JPH06160785A - Optical modulator - Google Patents

Optical modulator

Info

Publication number
JPH06160785A
JPH06160785A JP30532692A JP30532692A JPH06160785A JP H06160785 A JPH06160785 A JP H06160785A JP 30532692 A JP30532692 A JP 30532692A JP 30532692 A JP30532692 A JP 30532692A JP H06160785 A JPH06160785 A JP H06160785A
Authority
JP
Japan
Prior art keywords
electrodes
optical waveguide
electrode
optical
optical modulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30532692A
Other languages
Japanese (ja)
Other versions
JP3359943B2 (en
Inventor
Atsuo Kondo
厚男 近藤
Kumiko Matsui
久美子 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP30532692A priority Critical patent/JP3359943B2/en
Publication of JPH06160785A publication Critical patent/JPH06160785A/en
Application granted granted Critical
Publication of JP3359943B2 publication Critical patent/JP3359943B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To provide an optical modulator capable of reducing a noise and improving withstand voltage performance. CONSTITUTION:An optical waveguide 2 is formed on a substrate 1 and thin-line state electrodes 3 and 4 are respectively formed to be opposed to each other on both sides of the optical waveguide. The edge of an end part on the indient side and the outgoing side of at least either of two electrodes is formed to be curved. Thus, the concentration of electric field at the end of the electrode is avoided. Therefore, the noise is reduced and the withstand voltage performance is improved further.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は電気光学効果を利用した
光変調器、特にノイズの低減及び耐電圧特性の向上を図
った光変調器に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical modulator utilizing the electro-optical effect, and more particularly to an optical modulator designed to reduce noise and improve withstand voltage characteristics.

【0002】[0002]

【従来の技術】LiNbO3のような電気光学結晶基板に例え
ばプロトン交換法によって光導波路を形成し、この光導
波路に沿って互いに対向する細条状電極を形成した光変
調器が既知であり、例えば位相変調器、強度変調器、光
スイッチ等として実用化されている。光変調器では、電
極間に信号電圧が印加され、光導波路の電極によっては
さまれた領域の屈折率を入力信号に応じて選択的に変化
させて光変調が行なわれている。
2. Description of the Related Art An optical modulator is known in which an optical waveguide is formed on an electro-optic crystal substrate such as LiNbO 3 by, for example, a proton exchange method, and strip-shaped electrodes facing each other are formed along the optical waveguide. For example, it has been put to practical use as a phase modulator, an intensity modulator, an optical switch and the like. In the optical modulator, a signal voltage is applied between the electrodes, and the refractive index of the region sandwiched by the electrodes of the optical waveguide is selectively changed according to the input signal to perform the optical modulation.

【0003】[0003]

【発明が解決しようとする課題】上述した型式の光変調
器においては、ノイズの低減及び耐電圧性能を一層向上
させることが強く要請されている。この目的を達成する
には、光導波路の変調領域に亘って信号電圧に応じて均
一な屈折率分布を形成する必要があ。しかしながら、従
来の光変調器においては、信号電圧が印加される電極の
縁部、特に入射側縁部及び出射側縁部が直角に形成され
ているため、この部分において電界が集中してしまい、
信号電圧が印加された際局部的に強い電界が生じてい
た。局部的に強い電界が生ずると、この部分の屈折率が
異常に高くなり、この部分において入射光波の一部が反
射し、例えば光源ノイズの原因になっていた。また、出
射側縁部においても同様に局部的に強い電界が形成さ
れ、ノイズの原因になっていた。また、電界が局部的に
集中すると、絶縁破壊が生じ、耐電圧性能も低下してし
まう。
In the above-mentioned type of optical modulator, there is a strong demand for noise reduction and further improvement of withstand voltage performance. To achieve this purpose, it is necessary to form a uniform refractive index distribution according to the signal voltage over the modulation region of the optical waveguide. However, in the conventional optical modulator, since the edges of the electrodes to which the signal voltage is applied, especially the entrance side edge and the exit side edge are formed at right angles, the electric field is concentrated in this part,
A strong electric field was locally generated when the signal voltage was applied. When a strong electric field is locally generated, the refractive index of this portion becomes abnormally high, and a part of the incident light wave is reflected at this portion, which causes, for example, light source noise. Similarly, a strong electric field is locally formed at the edge portion on the emitting side, which causes noise. In addition, if the electric field is locally concentrated, dielectric breakdown occurs, and the withstand voltage performance also deteriorates.

