JPH06162472A - Magnetic recording medium with multilayered film and magnetic storage - Google Patents

Magnetic recording medium with multilayered film and magnetic storage

Info

Publication number
JPH06162472A
JPH06162472A JP31065292A JP31065292A JPH06162472A JP H06162472 A JPH06162472 A JP H06162472A JP 31065292 A JP31065292 A JP 31065292A JP 31065292 A JP31065292 A JP 31065292A JP H06162472 A JPH06162472 A JP H06162472A
Authority
JP
Japan
Prior art keywords
magnetic
recording medium
layer
alloy
magnetic recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31065292A
Other languages
Japanese (ja)
Inventor
Yuzuru Hosoe
譲 細江
Yoshihiro Shiroishi
芳博 城石
Akira Ishikawa
石川  晃
Tomoo Yamamoto
朋生 山本
Masatoshi Takeshita
正敏 竹下
Shinan Yaku
四男 屋久
Akira Ozaki
明 尾嵜
Kiwamu Tanahashi
究 棚橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP31065292A priority Critical patent/JPH06162472A/en
Priority to US08/155,515 priority patent/US5750230A/en
Publication of JPH06162472A publication Critical patent/JPH06162472A/en
Priority to US08/944,472 priority patent/US6057021A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To increase the strength of a magnetic recording medium with a multilayered film to sliding on a magnetic head as well as to prevent the reduction of the coercive force of the medium. CONSTITUTION:The objective magnetic recording medium has a nonmagnetic substrate 11, plural magnetic layers 13, 15 formed on the substrate 11 and nonmagnetic middle layers 14 each interposed between the magnetic layers 13, 15. At least a region in each of the middle layers 14 in the thickness direction is made of a layer of C, B, Si, Ge or an Ni-P alloy, a layer based on C, B, Ge, Si or an Ni-P alloy, a layer of nitride of C, B, Si, Ge or an Ni-P alloy or a layer of oxide of B, Ge or an Ni-P alloy. By this structure, noise can be reduced without reducing the coercive force of the magnetic recording medium, the strength of the medium can be increased by 20-30% as compared with that of a conventional medium and the objective high density and high reliability magnetic storage having >=600 megabit/in<2> recording density and >=150,000hr MTBF is provided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、多層膜磁気記録媒体及
び磁気記憶装置、特にコンピュータの補助記憶装置等に
用いる1平方インチ当たり600メガビット以上の超高記
録密度の磁気記憶装置とこの超高記録密度を実現するの
に好適な磁気記録媒体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multi-layer magnetic recording medium and a magnetic storage device, and more particularly to a magnetic storage device having an ultrahigh recording density of 600 megabits per square inch or more for use as an auxiliary storage device of a computer and the like. The present invention relates to a magnetic recording medium suitable for realizing a recording density.

【0002】[0002]

【従来の技術】情報化社会の進行と共に日常的に扱う情
報量は増加の一途を辿っている。これに伴って、磁気記
憶装置に対する高記録密度・高記憶容量化の要求が強く
なっている。代表的な磁気記憶装置である磁気ディスク
装置を高記録密度化する場合、一般に、従来の電磁誘導
型磁気ヘッドでは、再生出力が低下し、再生が困難にな
る。このため、公開特許公報 特開昭51-44917号記載の
ように、記録用磁気ヘッドと再生用磁気ヘッドを別に
し、再生用磁気ヘッドとして、高記録密度化した場合に
も高い出力の得られる磁気抵抗効果を利用した磁気ヘッ
ドを用いることが検討されている。磁気抵抗効果型の磁
気ヘッドは再生感度が高く、かつ、ヘッドの抵抗が低い
ため発生する熱雑音が小さい。このため、従来、電磁誘
導型磁気ヘッドから発生する大きなノイズに隠れていた
磁気記録媒体に起因するノイズが、装置全体のノイズに
対して大きな割合を占めるようになる。
2. Description of the Related Art As the information-oriented society advances, the amount of information that can be dealt with on a daily basis is increasing. Along with this, the demand for higher recording density and higher storage capacity for magnetic storage devices is increasing. In the case of increasing the recording density of a magnetic disk device which is a typical magnetic storage device, generally, in a conventional electromagnetic induction type magnetic head, the reproduction output is lowered and the reproduction becomes difficult. Therefore, as described in JP-A-51-44917, a high output can be obtained even if the recording magnetic head and the reproducing magnetic head are separated and the reproducing magnetic head has a high recording density. The use of a magnetic head utilizing the magnetoresistive effect has been studied. The magnetoresistive effect type magnetic head has a high reproducing sensitivity and a small resistance of the head, so that the thermal noise generated is small. For this reason, the noise caused by the magnetic recording medium, which has been hidden by the large noise generated from the electromagnetic induction type magnetic head in the related art, now accounts for a large proportion of the noise of the entire apparatus.

【0003】従って、磁気抵抗効果型の磁気ヘッドを用
いて高記録密度化を実現するためには、磁気記録媒体に
起因するノイズ(媒体ノイズ)を低減する必要がある。
媒体ノイズを低減する方法としては、公開特許公報 特
開昭63-146219号に、複数の磁性層と各磁性層間の磁気
的結合を低減するための非磁性中間層から成る多層構造
の磁気記録媒体が開示されている。
Therefore, in order to realize a high recording density by using a magnetoresistive magnetic head, it is necessary to reduce noise (medium noise) caused by the magnetic recording medium.
As a method of reducing medium noise, Japanese Patent Laid-Open Publication No. 63-146219 discloses a magnetic recording medium having a multilayer structure including a plurality of magnetic layers and a non-magnetic intermediate layer for reducing magnetic coupling between the magnetic layers. Is disclosed.

【0004】[0004]

【発明が解決しようとする課題】上記多層構造の磁気記
録媒体(以下、多層膜磁気記録媒体とも呼ぶ)に用いる
中間層としては、Co基合金薄膜磁気記録媒体の下地層と
して用いた場合に良好な特性の得られるCrが広く検討さ
れている。Cr中間層を用いた多層膜磁気記録媒体では、
媒体ノイズは磁性膜が単層の磁気記録媒体に比べて低減
されるが、保磁力が低下してしまうという問題がある。
保磁力が低下すると、一般に、磁化遷移領域の幅が拡大
するため、高記録密度化が困難になる。
The intermediate layer used in the above-mentioned magnetic recording medium having a multilayer structure (hereinafter also referred to as a multilayer magnetic recording medium) is suitable when used as an underlayer of a Co-based alloy thin film magnetic recording medium. Cr, which provides various characteristics, has been widely studied. In the multilayer magnetic recording medium using the Cr intermediate layer,
Although medium noise is reduced as compared with a magnetic recording medium having a single magnetic film, there is a problem that coercive force is lowered.
When the coercive force decreases, the width of the magnetization transition region generally increases, which makes it difficult to increase the recording density.

