JPH061634A - Surface treatment of fluoride glass base material - Google Patents

Surface treatment of fluoride glass base material

Info

Publication number
JPH061634A
JPH061634A JP16608792A JP16608792A JPH061634A JP H061634 A JPH061634 A JP H061634A JP 16608792 A JP16608792 A JP 16608792A JP 16608792 A JP16608792 A JP 16608792A JP H061634 A JPH061634 A JP H061634A
Authority
JP
Japan
Prior art keywords
surface roughness
base material
tensile strength
etching
fluoride glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16608792A
Other languages
Japanese (ja)
Inventor
Takashi Kogo
隆司 向後
Masashi Onishi
正志 大西
Hiroo Kanamori
弘雄 金森
Masayuki Nishimura
正幸 西村
Koji Nakazato
浩二 中里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP16608792A priority Critical patent/JPH061634A/en
Publication of JPH061634A publication Critical patent/JPH061634A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/80Non-oxide glasses or glass-type compositions
    • C03B2201/82Fluoride glasses, e.g. ZBLAN glass

Abstract

PURPOSE:To improve the tensile strength of glass fiber by applying liquid phase etching to the most exterior layer clad part of a cylindrical fluoride glass base material to provide the specified surface roughness. CONSTITUTION:The relationship between the surface roughness and the tensile strength in material compositions of the most exterior layer clad part of a cylindrical fluoride glass parent material is measured to determine the surface roughness meeting the allowable tensile strength. The surface roughness is defined as the average of the absolute values of the differences between the measured distance values from points on one generating line outside the cylindrical glass base material to the central axis of the cylinder and the average radius value. The surface roughness is preferably <=0.05mum. The relationship between the solute concentration and etching time of etching solution (example: hydrochloric acid solution of zirconium oxychloride) and the surface roughness is measured to determine the solute concentration and the etching time meeting the desired tensile strength, permitting liquid phase etching to be performed. According to this method, since the surface corrosion of the base material glass is restrained while controlling the surface roughness of the base material glass, fiber of high tensile strength is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、フッ化物ガラスファイ
バの製造工程の一つであるプリフォームの表面処理に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface treatment of a preform, which is one of the manufacturing steps of a fluoride glass fiber.

【0002】[0002]

【従来の技術】光通信の光伝送媒体として使用される赤
外領域光を透過するファイバとして、この波長領域光で
伝送損失の少ないフッ化物ガラスを材料に使用したフッ
化物ファイバが注目されている。このフッ化物ファイバ
は低損失性を生かした長距離伝送媒体として、また、従
来のOE/EO変換に代わり、赤外光を増幅可能なフッ
化物光ファイバ増幅器の構成要素として、安定した光学
的および機械的特性を持つフッ化物単一モード光ファイ
バが期待されている。
2. Description of the Related Art As a fiber that transmits light in the infrared region and is used as an optical transmission medium for optical communication, a fluoride fiber using a fluoride glass, which has a small transmission loss in the light in this wavelength region, has been receiving attention. . This fluoride fiber is used as a long-distance transmission medium that takes advantage of low loss, and as a constituent element of a fluoride optical fiber amplifier that can amplify infrared light instead of the conventional OE / EO conversion. Fluoride single-mode optical fibers with mechanical properties are expected.

【0003】赤外光を導波する単一モード・フッ化物フ
ァイバでは、単一モードの成立条件からコア径を通常1
0μm以下に、国際規格(CCITT規格)に準拠して
ファイバ径を約125μmに仕上げる必要がある。従
来、所望のコア径およびクラッド厚を実現するため、円
柱状コア母材または円柱状コア/クラッド母材を出発点
として、円筒状クラッド母材に挿入して加熱延伸する工
程を、所望のコア径対クラッド径比になるまで繰り返
し、最終的にはロッドインチューブ法にて加熱一体化線
引を施してファイバを製造する方法が採用されている。
In the case of a single mode / fluoride fiber that guides infrared light, the core diameter is usually set to 1 from the condition for establishing a single mode.
It is necessary to finish the fiber diameter to 0 μm or less in accordance with the international standard (CCITT standard) to about 125 μm. Conventionally, in order to achieve a desired core diameter and clad thickness, a process of inserting a cylindrical core preform or a cylindrical core / clad preform into a cylindrical clad preform and heating and drawing the desired core is performed. A method is adopted in which the fiber is manufactured by repeating the heating-integrated drawing by the rod-in-tube method until the diameter-to-clad diameter ratio is reached.