【0004】従って、本発明の目的は上述した欠点を除
去し、光導波路の光変調区域に亘って均一な屈折率分布
を形成することができ、信号ノイズが低減され耐電圧性
能も一層向上した光変調器を提供することにある。
Therefore, the object of the present invention is to eliminate the above-mentioned drawbacks, to form a uniform refractive index distribution over the optical modulation area of the optical waveguide, reduce the signal noise and further improve the withstand voltage performance. It is to provide an optical modulator.

【0005】[0005]

【課題を解決するための手段並びに作用】本発明による
光変調器は、電気光学結晶基板に光導波路を形成し、こ
の光導波路に沿って互いに対向する複数の細条状電極を
形成し、これら電極間に信号電圧を印加して光導波路を
伝播する入射光に対して導波路の屈折率を選択的に変化
させる光変調器において、前記複数の電極のうち少なく
とも1個の電極の他の電極に対向する側のいずれか1個
の角部を湾曲形成したことを特徴とするものである。
In the optical modulator according to the present invention, an optical waveguide is formed on an electro-optic crystal substrate, and a plurality of strip-shaped electrodes facing each other are formed along the optical waveguide. An optical modulator for selectively changing the refractive index of a waveguide with respect to incident light propagating in an optical waveguide by applying a signal voltage between the electrodes, and at least one electrode of the plurality of electrodes It is characterized in that any one of the corners on the side opposite to is curvedly formed.

【0006】電極の入射側及び出射側端部において、電
極の光導波路と対向する縁部を湾曲形成することによ
り、電極間距離すなわちギャップは光の伝播方向に沿っ
て除々に短くなるから、この部分に形成される電界も除
々に強まることになる。この結果、信号電圧が印加され
た際における光導波路の屈折率は、光の伝播方向に沿っ
て除々に変化し、従って、局部的に屈折率が急激に増大
する不都合を回避することができる。しかも、局部的な
電界集中も防止されることに伴ない、耐電圧性能も一層
向上する。
By curving the edges of the electrodes on the incident side and the emitting side of the electrodes facing the optical waveguide, the distance between the electrodes, that is, the gap is gradually shortened along the light propagation direction. The electric field formed in the portion gradually increases. As a result, the refractive index of the optical waveguide when a signal voltage is applied gradually changes along the propagation direction of light, and therefore, it is possible to avoid the disadvantage that the refractive index locally rapidly increases. Moreover, the local electric field concentration is prevented, and the withstand voltage performance is further improved.

【0007】[0007]