【0005】磁気ディスク装置を高記録密度化する場合
の他の大きな問題として、磁気記録媒体の磁気ヘッドに
よる摺動に対する強度の問題がある。ビット間隔をつめ
て高記録密度化していく場合、媒体から外部空間に漏れ
る磁束量が媒体表面からの距離と共に急速に低下する。
このため、十分な再生出力を得るために、磁気記録媒体
と磁気ヘッドの距離を小さくする必要がある。また、微
小ビットを記録するために必要な急峻な記録磁界分布を
得るためにも、磁気記録媒体と磁気ヘッドの間隔を小さ
くする必要がある。磁気記録媒体と磁気ヘッドの間隔が
小さくなると、スタート及びストップ時あるいは僅かな
外乱により、媒体と磁気ヘッドが接触する確率が高くな
る。このため、磁気記録媒体には、より高い強度が要求
される。従来の多層膜磁気記録媒体では、この点が十分
に考慮されていなかった。
Another major problem in increasing the recording density of a magnetic disk device is the strength of the magnetic recording medium against sliding by a magnetic head. When the recording density is increased by shortening the bit interval, the amount of magnetic flux leaking from the medium to the external space rapidly decreases with the distance from the medium surface.
Therefore, in order to obtain a sufficient reproduction output, it is necessary to reduce the distance between the magnetic recording medium and the magnetic head. In addition, it is necessary to reduce the distance between the magnetic recording medium and the magnetic head in order to obtain the steep recording magnetic field distribution required for recording a minute bit. When the distance between the magnetic recording medium and the magnetic head becomes small, the probability that the medium and the magnetic head will come into contact with each other becomes high at the time of start and stop or due to slight disturbance. Therefore, higher strength is required for the magnetic recording medium. This point has not been sufficiently taken into consideration in the conventional multilayer magnetic recording medium.

【0006】本発明の第1の目的は、多層膜磁気記録媒
体の保磁力低下を防止すると同時に磁気ヘッド摺動に対
する強度を高くし、高密度記録に好適な磁気記録媒体を
提供することである。第2の目的は、この磁気記録媒体
を用いて、高密度な情報の記録再生が可能で信頼性の高
い磁気記憶装置を提供することである。
A first object of the present invention is to provide a magnetic recording medium which prevents a decrease in coercive force of the multilayer magnetic recording medium and at the same time enhances the strength against sliding of the magnetic head, and which is suitable for high density recording. . A second object is to provide a highly reliable magnetic storage device capable of recording and reproducing high density information by using this magnetic recording medium.

【0007】[0007]

【課題を解決するための手段】上記第1の目的は、非磁
性基板と上記非磁性基板上に形成された複数の磁性層及
び上記磁性層の間に配置された非磁性中間層を有する多
層膜磁気記録媒体において、上記非磁性中間層の層厚方
向の少なくとも一部領域がC、B、Si、Ge、Ni−P
合金層、又は、C、B、Ge、Ni−P合金を主たる成分
とする層、又は、C、B、Si、Ge、Ni−P合金の窒
化物層又はB、Ge、Ni−P合金の酸化物層とすること
により達成される。上記第2の目的は、磁気記録媒体
と、上記磁気記録媒体を回転駆動する駆動部と、記録再
生用の磁気ヘッドと、上記磁気ヘッドを上記磁気記録媒
体に対して相対運動させる手段とを有する磁気記憶装置
において、上記記録再生用磁気ヘッドの再生を行う部分
を磁気抵抗効果型磁気ヘッドで構成し、さらに、上記磁
気記録媒体を上記第1の目的を達成することのできる磁
気記録媒体で構成することにより達成される。
The first object is a multilayer having a non-magnetic substrate, a plurality of magnetic layers formed on the non-magnetic substrate, and a non-magnetic intermediate layer arranged between the magnetic layers. In the film magnetic recording medium, at least a part of the non-magnetic intermediate layer in the layer thickness direction is C, B, Si, Ge, Ni-P.
Alloy layer, layer containing C, B, Ge, Ni-P alloy as the main component, or nitride layer of C, B, Si, Ge, Ni-P alloy or B, Ge, Ni-P alloy This is achieved by using an oxide layer. The second object has a magnetic recording medium, a drive unit for rotationally driving the magnetic recording medium, a recording / reproducing magnetic head, and means for moving the magnetic head relative to the magnetic recording medium. In the magnetic storage device, a reproducing portion of the recording / reproducing magnetic head is constituted by a magnetoresistive effect magnetic head, and further, the magnetic recording medium is constituted by a magnetic recording medium capable of achieving the first object. It is achieved by

【0008】[0008]

【作用】多層膜磁気記録媒体において、十分な機械的強
度を確保し、かつ、磁性膜を多層化することによる保磁
力の低下を防止する手法を種々検討した結果、磁性層の
間に挿入する中間層をC、B、Si、Ge、Ni-P合金
層、又は、C、B、Ge、Ni−P合金を主たる成分とす
る層、又は、C、Si、B、Ge、Ni−P合金の窒化物
層又はB、Ge、Ni−P合金の酸化物層とすることによ
り、十分な機械的強度が確保でき、さらに、保磁力の低
下を防止できることを見いだした。図1の曲線1は、中
間層をCとした場合の、中間層の厚さと保磁力の関係で
ある。この磁気記録媒体は、表面にNi−Pメッキした
Al−Mg合金基板上に、厚さ20nmのCoPt合金磁
性層をC中間層を挾んで2層積層し、さらにその上に厚
さ70nmのC層を保護膜として積層したものである。
中間層厚がゼロの点は厚さ40nmのCoPt合金単層膜
に対応する。また、CoPt合金中のPt濃度は20at
%である。図1の曲線2は、中間層として、現在広く検
討されているCrを用いた場合の結果を比較のために示
したものである。
In a multi-layer magnetic recording medium, various techniques for ensuring sufficient mechanical strength and preventing a decrease in coercive force due to the multi-layered magnetic film have been studied. Intermediate layer is C, B, Si, Ge, Ni-P alloy layer, or layer containing C, B, Ge, Ni-P alloy as a main component, or C, Si, B, Ge, Ni-P alloy It was found that sufficient mechanical strength can be ensured and reduction in coercive force can be prevented by using the nitride layer or the oxide layer of B, Ge or Ni-P alloy. Curve 1 in FIG. 1 is the relationship between the thickness of the intermediate layer and the coercive force when the intermediate layer is C. In this magnetic recording medium, a CoPt alloy magnetic layer having a thickness of 20 nm is laminated on two surfaces of a Ni-P plated Al-Mg alloy substrate with a C intermediate layer interposed therebetween, and further a C layer having a thickness of 70 nm is formed thereon. The layers are laminated as a protective film.
The point where the thickness of the intermediate layer is zero corresponds to the CoPt alloy single layer film having a thickness of 40 nm. Also, the Pt concentration in the CoPt alloy is 20 at.
%. Curve 2 in FIG. 1 shows, for comparison, the result when Cr, which is widely studied at present, is used as the intermediate layer.

