness of the P / I interface.
【0058】[0058]
【表1】 [Table 1]
【0059】[0059]
【発明の効果】以上説明してきたように、本発明の薄膜
太陽電池によれば、長波長側の感度が向上するととも
に、光劣化特性が大幅に改善することができる。As described above, according to the thin film solar cell of the present invention, the sensitivity on the long wavelength side can be improved and the photodegradation characteristic can be greatly improved.
【0060】また、本発明の薄膜太陽電池の製法によれ
ば、長波長側の感度が向上するとともに、光劣化特性が
大幅に改善されている薄膜太陽電池が得られる。Further, according to the method for producing a thin film solar cell of the present invention, a thin film solar cell having improved long-wavelength side sensitivity and significantly improved photodegradation characteristics can be obtained.
【図1】本発明の一実施例の概略図である。FIG. 1 is a schematic view of an embodiment of the present invention.
【図2】本発明の他の実施例の概略図である。FIG. 2 is a schematic view of another embodiment of the present invention.
1 ガラス基板 2 透明電極 3 薄膜多結晶P層 4 アモルファスシリコンI層 5 N型アモルファスシリコン又はN型微結晶シリ
コン 6 裏面電極 7 水素を吸蔵しない金属薄膜1 Glass Substrate 2 Transparent Electrode 3 Thin Film Polycrystalline P Layer 4 Amorphous Silicon I Layer 5 N-type Amorphous Silicon or N-type Microcrystalline Silicon 6 Back Electrode 7 Metal Thin Film That Does Not Absorb Hydrogen
Claims (12)
導体層および裏面電極が、この順で形成されてなる薄膜
太陽電池であって、前記PIN半導体層のP層が、薄膜
多結晶P型シリコンからなり、前記PIN半導体層のI
層が、I型アモルファスシリコンからなり、前記PIN
半導体層のN層が、N型アモルファスシリコンまたはN
型微結晶シリコンからなることを特徴とする薄膜太陽電
池。1. A thin film solar cell comprising a transparent conductive film, a PIN semiconductor layer and a back electrode formed in this order on a glass substrate, wherein the P layer of the PIN semiconductor layer is a thin film polycrystalline P type. I of the PIN semiconductor layer, which is made of silicon
The layer is made of I-type amorphous silicon, and the PIN is
The N layer of the semiconductor layer is N-type amorphous silicon or N
A thin-film solar cell comprising microcrystalline silicon.
つ、その電気抵抗率が100Ωcm以下であることを特
徴とする請求項1記載の薄膜太陽電池。2. The thin-film solar cell according to claim 1, wherein the P layer has a grain size of 200 Å or more and an electrical resistivity of 100 Ωcm or less.
プラズマCVD法による成膜と水素プラズマ処理との繰
り返しにより形成されてなることを特徴とする請求項1
または2記載の薄膜太陽電池。3. The P layer is formed by repeating a film formation by a laser annealing method or a plasma CVD method and a hydrogen plasma treatment.
Alternatively, the thin-film solar cell described in 2.
c%以下であることを特徴とする請求項1、2または3
記載の薄膜太陽電池。4. The amount of hydrogen in the P layer film is 5 atomi.
It is c% or less, Claim 1, 2 or 3 characterized by the above-mentioned.
The thin film solar cell described.
を吸蔵しない極薄の金属膜が形成されてなることを特徴
とする請求項1、2、3または4記載の薄膜太陽電池。5. The thin-film solar cell according to claim 1, wherein an ultrathin metal film which does not absorb hydrogen is formed between the transparent conductive film and the P layer. .
b、Ti、W、MoまたはTiCであることを特徴とす
る請求項5記載の薄膜太陽電池。6. The ultrathin metal that does not absorb hydrogen is P
The thin film solar cell according to claim 5, which is b, Ti, W, Mo or TiC.
導体層および裏面電極を、この順で形成する薄膜太陽電
池の製法であって、前記PIN半導体層のP層を、薄膜
多結晶P型シリコンとし、前記PIN半導体層のI層
を、I型アモルファスシリコンとし、前記PIN半導体
層のN層を、N型アモルファスシリコンまたはN型微結
晶シリコンとすることを特徴とする薄膜太陽電池の製
法。7. A method of manufacturing a thin film solar cell, comprising a transparent conductive film, a PIN semiconductor layer and a back electrode formed in this order on a glass substrate, wherein the P layer of the PIN semiconductor layer is a thin film polycrystalline P type. A method of manufacturing a thin-film solar cell, comprising: silicon, the I layer of the PIN semiconductor layer is I type amorphous silicon, and the N layer of the PIN semiconductor layer is N type amorphous silicon or N type microcrystalline silicon.
つその電気抵抗率を100Ωcm以下とすることを特徴
とする請求項7記載の薄膜太陽電池の製法。8. The method for producing a thin-film solar cell according to claim 7, wherein the P layer has a grain size of 200 Å or more and an electrical resistivity of 100 Ωcm or less.
プラズマCVD法による成膜と水素プラズマ処理との繰
り返しにより形成することを特徴とする請求項7または
8記載の薄膜太陽電池の製法。9. The method for producing a thin film solar cell according to claim 7, wherein the P layer is formed by repeating a film formation by a laser annealing method or a plasma CVD method and a hydrogen plasma treatment.
ic%以下とすることを特徴とする請求項7、8または
9記載の薄膜太陽電池の製法。10. The amount of hydrogen in the P layer film is set to 5 atom.
ic% or less, The manufacturing method of the thin film solar cell of Claim 7, 8 or 9 characterized by the above-mentioned.