【実施例】図1は本発明による光変調器の一例の構成を
示す線図である。本例では、位相変調器に用いられる集
中定数型電極を具える光変調器について説明する。例え
ば、LiNbO3のような電気光学結晶基板1に、Ti拡散法又
はプロトン交換法により光導波路2を形成する。この光
導波路2の両側に第1及び第2の細条状電極3及び4を
形成する。これらの電極はフォトリソグラフィによって
電極のレジストパターンを形成した後に、アルミニウム
をスパッタし、リフトオフ法を用いて形成することがで
きる。第1電極と第2電極との間のギャップは例えば10
μm とし、電極自体の幅は50μm とする。第1の電極3
は信号源5に接続する。また、第2の電極4の両端側は
接地する。位相変調されるべき光ビームは、矢印の方向
に沿って入射し伝播するものとする。入射した光ビーム
は光導波路2に沿って伝播し、第1電極3と第2電極4
とが互いに対向する区域において、信号源5から印加さ
れる信号電圧に応じて位相変調され出射する。すなわ
ち、信号源5からの信号電圧が印加されると、第1電極
3と第2電極4との間に電界が形成され、この電界によ
り光導波路2のこの領域の屈折率が変化し、この屈折率
変化により入射した光は入力信号に応じて位相変調され
る。この際、第1電極3の入射側端部のエッジ部3a及び
出射側端部のエッジ部3bが直角に形成されていると、こ
の部分に電界が集中してしまう。このため、本例では、
入射側端部3aの光導波路2と対向する縁部を、入射光の
伝播方向に沿って除々に光導波路に近づくように湾曲形
成し、出射側端部3bにおいては除々遠去かるように湾曲
形成する。このように、入射側及び出射側端部の縁部を
湾曲形成することにより、信号が入力した際各電極端部
に形成される電界の強度は、光の伝播方向に沿って滑ら
かに形成され、局部的な電界集中を防止することができ
る。
1 is a diagram showing the construction of an example of an optical modulator according to the present invention. In this example, an optical modulator including a lumped constant electrode used for a phase modulator will be described. For example, the optical waveguide 2 is formed on the electro-optic crystal substrate 1 such as LiNbO 3 by the Ti diffusion method or the proton exchange method. First and second strip electrodes 3 and 4 are formed on both sides of the optical waveguide 2. These electrodes can be formed by forming a resist pattern of the electrodes by photolithography, then sputtering aluminum and using the lift-off method. The gap between the first electrode and the second electrode is, for example, 10
The width of the electrode itself is 50 μm. First electrode 3
Is connected to the signal source 5. Further, both ends of the second electrode 4 are grounded. The light beam to be phase-modulated shall be incident and propagate along the direction of the arrow. The incident light beam propagates along the optical waveguide 2, and the first electrode 3 and the second electrode 4
In the areas where and are opposite to each other, the light is phase-modulated according to the signal voltage applied from the signal source 5 and emitted. That is, when a signal voltage from the signal source 5 is applied, an electric field is formed between the first electrode 3 and the second electrode 4, and this electric field changes the refractive index of this region of the optical waveguide 2, The incident light due to the change in the refractive index is phase-modulated according to the input signal. At this time, if the edge portion 3a at the incident side end portion and the edge portion 3b at the emitting side end portion of the first electrode 3 are formed at a right angle, the electric field concentrates on this portion. Therefore, in this example,
The edge portion of the incident side end portion 3a facing the optical waveguide 2 is curved so as to gradually approach the optical waveguide along the propagation direction of the incident light, and the exit side end portion 3b is curved so as to gradually move away. Form. In this way, by forming the edges of the entrance and exit ends in a curved shape, the strength of the electric field formed at the end of each electrode when a signal is input is smoothly formed along the light propagation direction. It is possible to prevent local electric field concentration.

【0008】次に、本発明による光変調器の耐電圧性能
について、従来の電極構造と比較実験を行ないその結果
を説明する。本発明の光変調器として上述の構造のもの
を用い、従来の電極構造として入射側及び出射側端部3a
及び3bのエッジを直角に形成したものを用いた。実験結
果を表1に示す。
Next, with respect to the withstand voltage performance of the optical modulator according to the present invention, a comparison test with a conventional electrode structure will be conducted, and the result will be described. The light modulator of the present invention having the above-mentioned structure is used, and the incident side and emission side end portions 3a are used as a conventional electrode structure.
And 3b with the edges formed at right angles were used. The experimental results are shown in Table 1.

【0009】[0009]

【表1】 [Table 1]

【0010】表1に示すように、従来の電極構造では、
22Vでブレイクダウンが生じたが、本発明の耐電圧は10
4Vであり、耐電圧性能が約5倍も増大している。また、
変調帯域は共に0〜3.0 GHz であり、変調帯域は同一で
あった。
As shown in Table 1, in the conventional electrode structure,
A breakdown occurred at 22V, but the withstand voltage of the present invention is 10
It is 4V, and the withstand voltage performance has increased about 5 times. Also,
The modulation bands were both 0 to 3.0 GHz, and the modulation bands were the same.