【0004】各工程で形成される各母材は、表面の汚
れ、不純物の除去および表面平滑化のため表面研磨およ
び液相エッチングの表面処理を行う。特に、コア母材お
よび最内層クラッド母材については光導波特性のために
表面汚れおよび不純物の除去のために行われ、また最外
層クラッド母材については表面平滑化のために液相エッ
チングが実施される。
Each base material formed in each step is subjected to surface polishing and surface treatment such as liquid phase etching for removing surface dirt and impurities and smoothing the surface. In particular, the core base material and the innermost layer clad base material are subjected to surface contamination and impurities removal for optical waveguide characteristics, and the outermost layer clad base material is subjected to liquid phase etching for surface smoothing. Be implemented.

【0005】[0005]

【発明が解決しようとする課題】上記に示した最外層ク
ラッド母材に液相エッチングを施し表面平滑化を行う
と、仕上がりフッ化物ガラスファイバの引張強度が増大
することが知られている。また、液相エッチング溶液と
しては、オキシ塩化ジルコニウム(ZrOCl2 )の塩
酸溶液、ホウ酸(H3 BO3 )の塩酸溶液、および硝酸
アンモニウム(NH4 NO3 )の硝酸溶液などが知られ
ている。
It is known that when the above-mentioned outermost layer cladding base material is subjected to liquid phase etching to smooth the surface, the tensile strength of the finished fluoride glass fiber is increased. Known liquid-phase etching solutions include zirconium oxychloride (ZrOCl 2 ) hydrochloric acid solution, boric acid (H 3 BO 3 ) hydrochloric acid solution, and ammonium nitrate (NH 4 NO 3 ) nitric acid solution.

【0006】しかしながら、従来上記液相エッチング溶
液の溶質濃度およびエッチング時間と母材表面の平滑
化、更にはファイバ強度に与える影響を系統的に調べた
例はなく、特定溶液種、特定溶質濃度、特定エッチング
時間におけるファイバ強度の向上の報告があるのみであ
る(Electronics Letters 22
(1986)p949〜950、J.Mat.Sci.
Lett.6(1987)p1440〜1442、J.
Mat.Sci.26(1991)p5149〜515
4)。従って、液相エッチング法の最適化が行われない
ままファイバを生産していたので、不要に溶質濃度を高
めて表面粗さを大きくし、ファイバ強度を損なってい
た。(尚、不要に溶質濃度を低めて表面結晶化を促進す
ることによるファイバ強度の低減に関しては、導波特性
維持のため行うコア母材および最内層クラッド母材の液
相エッチングで調査された非結晶化溶質濃度の下限が知
られている。)本発明は、以上の問題点を解決するため
になされたもので、高い力学的強度を有するフッ化物ガ
ラスファイバを提供することを目的とする。
However, there have been no examples of systematically examining the solute concentration and etching time of the above liquid phase etching solution, the smoothing of the surface of the base material, and the influence on the fiber strength. There are only reports of improved fiber strength at specific etching times (Electronics Letters 22).
(1986) p949-950, J. Mat. Sci.
Lett. 6 (1987) p1440-1442, J.
Mat. Sci. 26 (1991) p5149-515
4). Therefore, since the fiber was produced without optimizing the liquid phase etching method, the solute concentration was unnecessarily increased to increase the surface roughness and the fiber strength was impaired. (Note that the fiber strength reduction by unnecessarily lowering the solute concentration and promoting surface crystallization was investigated by liquid phase etching of the core base material and the innermost clad base material to maintain the waveguide characteristics. The lower limit of the concentration of non-crystallizing solute is known.) The present invention has been made to solve the above problems, and an object thereof is to provide a fluoride glass fiber having high mechanical strength. .