【0009】図1に示すように、中間層をCrとした場
合には、中間層の挿入によって保磁力が急激に低下して
いるのに対し、中間層をCとした場合には、保磁力の低
下はみられない。これらの媒体から発生するノイズを比
較した結果、2層の磁性膜を積層した媒体は、単層磁性
膜媒体に比べ、媒体ノイズが約3割程度低く、中間層が
CrとCの場合の差は見られなかった。さらに、これら
の媒体の強度を、曲率30mmのサファイア球面摺動子
を用いた球面摺動試験で評価した。球面摺動子の押しつ
け荷重は10gfとし、磁気記録媒体との相対速度が1
0m/sとなるように磁気ディスクを回転させた。磁性
膜が剥離するまでの摺動パス回数を比較するとCr中間
層の場合に比べて、C中間層を用いた媒体の方が2〜3
割長い寿命が得られた。このように、中間層としてCを
用いることによって、従来に比べ保磁力と摺動強度が高
い、低ノイズ多層膜磁気記録媒体を得ることができる。
磁性膜として、CoPtの代わりに、CoNi、CoFe、C
oCr、CoIr、CoW、CoRe、CoNiZr、CoCrP
t、CoCrTaあるいはCoNiCrを主成分とするCo基合
金磁性膜を用いた場合にも同等の効果が得られた。
As shown in FIG. 1, when the intermediate layer is made of Cr, the coercive force is sharply lowered by the insertion of the intermediate layer, whereas when the intermediate layer is made of C, the coercive force is decreased. Is not seen. As a result of comparing the noises generated from these media, the media in which the two-layer magnetic film is laminated has about 30% lower media noise than the single-layer magnetic film media, and the difference between when the intermediate layer is Cr and C is different. Was not seen. Further, the strength of these media was evaluated by a spherical sliding test using a sapphire spherical slider having a curvature of 30 mm. The pressing load of the spherical slider is 10 gf, and the relative velocity with the magnetic recording medium is 1
The magnetic disk was rotated at 0 m / s. Comparing the number of sliding passes until the magnetic film is peeled off, the medium using the C intermediate layer is 2 to 3 more than the medium using the Cr intermediate layer.
A relatively long life was obtained. As described above, by using C as the intermediate layer, it is possible to obtain a low noise multilayer magnetic recording medium having higher coercive force and sliding strength than those of the conventional ones.
As a magnetic film, instead of CoPt, CoNi, CoFe, C
oCr, CoIr, CoW, CoRe, CoNiZr, CoCrP
The same effect was obtained when a Co-based alloy magnetic film containing t, CoCrTa or CoNiCr as a main component was used.

【0010】上記の保磁力の低下防止については、C中
間層の代わりにB、Ge あるいはNi−P中間層を用い
た場合にも同等の効果が得られた。また、C、B、S
i、Ge、Ni−P合金からなる第1の群から選ばれた少
なくとも1種の元素あるいは合金に、Zr、Nb、Ti、
Hf、Ta、Cr、Mo、Wからなる第2の群から選ばれた
少なくとも1種の元素を添加した化合物、もしくは、T
a2O5、ZrO2等の酸化物、あるいは、(Zr−Nb)
N、Si3N4等の窒化物を中間層として用いた場合にも
同等の効果が得られた。この場合、C、B、Si、Geあ
るいはNi−P合金に対する第2の群から選ばれ元素の
添加量は50at%未満、好適には20at%以下であ
ることが望ましい。
Regarding the above-mentioned prevention of decrease in coercive force, the same effect was obtained when a B, Ge or Ni-P intermediate layer was used instead of the C intermediate layer. Also, C, B, S
At least one element or alloy selected from the first group consisting of i, Ge, and Ni-P alloys is added with Zr, Nb, Ti,
A compound to which at least one element selected from the second group consisting of Hf, Ta, Cr, Mo and W is added, or T
Oxides such as a2O5 and ZrO2, or (Zr-Nb)
The same effect was obtained when a nitride such as N or Si3N4 was used as the intermediate layer. In this case, the addition amount of the element selected from the second group with respect to the C, B, Si, Ge or Ni-P alloy is preferably less than 50 at% and preferably 20 at% or less.

【0011】Cの代わりに用いたSiとGeは、Cと同
様、ダイヤモンド型格子構造をとる元素である。また、
BとNi−P合金は非晶質構造である。これらの元素あ
るいは化合物や、酸化物、窒化物等、保磁力の低下防止
に効果のあった中間層は、いづれもCo基合金磁性層の
稠密六方格子構造とはまったく異なる構造をもち、これ
らの中間層の上下に形成された磁性層間にはエピタキシ
ャル関係、即ち結晶的つながりは存在しない。これに対
して、体心立方格子構造を持つCr層の上には、稠密六
方格子構造のCo 基合金磁性層がエピタキシャル的に成
長することが知られている。このことから、保磁力の低
下防止メカニズムには、磁性層間の結晶的なつながりを
断つことが関係していると考えられる。このことと関係
して、従来のCrあるいはCr合金を中間層とした場合に
比べ、多層構造を同じにしても、媒体ノイズは1〜2割
小さくできた。
Si and Ge used in place of C, like C, are elements having a diamond lattice structure. Also,
B and the Ni-P alloy have an amorphous structure. Any of these elements or compounds, oxides, nitrides, and other intermediate layers that have been effective in preventing a decrease in coercive force have a structure that is completely different from the dense hexagonal lattice structure of the Co-based alloy magnetic layer. There is no epitaxial relationship, that is, crystalline connection between the magnetic layers formed above and below the intermediate layer. On the other hand, it is known that a Co-based alloy magnetic layer having a dense hexagonal lattice structure is epitaxially grown on a Cr layer having a body-centered cubic lattice structure. From this, it is considered that the mechanism for preventing the decrease in the coercive force is related to breaking the crystalline connection between the magnetic layers. In connection with this, compared with the case where the conventional Cr or Cr alloy is used as the intermediate layer, the medium noise can be reduced by 10 to 20% even if the multilayer structure is the same.