【0011】図2は本発明による光変調器の変形例を示
す。本例では、進行波電極に本発明を適用した例を示
す。図中、図1で用いた部材と同一の部材には同一符号
を付して説明する。第1電極3の一端側を信号源5に接
続し、出射側端部は50Ωの終端インピダンスを介して第
2電極4に接続する。本例では、第1電極3の入射側及
び出射側端部3a及び3bのエッジを湾曲形成する。
FIG. 2 shows a modification of the optical modulator according to the present invention. In this example, an example in which the present invention is applied to a traveling wave electrode is shown. In the figure, the same members as those used in FIG. One end side of the first electrode 3 is connected to the signal source 5, and the emission side end portion is connected to the second electrode 4 via a termination impedance of 50Ω. In this example, the edges of the incident side and emission side end portions 3a and 3b of the first electrode 3 are curved.

【0012】図3(a) 〜(d) は、本発明による光変調器
の種類の電極構造を示す。尚、図中、第1電極3及び第
2電極4だけを示す。図3(a) は、第1及び第2の電極
の両端部を共に電極の幅に等しい半径の円弧状に形成し
た例を示す。また図3(b) は両端部を電極の幅に等しい
直径の円弧に形成した例を示す。さらに図3(c) は第1
電極3の両端を円弧状に形成した例を示す。さらに、図
3(d) は第2電極4の入射側及び出射側端部全体を円弧
状に形成した例を示す。
3 (a) to 3 (d) show the electrode structure of the type of the optical modulator according to the present invention. In the figure, only the first electrode 3 and the second electrode 4 are shown. FIG. 3A shows an example in which both ends of the first and second electrodes are both formed in an arc shape having a radius equal to the width of the electrodes. Further, FIG. 3B shows an example in which both ends are formed into an arc having a diameter equal to the width of the electrode. Furthermore, FIG. 3 (c) shows the first
An example in which both ends of the electrode 3 are formed in an arc shape is shown. Further, FIG. 3D shows an example in which the entire incident side and outgoing side end portions of the second electrode 4 are formed in an arc shape.

【0013】図4は本発明による光変調器の別の変形例
を示すものであり、図4(a) は平面図、図4(b) は光導
波路と直交する面で切って示す断面図である。本例で
は、光導波路2上に光導波路に沿って信号電極10を形成
し、この信号電極10の両側に2個の接地電極11a 及び11
b を形成し、信号電極10は信号源5に接続し、接地電極
11a および11b は共に接地する。信号電極10に変調信号
が入力すると、信号電極10と接地電極11a 及び11b との
間に電界が形成され、光導波路のこれら電極によって挟
まれた領域の屈曲率が入力信号に応じて選択的に変化す
る。従って、本例においても、信号電極10並びに対向電
極11a 及び11b の互いに対向する側の角部が角ばって形
成されること、この部分において電界集中が生じてしま
う。このため、本例においても、各電極の他の電極と対
向する側の光入射側及び出射側の角部を湾曲形成する。
FIG. 4 shows another modification of the optical modulator according to the present invention. FIG. 4 (a) is a plan view and FIG. 4 (b) is a sectional view taken along a plane orthogonal to the optical waveguide. Is. In this example, a signal electrode 10 is formed on the optical waveguide 2 along the optical waveguide, and two ground electrodes 11a and 11 are provided on both sides of the signal electrode 10.
b, the signal electrode 10 is connected to the signal source 5, and the ground electrode
Both 11a and 11b are grounded. When the modulation signal is input to the signal electrode 10, an electric field is formed between the signal electrode 10 and the ground electrodes 11a and 11b, and the bending ratio of the region sandwiched by these electrodes of the optical waveguide is selectively changed according to the input signal. Change. Therefore, also in the present example, the corners of the signal electrode 10 and the counter electrodes 11a and 11b on the sides facing each other are formed angularly, and electric field concentration occurs at this portion. For this reason, also in this example, the corners of the light incident side and the emission side on the side of each electrode facing the other electrode are curved.