【0007】[0007]

【課題を解決するための手段】本発明のフッ化物ガラス
母材の表面処理方法は、円柱型フッ化物ガラス母材の最
外層クラッド部の材料組成における表面粗さ度と引張り
強度の関係を測定し、許容引張り強度を満たす表面粗さ
度を決定する第1の工程と、エッチング溶液の溶質濃度
およびエッチング時間と表面粗さ度の関係を測定し、許
容引張り強度を満たす溶質濃度範囲および前記エッチン
グ時間範囲を決定する第2の工程とで得られた、前記溶
質濃度範囲および前記エッチング時間範囲でフッ化物ガ
ラス母材を液相エッチングすることを特徴とする。
The surface treatment method for a fluoride glass base material of the present invention measures the relationship between the surface roughness and the tensile strength in the material composition of the outermost clad portion of a cylindrical fluoride glass base material. Then, the first step of determining the surface roughness that satisfies the allowable tensile strength, and the relationship between the solute concentration of the etching solution and the etching time and the surface roughness are measured, and the solute concentration range that satisfies the allowable tensile strength and the etching. The second step of determining the time range is characterized in that the fluoride glass base material is subjected to liquid phase etching within the solute concentration range and the etching time range.

【0008】上記の表面処理方法において、表面粗さ度
を、円柱型フッ化物ガラス母材外側の一母線上各点での
円柱中心軸との測定距離値と平均半径値の差の絶対値を
平均した値で定義することを特徴とする。また、この表
面粗さ度を0.05μm以下とすることを特徴とする。
In the above surface treatment method, the surface roughness is defined as the absolute value of the difference between the measured distance value from the center axis of the cylinder and the average radius value at each point on one generatrix outside the cylinder type fluoride glass base material. It is characterized in that it is defined by an averaged value. The surface roughness is set to 0.05 μm or less.

【0009】[0009]

【作用】本発明の表面処理方法によれば、液相エッチン
グによる円柱型フッ化物ガラス母材の表面の浸蝕が過度
とならないように、本発明者が定義した表面粗さ度を基
準としてエッチング溶液の溶質濃度およびエッチング時
間を制御しているので、仕上がりファイバの力学的強度
を損なわない表面の平滑化ができる。
According to the surface treatment method of the present invention, in order to prevent excessive erosion of the surface of the cylindrical fluoride glass base material by liquid phase etching, the etching solution based on the surface roughness defined by the present inventor. Since the solute concentration and the etching time are controlled, the surface can be smoothed without impairing the mechanical strength of the finished fiber.

【0010】[0010]

【実施例】以下、図面を参照しながら本発明の実施例に
ついて説明する。最外層クラッド部材料として、通常に
使用されている以下の組成のガラスを選択する。 ガラス組成:53ZrF4 −20BaF2 −4LaF3
−3AlF3 −20NaF まず、この材料のみからなる、仕上がりフッ化物ガラス
母材を同じ径の円柱型ガラスを多数作成する。これらの
円柱型ガラスを、オキシ塩化ジルコニウム(ZrOCl
2 )の塩酸溶液、ホウ酸(H3 BO3 )の塩酸溶液、お
よび硝酸アンモニウム(NH4 NO3 )の硝酸溶液の様
々な溶質濃度溶液で液相エッチングを30分間施し、溶
質濃度と数式1で定義される表面粗さ度Raの関係を測
定する。
Embodiments of the present invention will be described below with reference to the drawings. As the material for the outermost clad portion, a glass having the following composition which is commonly used is selected. Glass composition: 53ZrF 4 -20BaF 2 -4LaF 3
-3AlF 3 -20NaF First, only consisting of this material, creating a large number of cylindrical glass having the same diameter finish fluoride glass preform. Zirconium oxychloride (ZrOCl
Liquid phase etching was carried out for 30 minutes with various solute concentration solutions of hydrochloric acid solution of 2 ), hydrochloric acid solution of boric acid (H 3 BO 3 ) and nitric acid solution of ammonium nitrate (NH 4 NO 3 ). The relationship of the defined surface roughness Ra is measured.