【0012】媒体の摺動強度に関しては、上記保磁力低
下防止に効果のあったいづれの中間層を用いた場合に
も、Cr中間層を用いた場合と同等以上の強度が得られ
た。そのうち、C、B、Si、Ge、Ni−P合金層ある
いはC、B、Si、Ge、Ni−P合金を主成分とする中
間層を用いた場合に、特に顕著な摺動強度増加の効果が
あった。C、B、Si、Ge、Ni−Pにより構成した中
間層は、上記の中間層のなかでも、特に、高い硬度と密
着性を示すことから、摺動強度の増大メカニズムには中
間層の硬度と密着性が関係していると考えられる。
Regarding the sliding strength of the medium, even when using the intermediate layer, which is effective in preventing the above-mentioned decrease in coercive force, a strength equal to or higher than that when using the Cr intermediate layer was obtained. Among them, when a C, B, Si, Ge, Ni-P alloy layer or an intermediate layer containing C, B, Si, Ge, Ni-P alloy as a main component is used, a particularly remarkable increase in sliding strength is obtained. was there. Among the above-mentioned intermediate layers, the intermediate layer composed of C, B, Si, Ge, and Ni-P exhibits particularly high hardness and adhesion. Therefore, the hardness of the intermediate layer is a mechanism for increasing the sliding strength. Is considered to be related to adhesion.

【0013】[0013]

【実施例】以下、本発明の実施例を図面を用いて説明す
る。 <実施例1>図2は本発明による多層膜磁気記録媒体の
一実施例の層構成を示す断面図である。本実施例の多層
膜磁気記録媒体は、表面にNi-P合金をメッキしたAl
−Mg合金、Ti合金、強化ガラス、あるいは、有機樹
脂、セラミックス等で構成される非磁性基板11の上
に、スパッタリング法により順次形成された、第1の磁
性層13、中間層14、第2の磁性膜15及びC保護層
16と、さらにその上に形成された潤滑層17により構
成される。ここで、第1の磁性膜13及び第2の磁性膜
15は厚さ20nmのCo−10at% Cr−8at%Pt合
金層、中間層14は厚さ10nmのC層である。C保護
層16の厚さは40nmとした。また、潤滑層17は吸
着性のパーフロルオロアルキルポリエーテルである。
Embodiments of the present invention will be described below with reference to the drawings. <Embodiment 1> FIG. 2 is a sectional view showing the layer structure of an embodiment of the multilayer magnetic recording medium according to the present invention. The multilayer magnetic recording medium of the present embodiment has an Al-plated Ni-P alloy surface.
-A first magnetic layer 13, an intermediate layer 14, and a second magnetic layer 13 which are sequentially formed by a sputtering method on a non-magnetic substrate 11 made of Mg alloy, Ti alloy, tempered glass, organic resin, ceramics or the like. The magnetic film 15 and the C protective layer 16 and the lubricating layer 17 formed thereon. Here, the first magnetic film 13 and the second magnetic film 15 are Co-10 at% Cr-8 at% Pt alloy layers having a thickness of 20 nm, and the intermediate layer 14 is a C layer having a thickness of 10 nm. The thickness of the C protective layer 16 was 40 nm. The lubricating layer 17 is an adsorbent perfluoroalkylalkyl polyether.

【0014】試料振動型磁束計により測定した保磁力は
2100エルステッドであった。この値は、比較のため
に上記の第1、第2の磁性層及び中間層の3つの層を厚
さ40nmのCo−10at%Cr−8at%Pt合金層
1層に置き換えて作製した単層膜磁気記録媒体の保磁力
2080エルステッドにくらべ、同等以上の値が得られ
た。次に、記録再生特性を測定した。媒体と磁気ヘッド
の相対速度を12m/s、浮上スペーシングを80nm
とし、実効ギャップ長が350nmの記録用電磁誘導型
薄膜磁気ヘッドと再生用磁気抵抗効果型磁気ヘッドを複
合した磁気ヘッドを用いて評価した。その結果、媒体ノ
イズは上記比較用の単層膜磁気記録媒体に比べ約3割低
減された。また、Cの代わりに同じ層厚のCrを中間層
とした場合に比べて、媒体ノイズは約2割小さかった。
出力半減記録密度(D50)は76kFCIであり、単
層膜磁気記録媒体と同等の値が得られた。さらに、磁気
ディスクの回転・停止を繰り返して磁気ヘッドと磁気記
録媒体を接触させる試験(コンタクト・スタート・スト
ップ:以下CSSと略す)を3万回行った後、記録再生
のエラーレートを測定した。その結果、CSS後の エ
ラーレート増加は認められなかった。
The coercive force measured by a sample vibrating magnetometer was 2100 Oersted. This value is a single layer prepared by replacing the above three layers of the first and second magnetic layers and the intermediate layer with one Co-10 at% Cr-8 at% Pt alloy layer having a thickness of 40 nm for comparison. A value equal to or higher than that of the coercive force of 2080 Oersted of the film magnetic recording medium was obtained. Next, the recording / reproducing characteristics were measured. Relative speed of medium and magnetic head is 12m / s, levitation spacing is 80nm
Then, the evaluation was performed using a magnetic head in which an electromagnetic induction type thin film magnetic head for recording having an effective gap length of 350 nm and a magnetoresistive effect type magnetic head for reproduction were combined. As a result, the medium noise was reduced by about 30% as compared with the comparative single-layer magnetic recording medium. Further, the medium noise was about 20% smaller than the case where Cr having the same layer thickness instead of C was used as the intermediate layer.
The half-power recording density (D50) was 76 kFCI, which was equivalent to that of the single-layer magnetic recording medium. Further, a test (contact start / stop: hereinafter abbreviated as CSS) in which the magnetic head is brought into contact with the magnetic recording medium by repeating the rotation / stop of the magnetic disk was performed 30,000 times, and then the error rate of recording / reproducing was measured. As a result, no increase in error rate was observed after CSS.