【0014】本発明は、上述した実施例だけに限定され
ず種々の変更や変形が可能である。上述した実施例で
は、位相変調を行なう光変調器について説明したが、位
相変調器だけに限定されず、強度変調器、光スィッチを
はじめとする種々の光変調器に適用することができる。
また基板材料としてLiNbO3を用いて説明したが、種々電
気光学結晶材料を用いることもできる。
The present invention is not limited to the above-mentioned embodiments, and various changes and modifications can be made. In the above-described embodiments, the optical modulator that performs the phase modulation has been described, but the present invention is not limited to the phase modulator, and can be applied to various optical modulators such as an intensity modulator and an optical switch.
Further, although LiNbO 3 is used as the substrate material in the description, various electro-optic crystal materials can also be used.

【0015】[0015]

【発明の効果】以上説明したように本発明によれば、光
導波路の両側に形成した細条状電極の少なくとも一方の
電極の入射側及び出射側端部を湾曲形状にしているか
ら、信号電圧が印加された際入射側及び出射側端部に滑
らかに変化する電界を形成することができる。この結
果、局部的な屈折率の増大により生ずる光反射等の不都
合が解消され、ノイズの発生を有効に低減することがで
きる。しかも、電界集中の防止を図ることができるの
で、耐電圧性能も一層向上する。
As described above, according to the present invention, since the incident side and the emitting side end portions of at least one of the strip electrodes formed on both sides of the optical waveguide are curved, the signal voltage is reduced. It is possible to form a smoothly changing electric field at the incident side and the emitting side end portions when a voltage is applied. As a result, the inconvenience such as light reflection caused by the local increase in the refractive index is eliminated, and the generation of noise can be effectively reduced. Moreover, since electric field concentration can be prevented, the withstand voltage performance is further improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による光変調器の一例の構成を示す線図
である。
FIG. 1 is a diagram showing a configuration of an example of an optical modulator according to the present invention.

【図2】本発明による光変調器の変形例を示す線図であ
る。
FIG. 2 is a diagram showing a modified example of the optical modulator according to the present invention.

【図3】本発明による光変調器の種々の電極構造を示す
線図である。
FIG. 3 is a diagram showing various electrode structures of the optical modulator according to the present invention.

【図4】本発明による光変調器の別の変形例を示す線図
である。
FIG. 4 is a diagram showing another modification of the optical modulator according to the present invention.

【符号の説明】[Explanation of symbols]

1 基板 2 光導波路 3 第1電極 4 第2電極 5 信号源 1 substrate 2 optical waveguide 3 first electrode 4 second electrode 5 signal source