【0011】[0011]

【数1】 [Equation 1]

【0012】この測定結果を、図1のグラフに示す。図
1(a)は溶質がオキシ塩化ジルコニウム(ZrOCl
2 )である塩酸溶液の場合、図1(b)は溶質がホウ酸
(H3 BO3 )である塩酸溶液の場合、および図1
(c)は溶質が硝酸アンモニウム(NH4 NO3 )であ
る硝酸溶液の場合である。グラフの縦軸は表面粗さ度R
aを、横軸は溶質濃度を示している。
The results of this measurement are shown in the graph of FIG. In Fig. 1 (a), the solute is zirconium oxychloride (ZrOCl).
2 ) in the case of the hydrochloric acid solution, FIG. 1B shows the case of the hydrochloric acid solution in which the solute is boric acid (H 3 BO 3 ), and FIG.
(C) is a case of a nitric acid solution whose solute is ammonium nitrate (NH 4 NO 3 ). The vertical axis of the graph is the surface roughness R
a, the horizontal axis represents the solute concentration.

【0013】つぎに、エッチング後の各円柱型ガラスを
加熱線引きし、径125μmのファイバを作成する。こ
れらのファイバについて引張破断試験を行い、表面粗さ
度Raと引張破断力の関係を測定する。この測定結果を
図2に示す。図2(a)は、各表面粗さ度ごとに、引張
り強度に対するファイバの破断確率を表したグラフであ
り、横軸は引張り強度を、縦軸は破断確率を示す。この
グラフから各表面粗さ度に対応した引張破断力を代表す
る値として、50%の破断確率となる引張り強度を求め
グラフ化して、図2(b)を得る。図2(b)のグラフ
より明らかなように、表面粗さ度Raが大きくなるとフ
ァイバ強度が低下するが、表面粗さ度Raを0.05μ
m以下に抑えれば、より表面粗さ度を小さくしなくて
も、ほぼ理想的な表面の場合の引張り強度を得られる。
以上より、エッチング後の母材の表面粗さ度Raを0.
05μm以下とすることを管理目標として設定する。
Next, each post-etched cylindrical glass is heated and drawn to form a fiber having a diameter of 125 μm. A tensile rupture test is performed on these fibers to measure the relationship between the surface roughness Ra and the tensile rupture force. The measurement result is shown in FIG. FIG. 2A is a graph showing the breaking probability of the fiber with respect to the tensile strength for each surface roughness, the horizontal axis shows the tensile strength, and the vertical axis shows the breaking probability. From this graph, as a value representative of the tensile breaking force corresponding to each surface roughness, the tensile strength with a breaking probability of 50% is obtained and graphed to obtain FIG. 2 (b). As is clear from the graph of FIG. 2B, the fiber strength decreases as the surface roughness Ra increases, but the surface roughness Ra is 0.05 μm.
If it is suppressed to m or less, the tensile strength in the case of an almost ideal surface can be obtained without further reducing the surface roughness.
From the above, the surface roughness Ra of the base material after etching was set to 0.
It is set as a management target to be less than or equal to 05 μm.

【0014】引き続き、この管理目標を達成するエッチ
ング溶液を図1のグラフから求める。この結果、当該材
料を最外層クラッド部に使用するフッ化物ガラスファイ
バの製造工程中の母材液相エッチング工程で使用する適
切な溶液とエッチング時間は、次のとうりである。
Subsequently, the etching solution which achieves this control target is determined from the graph of FIG. As a result, the appropriate solution and etching time to be used in the base material liquid phase etching process in the manufacturing process of the fluoride glass fiber using the material for the outermost layer clad are as follows.

【0015】(1)オキシ酸ジルコニウム濃度が0.1
〜0.3mol/lの塩酸溶液で30分間液相エッチン
グを実施する。
(1) Zirconium oxynate concentration is 0.1
Liquid phase etching is performed for 30 minutes with a hydrochloric acid solution of ˜0.3 mol / l.