【0015】中間層14の材質として、上記Cの代わり
に、B、Si、Ge、Ni−P合金、あるいは、Ta2O5、
ZrO2、(Zr−Nb)N、Si3N4等を用いた場合にも
同等の効果が得られた。また、C、B、Si、Ge、Ni
−P合金からなる第1の群から選ばれた少なくとも1種
の元素あるいは合金に、Zr、Nb、Ti、Hf、Ta、C
r、Mo、Wからなる第2の群から選ばれた少なくとも1
種の元素を添加した化合物を中間層14として用いた場
合にも同等の効果が得られた。磁性膜の材質としては、
上記CoCrPtの代わりに、CoPt、CoNi、CoFe、
CoCr、CoIr、CoW、CoRe、CoNiZr、CoCrT
aあるいはCoNiCrを用いた場合にも同等の効果が得ら
れた。
As a material for the intermediate layer 14, instead of C, B, Si, Ge, Ni-P alloy, Ta2O5,
Similar effects were obtained when ZrO2, (Zr-Nb) N, Si3N4, etc. were used. Also, C, B, Si, Ge, Ni
At least one element or alloy selected from the first group consisting of -P alloys with Zr, Nb, Ti, Hf, Ta, C
at least 1 selected from the second group consisting of r, Mo and W
The same effect was obtained when the compound to which the seed element was added was used as the intermediate layer 14. As the material of the magnetic film,
Instead of CoCrPt, CoPt, CoNi, CoFe,
CoCr, CoIr, CoW, CoRe, CoNiZr, CoCrT
The same effect was obtained when a or CoNiCr was used.

【0016】上記の多層膜磁気記録媒体は、中間層14
を挾んで、磁性膜を2層積層13、15したものであ
る。各磁性層13、15の厚さを14nmとし、さら
に、第2の磁性層15とC保護層16の間に、中間層と
磁性層をこの順に挿入して磁性層を3層とすると、媒体
ノイズをさらに2割程度低減することが可能である。こ
の場合も、CSS3万回後のエラーレート増加は認めら
れなかった。
The above-mentioned multilayer magnetic recording medium has an intermediate layer 14
With two layers of magnetic films laminated 13 and 15. If the thickness of each of the magnetic layers 13 and 15 is 14 nm and the intermediate layer and the magnetic layer are inserted in this order between the second magnetic layer 15 and the C protective layer 16 to form three magnetic layers, the medium It is possible to further reduce noise by about 20%. Also in this case, no increase in error rate was observed after CSS 30,000 times.

【0017】<実施例2>図3は本発明による多層膜磁
気記録媒体の他の実施例の層構成を示す断面図である。
本実施例の多層膜磁気記録媒体は、実施例1と同様、表
面にNi−P合金をメッキしたAl−Mg合金、Ti合
金、強化ガラス、あるいは、有機樹脂、セラミックス等
で構成される非磁性基板11の上に形成される。上記非
磁性基板11の上に、スパッタリング法により、Cr下
地層12、第1の磁性層13、中間層14、第2の磁性
膜15及びC保護層16を順次形成し、さらにその上に
潤滑層17を塗布により形成した構造である。実施例1
と同様、第1の磁性膜13及び第2の磁性膜15は厚さ
20nmのCo−10at%Cr−8at%Pt合金層、
中間層14は厚さ10nmのC層、C保護層16の厚さ
は40nm、潤滑層17は吸着性のパーフロルオロアル
キルポリエーテルとした。また、Cr下地層12の厚さ
は50nmとした。
<Embodiment 2> FIG. 3 is a sectional view showing the layer structure of another embodiment of the multilayer magnetic recording medium according to the present invention.
The multilayer magnetic recording medium of the present embodiment is similar to the first embodiment in that the surface is plated with a Ni—P alloy, Al—Mg alloy, Ti alloy, tempered glass, or non-magnetic material composed of organic resin, ceramics, or the like. It is formed on the substrate 11. A Cr underlayer 12, a first magnetic layer 13, an intermediate layer 14, a second magnetic film 15 and a C protective layer 16 are sequentially formed on the non-magnetic substrate 11 by a sputtering method, and lubrication is further performed thereon. It is a structure in which the layer 17 is formed by coating. Example 1
Similarly to the above, the first magnetic film 13 and the second magnetic film 15 are a Co-10 at% Cr-8 at% Pt alloy layer having a thickness of 20 nm,
The intermediate layer 14 was a C layer having a thickness of 10 nm, the C protective layer 16 had a thickness of 40 nm, and the lubricating layer 17 was an adsorptive perfluororoalkylpolyether. The Cr underlayer 12 has a thickness of 50 nm.

【0018】試料振動型磁束計により測定した保磁力は
2200エルステッドであった。この値は、比較のため
に上記の第1、第2の磁性層13、15及び中間層の3
つの層を厚さ40nmのCo−10at%Cr−8at%
Pt合金層1層に置き換えて作製した単層膜磁気記録媒
体の保磁力2140エルステッドにくらべ、同等以上の
値が得られた。次に、実施例1と同一の条件で、記録再
生特性を測定した。媒体ノイズは上記比較用の単層膜磁
気記録媒体に比べ約3割低減された。出力半減記録密度
(D50)は80kFCIであり、単層膜磁気記録媒体
と同等の値が得られた。CSSを3万回行った後のエラ
ーレートを測定した結果、CSS後のエラーレート増加
は認められなかった。
The coercive force measured by the sample vibrating magnetometer was 2200 Oersted. This value is 3 for the first and second magnetic layers 13 and 15 and the intermediate layer for comparison.
40nm thick Co-10at% Cr-8at%
A value equal to or higher than the coercive force of 2140 Oersted of the single-layer magnetic recording medium produced by replacing with one Pt alloy layer was obtained. Next, the recording / reproducing characteristics were measured under the same conditions as in Example 1. The medium noise was reduced by about 30% as compared with the comparative single-layer magnetic recording medium. The half-power recording density (D50) was 80 kFCI, and a value equivalent to that of the single-layer magnetic recording medium was obtained. As a result of measuring the error rate after CSS was performed 30,000 times, no increase in the error rate after CSS was observed.