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 電気光学結晶基板に光導波路を形成し、
この光導波路に沿って互いに対向する複数の細条状電極
を形成し、これら電極間に信号電圧を印加して光導波路
を伝播する入射光に対して導波路の屈折率を選択的に変
化させる光変調器において、 前記複数の電極のうち少なくとも1個の電極の他の電極
に対向する側のいずれか1個の角部を湾曲形成したこと
を特徴とする光変調器。
1. An optical waveguide is formed on an electro-optic crystal substrate,
A plurality of strip electrodes facing each other are formed along the optical waveguide, and a signal voltage is applied between these electrodes to selectively change the refractive index of the waveguide with respect to incident light propagating in the optical waveguide. In the optical modulator, at least one of the plurality of electrodes is curved to form one corner on the side facing the other electrode.
【請求項2】 電気光学結晶基板に光導波路を形成し、
この光導波路をはさんで互いに対向する細条状電極を形
成し、これら電極間に信号電圧を印加して変調すべき入
射光に対して導波路の屈折率を選択的に変化させる光変
調器において、 前記2個の電極のうち少なくとも一方の電極の光入射側
の対向縁部を、変調されるべき光の伝播方向に沿って除
々に導波路に近づくように湾曲形成すると共に、光出射
側の対向縁部を変調光の伝播方向に沿って除々に光導波
路から遠ざかるように湾曲形成したことを特徴とする光
変調器。
2. An optical waveguide is formed on an electro-optic crystal substrate,
An optical modulator that forms strip-shaped electrodes that face each other across this optical waveguide, and applies a signal voltage between these electrodes to selectively change the refractive index of the waveguide with respect to incident light to be modulated. The light-incident side facing edge of at least one of the two electrodes is curved so as to gradually approach the waveguide along the propagation direction of the light to be modulated, and An optical modulator characterized in that the opposite edge portion of is curved so as to gradually move away from the optical waveguide along the propagation direction of the modulated light.
JP30532692A 1992-11-16 1992-11-16 Light modulator Expired - Lifetime JP3359943B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30532692A JP3359943B2 (en) 1992-11-16 1992-11-16 Light modulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30532692A JP3359943B2 (en) 1992-11-16 1992-11-16 Light modulator

Publications (2)

Publication Number Publication Date
JPH06160785A true JPH06160785A (en) 1994-06-07
JP3359943B2 JP3359943B2 (en) 2002-12-24

Family

ID=17943767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30532692A Expired - Lifetime JP3359943B2 (en) 1992-11-16 1992-11-16 Light modulator

Country Status (1)

Country Link
JP (1) JP3359943B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015519547A (en) * 2012-04-16 2015-07-09 ライカ・ジオシステムズ・アクチェンゲゼルシャフトLeica Geosystems Ag Electro-optic distance measuring device
JP2016142755A (en) * 2015-01-29 2016-08-08 富士通オプティカルコンポーネンツ株式会社 Optical modulator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015519547A (en) * 2012-04-16 2015-07-09 ライカ・ジオシステムズ・アクチェンゲゼルシャフトLeica Geosystems Ag Electro-optic distance measuring device
US9405007B2 (en) 2012-04-16 2016-08-02 Leica Geosystems Ag Electro-optic distance-measuring device
JP2016142755A (en) * 2015-01-29 2016-08-08 富士通オプティカルコンポーネンツ株式会社 Optical modulator

Also Published As

Publication number Publication date
JP3359943B2 (en) 2002-12-24

Similar Documents

Publication Publication Date Title
AU657442B2 (en) Periodic domain reversal electro-optic modulator
US5566257A (en) Electro-optic modulator
JP3179408B2 (en) Waveguide type optical device
US7099524B2 (en) Optical modulator
JP4958771B2 (en) Light control element
JP2728150B2 (en) Light modulation element
JPH09197358A (en) Waveguide type optical device
JP2806425B2 (en) Waveguide type optical device
EP0105693B1 (en) Bipolar voltage controlled optical switch using intersecting waveguide
JP3359943B2 (en) Light modulator
JP2000267056A (en) Waveguide type optical device
JP3592245B2 (en) Resonant optical modulator
JPH05173099A (en) Optical control element
JP2848454B2 (en) Waveguide type optical device
JPH04355714A (en) Optical control element
US6950218B2 (en) Optical modulator
JP3020340B2 (en) Optical waveguide type optical device
JPH05158003A (en) Ultra wide band optical modulator
JP2871645B2 (en) Waveguide type optical device
JPH04149408A (en) Optical modulation element
Becker et al. Improved electrooptic efficiency in guided-wave modulators
JP3009037B2 (en) Broadband electroabsorption semiconductor optical modulator
JP2848455B2 (en) Waveguide type optical device
JP3019278B2 (en) Waveguide type optical device
JPH09297288A (en) Optical waveguide device

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20010508

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071011

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081011

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081011

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091011

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101011

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101011

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111011

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121011

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121011

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131011

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131011

Year of fee payment: 11