素を吸蔵しない極薄の金属膜を形成することを特徴とす
る請求項7,8,9または10記載の薄膜太陽電池の製
法。11. The method for producing a thin film solar cell according to claim 7, 8, 9 or 10, wherein an ultrathin metal film which does not absorb hydrogen is formed between the transparent conductive film and the P layer. .
Pb、Ti、W、MoまたはTiCであることを特徴と
する請求項11記載の薄膜太陽電池の製法。12. The ultra-thin metal that does not absorb hydrogen,
The method for producing a thin-film solar cell according to claim 11, which is Pb, Ti, W, Mo or TiC.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33243792A JP3623520B2 (en) | 1992-11-17 | 1992-11-17 | Thin film solar cell manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33243792A JP3623520B2 (en) | 1992-11-17 | 1992-11-17 | Thin film solar cell manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06163957A true JPH06163957A (en) | 1994-06-10 |
JP3623520B2 JP3623520B2 (en) | 2005-02-23 |
Family
ID=18254969
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP33243792A Expired - Lifetime JP3623520B2 (en) | 1992-11-17 | 1992-11-17 | Thin film solar cell manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3623520B2 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001291883A (en) * | 2000-04-05 | 2001-10-19 | Tdk Corp | Photovoltaic element and its manufacturing method |
JP2001291878A (en) * | 2000-04-05 | 2001-10-19 | Tdk Corp | Photovoltaic element and its manufacturing method |
JP2005150723A (en) * | 2003-11-12 | 2005-06-09 | Samsung Electronics Co Ltd | Photodiode and manufacturing method thereof |
US7087831B2 (en) * | 1999-09-22 | 2006-08-08 | Canon Kabushiki Kaisha | Photoelectric conversion device and method of production thereof |
JP2009229502A (en) * | 2008-03-19 | 2009-10-08 | Sony Corp | Display device and manufacturing method thereof |
US7755157B2 (en) * | 2005-03-29 | 2010-07-13 | Sanyo Electric Co., Ltd. | Photovoltaic device and manufacturing method of photovoltaic device |
JP2010258102A (en) * | 2009-04-22 | 2010-11-11 | Serubakku:Kk | Method of manufacturing photoelectric conversion device, photoelectric conversion device manufacturing apparatus, and photoelectric conversion device |
-
1992
- 1992-11-17 JP JP33243792A patent/JP3623520B2/en not_active Expired - Lifetime
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7087831B2 (en) * | 1999-09-22 | 2006-08-08 | Canon Kabushiki Kaisha | Photoelectric conversion device and method of production thereof |
JP2001291883A (en) * | 2000-04-05 | 2001-10-19 | Tdk Corp | Photovoltaic element and its manufacturing method |
JP2001291878A (en) * | 2000-04-05 | 2001-10-19 | Tdk Corp | Photovoltaic element and its manufacturing method |
JP4730678B2 (en) * | 2000-04-05 | 2011-07-20 | Tdk株式会社 | Photovoltaic element manufacturing method |
JP2005150723A (en) * | 2003-11-12 | 2005-06-09 | Samsung Electronics Co Ltd | Photodiode and manufacturing method thereof |
US7755157B2 (en) * | 2005-03-29 | 2010-07-13 | Sanyo Electric Co., Ltd. | Photovoltaic device and manufacturing method of photovoltaic device |
JP2009229502A (en) * | 2008-03-19 | 2009-10-08 | Sony Corp | Display device and manufacturing method thereof |
JP2010258102A (en) * | 2009-04-22 | 2010-11-11 | Serubakku:Kk | Method of manufacturing photoelectric conversion device, photoelectric conversion device manufacturing apparatus, and photoelectric conversion device |
Also Published As
Publication number | Publication date |
---|---|
JP3623520B2 (en) | 2005-02-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5942049A (en) | Increasing stabilized performance of amorphous silicon based devices produced by highly hydrogen diluted lower temperature plasma deposition | |
EP1113505A2 (en) | Semiconductor device and manufacturing method thereof | |
JP2994812B2 (en) | Solar cell | |
JPH05243596A (en) | Manufacture of laminated type solar cell | |
JPH0677510A (en) | Photovoltaic element | |
JP2918345B2 (en) | Photovoltaic element | |
JP2003282458A (en) | Semiconductor device and method of manufacturing the same | |
JPH06163957A (en) | Thin film solar cell and its manufacture | |
JP2002009312A (en) | Manufacturing method of non-single crystal thin film solar cell | |
JP3792376B2 (en) | Silicon-based thin film photoelectric conversion device | |
JP2918814B2 (en) | Photovoltaic element and method for manufacturing the same | |
JP2698115B2 (en) | Method for manufacturing photovoltaic device | |
JP2845383B2 (en) | Photovoltaic element | |
JP3933334B2 (en) | Silicon-based thin film photoelectric conversion device and manufacturing method thereof | |
JP3364137B2 (en) | Method for manufacturing silicon-based thin film photoelectric conversion device | |
JPH0927627A (en) | Thin film solar cell and manufacture thereof | |
JPH06177406A (en) | Thin film solar battery and its manufacture | |
JP2003258286A (en) | Thin film solar cell and method of manufacturing the same | |
JP4124309B2 (en) | Photovoltaic device manufacturing method | |
JPH065770B2 (en) | Manufacturing method of heat-resistant thin film photoelectric conversion element | |
JP3284151B2 (en) | Solar cell | |
JPH05175529A (en) | Amorphous silicon solar cell | |
JP3046644B2 (en) | Method for manufacturing photovoltaic element | |
JPH0927632A (en) | Photovoltaic element and manufacture thereof | |
JP2958255B2 (en) | Photovoltaic element and method for manufacturing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20020604 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20041001 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20041125 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081203 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081203 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091203 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091203 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101203 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111203 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121203 Year of fee payment: 8 |
|
EXPY | Cancellation because of completion of term |