【0019】中間層の材質として、上記Cの代わりに、
B、Si、GeあるいはNi−P合金を用いた場合にも同
等の効果が得られた。また、C、B、Si、Ge、Ni−
P合金からなる第1の群から選ばれた少なくとも1種の
元素あるいは合金に、Zr、Nb、Ti、Hf、Ta、Cr、
Mo、Wからなる第2の群から選ばれた少なくとも1種
の元素を添加した化合物を中間層14として用いた場合
にも同等の効果が得られた。さらに、NbO、MgO、
ZrN、TiN、HfN等を用いた場合にも同等の効果が
得られた。磁性膜の材質としては、上記CoCrPtの代
わりに、CoPt、CoNi、CoFe、CoCr、CoMo、C
oW、CoRe、CoNiZr、CoCrTaあるいはCoNiCr
を用いた場合にも同等の効果が得られた。実施例1に記
述した方法と同様にして、磁性層を3層とすると、媒体
ノイズは磁性層を2層の場合に比べ、さらに2割程度低
減した。この場合も、CSS3万回後のエラーレート増
加は認められなかった。
As a material for the intermediate layer, instead of the above C,
The same effect was obtained when B, Si, Ge or Ni-P alloy was used. Also, C, B, Si, Ge, Ni-
Zr, Nb, Ti, Hf, Ta, Cr, at least one element or alloy selected from the first group of P alloys,
The same effect was obtained when the compound containing at least one element selected from the second group consisting of Mo and W was used as the intermediate layer 14. In addition, NbO, MgO,
The same effect was obtained when ZrN, TiN, HfN, etc. were used. As the material of the magnetic film, instead of CoCrPt, CoPt, CoNi, CoFe, CoCr, CoMo, C
oW, CoRe, CoNiZr, CoCrTa or CoNiCr
The same effect was obtained by using. Similar to the method described in Example 1, when the number of magnetic layers was three, the medium noise was further reduced by about 20% as compared with the case of two magnetic layers. Also in this case, no increase in error rate was observed after CSS 30,000 times.

【0020】<実施例3>図4は本発明による磁気記憶
装置の一実施例の構成を示す図で、(a)及び(b)は
それぞれその平面模式図及び断面図を示す。1及び2の
多層膜磁気記録媒体を4枚組み込みんで、磁気記憶装置
を作製した。この装置は、磁気記録媒体18と、これを
回転駆動する駆動部19と、磁気ヘッド20及びその駆
動手段21と、上記磁気ヘッド20の記録再生信号処理
手段22を有して成る周知の構成を持つ磁気記憶装置で
ある。この磁気記憶装置において、上記磁気記録媒体1
8を上記実施例1及び2の多層膜磁気記録媒体で構成す
るとともに、上記磁気ヘッド20として、記録用電磁誘
導型薄膜磁気ヘッドと再生用磁気抵抗効果型磁気ヘッド
を組み合わせた複合磁気ヘッドを用いて装置化したとこ
ろ、本実施例の多層膜磁気記録媒体の中間層14をCr
に置き換えた従来公知の多層膜磁気記録媒体を用いて構
成した磁気記憶装置に比べて、出力半減記録密度が3割
程度増大したため1.3倍以上の大容量化ができた。特
に、本実施例では媒体ノイズが低いので、再生用ヘッド
として、電磁誘導型磁気ヘッドに代えて磁気抵抗効果型
磁気ヘッドを用いることで従来以上の大容量化が実現で
きた。
<Embodiment 3> FIG. 4 is a diagram showing the construction of an embodiment of a magnetic memory device according to the present invention. FIGS. 4 (a) and 4 (b) are a schematic plan view and a sectional view, respectively. A magnetic storage device was manufactured by incorporating four multilayer magnetic recording media 1 and 2. This apparatus has a well-known configuration including a magnetic recording medium 18, a drive unit 19 for rotationally driving the magnetic recording medium 18, a magnetic head 20 and a driving unit 21 therefor, and a recording / reproducing signal processing unit 22 of the magnetic head 20. It is a magnetic storage device. In this magnetic storage device, the magnetic recording medium 1
8 is composed of the multilayer magnetic recording medium of Examples 1 and 2, and a composite magnetic head in which a recording electromagnetic induction type thin film magnetic head and a reproducing magnetoresistive effect type magnetic head are combined is used as the magnetic head 20. When the device was made into a device, the intermediate layer 14 of the multilayer magnetic recording medium of the present embodiment was set to Cr.
As compared with the magnetic storage device configured by using the conventionally known multi-layered magnetic recording medium replaced by, the output half-recording density is increased by about 30%, so that the capacity can be increased 1.3 times or more. In particular, since the medium noise is low in the present embodiment, by using a magnetoresistive effect type magnetic head as the reproducing head instead of the electromagnetic induction type magnetic head, it is possible to realize a larger capacity than ever.

【0021】磁気ヘッドの入出力信号に信号処理を施す
ことにより、ヘッド浮上量70nmで1平方インチ当た
り600メガビットの情報を記録再生することができ
た。しかも、本発明の磁気ヘッドを用いることにより、
装置の寿命が伸び、MTBFで15万時間が達成でき
た。記録密度を1平方インチ当たり300メガビットと
した場合には、ヘッド浮上量110nmで記録再生する
ことがで、MTBFで30万時間が達成できた。
By performing signal processing on the input / output signals of the magnetic head, it was possible to record / reproduce information of 600 megabits per square inch with a head flying height of 70 nm. Moreover, by using the magnetic head of the present invention,
The life of the device was extended, and MTBF was able to reach 150,000 hours. When the recording density was 300 megabits per square inch, it was possible to record and reproduce with a head flying height of 110 nm, and MTBF could achieve 300,000 hours.

【0022】[0022]

【発明の効果】本発明の磁気記録媒体は保磁力を低下さ
せることなく、磁気記録媒体のノイズを低減することが
できる。再生感度の高い磁気抵抗効果型の磁気ヘッドと
組み合わせることにより、1平方インチ当たり600メ
ガビット以上の高い記録密度でも記録再生が可能であ
る。更に、本発明によれば、媒体の摺動強度を従来に比
べ2〜3割増大できるため、1平方インチ当たり600
メガビットの高い記録密度で、15万時間以上の平均故
障間隔(以下MTBFと略記する)を実現できる。ま
た、記録密度を1平方インチ当たり300メガビットと
した場合には30万時間以上のMTBFを実現できる。
The magnetic recording medium of the present invention can reduce the noise of the magnetic recording medium without lowering the coercive force. By combining with a magnetoresistive effect type magnetic head having high reproducing sensitivity, recording / reproducing is possible even at a high recording density of 600 megabits per square inch or more. Further, according to the present invention, the sliding strength of the medium can be increased by 20 to 30% as compared with the conventional one, and therefore, 600 per 1 square inch can be obtained.
With a high recording density of megabits, a mean failure interval of 150,000 hours or more (hereinafter abbreviated as MTBF) can be realized. When the recording density is 300 megabits per square inch, MTBF of 300,000 hours or more can be realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の多層膜磁気記録媒体及び従来の多層膜
磁気記録媒体における、中間層厚と保磁力の関係を示す
図である。
FIG. 1 is a diagram showing a relationship between an intermediate layer thickness and a coercive force in a multilayer magnetic recording medium of the present invention and a conventional multilayer magnetic recording medium.