【0016】(2)ホウ酸濃度が0.05〜0.2mo
l/lの塩酸溶液で30分間液相エッチングを実施す
る。
(2) Boric acid concentration is 0.05 to 0.2 mo
Liquid phase etching is carried out for 30 minutes with a 1 / l hydrochloric acid solution.

【0017】(3)硝酸アンモニウム濃度が0.2〜
0.4mol/lの硝酸溶液で30分間液相エッチング
を実施する。
(3) Ammonium nitrate concentration is 0.2 to
Liquid phase etching is performed for 30 minutes with a 0.4 mol / l nitric acid solution.

【0018】これらの液相エッチング法を、当該ガラス
材料を前記最外層クラッド部に使用するフッ化物ガラス
母材に施すことにより、適正な表面平滑化が実現可能と
なり、高引張強度を有するフッ化物ガラスファイバを製
造できる。
By applying these liquid phase etching methods to the fluoride glass base material used for the outermost layer clad portion by the liquid phase etching method, proper surface smoothing can be realized and fluoride having high tensile strength can be realized. Glass fibers can be manufactured.

【0019】本発明は上記実施例に限定されるものでは
なく、最外層クラッド部材料またはエッチング溶液種を
変更した場合には、実施例と同様の手順で液相エッチン
グ法を決定すればよい。
The present invention is not limited to the above embodiment, and when the material of the outermost clad portion or the etching solution type is changed, the liquid phase etching method may be determined by the same procedure as in the embodiment.

【0020】[0020]

【発明の効果】以上詳細に説明したとうり、本発明のフ
ッ化物ガラス母材の表面処理方法によれば、母材ガラス
の表面粗さ度を管理パラメータとして、仕上がりファイ
バの引張強度を低下させない程度に、母材ガラスの液相
エッチングによる母材ガラスの表面浸蝕を抑制するの
で、高い引張強度を有するフッ化物ガラスファイバを提
供できる効果がある。
As described above in detail, according to the surface treatment method for a fluoride glass preform of the present invention, the tensile strength of the finished fiber is not lowered by using the surface roughness of the preform glass as a control parameter. The surface erosion of the matrix glass due to the liquid phase etching of the matrix glass is suppressed to a certain extent, so that there is an effect that a fluoride glass fiber having high tensile strength can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】エッチング溶液の溶質濃度とエッチング後の表
面粗さ度の関係を示す図。
FIG. 1 is a diagram showing the relationship between the solute concentration of an etching solution and the surface roughness after etching.

【図2】最外層クラッド母材の表面粗さとファイバ引張
り強度の関係を示す図。
FIG. 2 is a diagram showing the relationship between the surface roughness of the outermost cladding base material and the fiber tensile strength.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 西村 正幸 神奈川県横浜市栄区田谷町1番地 住友電 気工業株式会社横浜製作所内 (72)発明者 中里 浩二 神奈川県横浜市栄区田谷町1番地 住友電 気工業株式会社横浜製作所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Masayuki Nishimura, 1st Taya-cho, Sakae-ku, Yokohama-shi, Kanagawa Sumitomo Electric Industries, Ltd. Yokohama Works (72) Koji Nakazato 1st, Taya-cho, Sakae-ku, Yokohama, Kanagawa Sumitomo Electric Ki Industry Co., Ltd. Yokohama Works