【図2】本発明による多層膜磁気記録媒体の一実施例の
層構成を示す断面図である。
FIG. 2 is a cross-sectional view showing the layer structure of an example of a multilayer magnetic recording medium according to the present invention.

【図3】本発明による多層膜磁気記録媒体の他の実施例
の層構成を示す断面図である。
FIG. 3 is a cross-sectional view showing the layer structure of another embodiment of the multilayer magnetic recording medium according to the present invention.

【図4】(a)及び(b)は、それぞれ、本発明による
磁気記憶装置の一実施例の平面図及びそのA−A’断面
図である。
4A and 4B are respectively a plan view and an AA ′ sectional view of an embodiment of a magnetic storage device according to the present invention.

【符号の説明】[Explanation of symbols]

1:本発明の多層膜磁気記録媒体における、中間層厚と
保磁力の関係を示す曲線 2:比較例の多層膜磁気記録媒体における、中間層厚と
保磁力の関係を示す曲線 11:非磁性基板 12:Cr下地層 13:第1の磁性層 14:中間層 15:第2の磁性膜 16:C保護層 17:潤滑層 18:磁気記録媒体 19:磁気記録媒体駆動部 20:磁気ヘッド 21:磁気ヘッド駆動部 22:記録再生信号処理系
1: Curve showing the relationship between the intermediate layer thickness and the coercive force in the multilayer magnetic recording medium of the present invention 2: Curve showing the relationship between the intermediate layer thickness and the coercive force in the multilayer magnetic recording medium of the comparative example 11: Nonmagnetic Substrate 12: Cr underlayer 13: First magnetic layer 14: Intermediate layer 15: Second magnetic film 16: C protective layer 17: Lubrication layer 18: Magnetic recording medium 19: Magnetic recording medium drive unit 20: Magnetic head 21 : Magnetic head drive unit 22: Recording / reproducing signal processing system

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山本 朋生 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 竹下 正敏 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 屋久 四男 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 尾嵜 明 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 棚橋 究 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Tomio Yamamoto 1-280 Higashi Koikeku, Kokubunji, Tokyo Inside Central Research Laboratory, Hitachi, Ltd. (72) Masatoshi Takeshita 1-280 Higashi Koikeku, Kokubunji, Tokyo Hitachi Ltd. Inside the Central Research Laboratory (72) Inventor Yasuo Yaku 1-280, Higashi Koigokubo, Kokubunji, Tokyo Hitachi, Ltd. Central Research Laboratory (72) Inventor Akira Ozaki 1-280, Higashi Koigokubo, Kokubunji, Tokyo Hitachi, Ltd. Central Research Center (72) Researcher, Tanahashi Researcher, Central Research Laboratory, Hitachi, Ltd. 1-280, Higashi Koigokubo, Kokubunji, Tokyo

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】非磁性基板上に直接又は下地層を介して形
成された複数の磁性層及び上記磁性層の間に配置された
非磁性中間層を有する磁気記録媒体において、上記非磁
性中間層の層厚方向の少なくとも一部領域がC、B、S
i、Ge、Ni−P合金層、又は、C、B、Ge、Ni−P
合金を主たる成分とする層、又は、C、B、Si、Ge、
Ni−P合金の窒化物又はB、Ge、Ni−P合金の酸化
物層から成ることを特徴とする多層膜磁気記録媒体。
1. A magnetic recording medium having a plurality of magnetic layers formed directly on a non-magnetic substrate or via an underlayer and a non-magnetic intermediate layer arranged between the magnetic layers, wherein the non-magnetic intermediate layer is provided. Of at least a partial region in the layer thickness direction of C, B, S
i, Ge, Ni-P alloy layer, or C, B, Ge, Ni-P
A layer containing an alloy as a main component, or C, B, Si, Ge,
A multilayer magnetic recording medium comprising a nitride of Ni-P alloy or an oxide layer of B, Ge, Ni-P alloy.
【請求項2】上記非磁性中間層の層厚方向の少なくとも
一部領域がC、B、Si、Ge、Ni−P合金からなる第
1の群から選ばれた少なくとも1種の元素あるいは合金
に、Zr、Nb、Ti、Hf、Ta、Cr、Mo、Wからな
る第2の群から選ばれた少なくとも1種の元素を添加し
た化合物層から成ることを特徴とする請求項1記載の多
層膜磁気記録媒体。
2. At least a partial region in the layer thickness direction of the non-magnetic intermediate layer is made of at least one element or alloy selected from the first group consisting of C, B, Si, Ge and Ni-P alloys. 2. The multi-layer film according to claim 1, comprising a compound layer to which at least one element selected from the second group consisting of Zr, Nb, Ti, Hf, Ta, Cr, Mo and W is added. Magnetic recording medium.
【請求項3】上記非磁性中間層の層厚方向の少なくとも
一部領域がC、B、Si、Ge、Ni−P合金、Zr、N
b、Ti、Hf、Ta、Cr、Mo、Wからなる群から選ばれ
た少なくとも1種の元素あるいは合金の窒化物層から成
ることを特徴とする請求項1記載の多層膜磁気記録媒
体。
3. At least a partial region of the non-magnetic intermediate layer in the layer thickness direction is C, B, Si, Ge, Ni-P alloy, Zr, N.
2. The multilayer magnetic recording medium according to claim 1, comprising a nitride layer of at least one element or alloy selected from the group consisting of b, Ti, Hf, Ta, Cr, Mo and W.
【請求項4】上記複数の磁性層がCo基合金層であるこ
とを特徴とする請求項1、2又は3記載の多層膜磁気記
録媒体。
4. The multilayer magnetic recording medium according to claim 1, 2 or 3, wherein the plurality of magnetic layers are Co-based alloy layers.
【請求項5】上記非磁性基板の表面が非晶質層であるこ
とを特徴とする請求項1、2、3又は4記載の多層膜磁
気記録媒体。
5. The multilayer magnetic recording medium according to claim 1, 2, 3 or 4, wherein the surface of said non-magnetic substrate is an amorphous layer.
【請求項6】上記非磁性中間層の少なくとも一部がC又
はCを主たる成分とする層から成ることを特徴とする請
求項1、4又は5記載の多層膜磁気記録媒体。
6. The multilayer magnetic recording medium according to claim 1, 4 or 5, wherein at least a part of the non-magnetic intermediate layer comprises C or a layer containing C as a main component.
【請求項7】上記非磁性中間層の少なくとも一部がNi
−P合金又はNi−P合金を主たる成分とする層から成
ることを特徴とする請求項1、4又は5記載の多層膜磁
気記録媒体。
7. The nonmagnetic intermediate layer comprises at least a portion of Ni.
6. The multilayer magnetic recording medium according to claim 1, which is composed of a layer containing a -P alloy or a Ni-P alloy as a main component.
【請求項8】磁気記録媒体と、上記磁気記録媒体を回転
駆動する駆動部と、記録再生用の磁気ヘッドと、上記磁
気ヘッドを上記磁気記録媒体に対して相対運動させる手
段とを有する磁気記憶装置において、上記磁気記録媒体
が請求項1、2、3、4、5、6又は7記載の多層膜磁
気記録媒体から成ることを特徴とする磁気記憶装置。
8. A magnetic storage comprising a magnetic recording medium, a drive unit for rotationally driving the magnetic recording medium, a recording / reproducing magnetic head, and means for moving the magnetic head relative to the magnetic recording medium. In the apparatus, the magnetic recording medium comprises the multilayer magnetic recording medium according to claim 1, 2, 3, 4, 5, 6 or 7.
【請求項9】上記記録再生用の磁気ヘッドを記録用の誘
導型磁気ヘッドと再生用の磁気抵抗効果型磁気ヘッドで
構成した請求項8記載の磁気記憶装置。
9. The magnetic storage device according to claim 8, wherein the recording / reproducing magnetic head comprises an inductive magnetic head for recording and a magnetoresistive effect magnetic head for reproduction.
【請求項10】高記録密度が1平方インチ当たり600
メガビット以上で平均故障間隔(MTBF)が15万時
間以上である請求項8又は9記載の磁気記憶装置。
10. A high recording density of 600 per square inch.
10. The magnetic storage device according to claim 8, wherein a mean time between failures (MTBF) is 150,000 hours or more at megabits or more.
【請求項11】高記録密度が1平方インチ当たり300
メガビット以上で平均故障間隔(MTBF)が30万時
間以上である請求項8又は9記載の磁気記憶装置。
11. A high recording density of 300 per square inch.
10. The magnetic storage device according to claim 8, wherein a mean time between failures (MTBF) is 300,000 hours or more at megabits or more.
JP31065292A 1992-11-20 1992-11-20 Magnetic recording medium with multilayered film and magnetic storage Pending JPH06162472A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP31065292A JPH06162472A (en) 1992-11-20 1992-11-20 Magnetic recording medium with multilayered film and magnetic storage
US08/155,515 US5750230A (en) 1992-11-20 1993-11-22 Magnetic recording media and magnetic recording system using the same
US08/944,472 US6057021A (en) 1992-11-20 1997-10-06 Magnetic recording media and magnetic recording system using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31065292A JPH06162472A (en) 1992-11-20 1992-11-20 Magnetic recording medium with multilayered film and magnetic storage

Publications (1)

Publication Number Publication Date
JPH06162472A true JPH06162472A (en) 1994-06-10

Family

ID=18007827

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31065292A Pending JPH06162472A (en) 1992-11-20 1992-11-20 Magnetic recording medium with multilayered film and magnetic storage

Country Status (1)

Country Link
JP (1) JPH06162472A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6544672B1 (en) 1994-11-11 2003-04-08 Hitachi, Ltd. Magnetic recording medium and magnetic storage

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6544672B1 (en) 1994-11-11 2003-04-08 Hitachi, Ltd. Magnetic recording medium and magnetic storage

Similar Documents

Publication Publication Date Title
KR100378495B1 (en) High areal density magnetic recording medium with dual magnetic layers
US5759681A (en) Magnetic recording medium and magnetic recording system using the same
US20090311557A1 (en) Perpendicular magnetic recording disk and method of manufacturing the same
US5922456A (en) Longitudal magnetic recording medium having a multi-layered underlayer and magnetic storage apparatus using such magnetic recording medium
US20100266755A1 (en) Ferromagnetically coupled magnetic recording media
JP3448698B2 (en) Magnetic storage device and magnetic recording medium
US20070082414A1 (en) Perpendicular magnetic recording medium, method for production of the same, and magnetic recording apparatus
JP2003085727A (en) Magnetic recording medium and magnetic memory device
JP4746778B2 (en) Magnetic recording medium and magnetic storage device using the same
US5587235A (en) Magnetic recording medium and magnetic recording apparatus
JP2002230733A (en) Perpendicular magnetic recording disk
US8263239B2 (en) Laminated magnetic thin films for magnetic recording with weak ferromagnetic coupling
JP3670728B2 (en) Magnetic recording medium and magnetic recording apparatus using the same
JP3648450B2 (en) Perpendicular magnetic recording medium and magnetic storage device
US7529065B2 (en) Laminated magnetic thin films with weak antiferromagnetic coupling for perpendicular magnetic recording
JPH10334440A (en) Magnetic recording medium and magnetic recording and reproducing device
JP3217012B2 (en) Magnetic recording media
JPH06162472A (en) Magnetic recording medium with multilayered film and magnetic storage
US20060046102A1 (en) Magnetic recording disk with antiferromagnetically coupled master layer including copper
JP3643536B2 (en) Perpendicular magnetic recording medium and magnetic storage device
JPH0773433A (en) Magnetic recording medium, its production and magnetic recorder
JP2002208128A (en) Perpendicular magnetic recording medium
WO1998006093A1 (en) Magnetic recording medium and magnetic storage device using the medium
JP4037139B2 (en) Magnetic recording medium, method for manufacturing magnetic recording medium, and magnetic recording / reproducing apparatus
JP2001351226A (en) Magnetic recording medium, method for producing the same and magnetic recorder