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 円柱型フッ化物ガラス母材の最外層クラ
ッド部の材料組成における、表面粗さ度と引張り強度の
関係を測定し、許容引張り強度を満たす前記表面粗さ度
を決定する、第1の工程と、 エッチング溶液の溶質濃度およびエッチング時間と前記
表面粗さ度の関係を測定し、前記許容引張り強度を満た
す前記溶質濃度範囲および前記エッチング時間範囲を決
定する第2の工程と、 を前工程として備え、 前記溶質濃度範囲および前記エッチング時間範囲でフッ
化物ガラス母材を液相エッチングすることを特徴とする
フッ化物ガラス母材の表面処理方法。
1. The relationship between the surface roughness and the tensile strength in the material composition of the outermost clad portion of the cylindrical fluoride glass base material is measured to determine the surface roughness satisfying the allowable tensile strength. A first step, and a second step in which the relationship between the solute concentration and etching time of the etching solution and the surface roughness is measured, and the solute concentration range and the etching time range satisfying the allowable tensile strength are determined. A method for surface treatment of a fluoride glass base material, comprising a pre-process, and subjecting the fluoride glass base material to liquid phase etching within the solute concentration range and the etching time range.
【請求項2】 前記表面粗さ度を、円柱型フッ化物ガラ
ス母材外側の一母線上各点での円柱中心軸との測定距離
値と平均半径値の差の絶対値をで平均した値で定義する
ことを特徴とする請求項1記載のフッ化物ガラス母材の
表面処理方法。
2. A value obtained by averaging the surface roughness degrees with an absolute value of a difference between a measured distance value from the center axis of the cylinder and a mean radius value at each point on one generatrix outside the cylinder type fluoride glass base material. The method for surface treatment of a fluoride glass base material according to claim 1, wherein
【請求項3】 前記表面粗さ度を0.05μm以下とす
る請求項2記載のフッ化物ガラス母材の表面処理方法。
3. The surface treatment method for a fluoride glass base material according to claim 2, wherein the surface roughness is 0.05 μm or less.
JP16608792A 1992-06-24 1992-06-24 Surface treatment of fluoride glass base material Pending JPH061634A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16608792A JPH061634A (en) 1992-06-24 1992-06-24 Surface treatment of fluoride glass base material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16608792A JPH061634A (en) 1992-06-24 1992-06-24 Surface treatment of fluoride glass base material

Publications (1)

Publication Number Publication Date
JPH061634A true JPH061634A (en) 1994-01-11

Family

ID=15824752

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16608792A Pending JPH061634A (en) 1992-06-24 1992-06-24 Surface treatment of fluoride glass base material

Country Status (1)

Country Link
JP (1) JPH061634A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0547175A (en) * 1992-01-31 1993-02-26 Matsushita Electron Corp Dynamic storage device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0547175A (en) * 1992-01-31 1993-02-26 Matsushita Electron Corp Dynamic storage device

Similar Documents

Publication Publication Date Title
US3737292A (en) Method of forming optical waveguide fibers
US3932162A (en) Method of making glass optical waveguide
CA1151456A (en) High bandwidth optical waveguide
EP0381473B1 (en) Polarization-maintaining optical fiber
DE2922665C2 (en)
US4360371A (en) Method of making polarization retaining single-mode optical waveguide
EP0023066A1 (en) Method of manufacturing light conducting fibres
DE2930398A1 (en) LARGE BANDWIDTH OPTICAL GRADIENT INDEX FIBER AND METHOD FOR THEIR PRODUCTION
JPS6113203A (en) Single mode optical fiber
US6131414A (en) Method for making a preform for optical fibers by drawing a mother ingot
KR19990044483A (en) Optical waveguide fiber containing titanium dioxide and germania
JP2959877B2 (en) Optical fiber manufacturing method
JP2007504092A (en) Optical fiber and preform and method for producing the same
US7164831B2 (en) Optical fiber, evaluation and fabrication method thereof
WO2007043060A1 (en) Optical fiber having higher bandwidth and method for producing the same
USRE28029E (en) Method of forming optical waveguide fibers
JPH061634A (en) Surface treatment of fluoride glass base material
Tajima et al. Viscosity of GeO/sub 2/-doped silica glasses
JP2965236B2 (en) Manufacturing method of preform for optical fiber
KR890003438B1 (en) Process for the preparation of image fiber
EP0198118A1 (en) Silica glass single-mode optical fibre and its production method
JP2652700B2 (en) Optical fiber manufacturing method
DE102005034594B4 (en) Process for producing glass fiber preforms with a large core diameter
US20040055340A1 (en) Method of fabricating graded-index optical fiber lenses
JP2749686B2 (en) Silica optical fiber