JPH0616071B2 - Method of measuring thermal resistance of light emitting device - Google Patents

Method of measuring thermal resistance of light emitting device

Info

Publication number
JPH0616071B2
JPH0616071B2 JP18088985A JP18088985A JPH0616071B2 JP H0616071 B2 JPH0616071 B2 JP H0616071B2 JP 18088985 A JP18088985 A JP 18088985A JP 18088985 A JP18088985 A JP 18088985A JP H0616071 B2 JPH0616071 B2 JP H0616071B2
Authority
JP
Japan
Prior art keywords
light emitting
thermal resistance
semiconductor laser
emitting element
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP18088985A
Other languages
Japanese (ja)
Other versions
JPS6242071A (en
Inventor
公秀 水口
和思 森
泰明 井上
規夫 田渕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP18088985A priority Critical patent/JPH0616071B2/en
Publication of JPS6242071A publication Critical patent/JPS6242071A/en
Publication of JPH0616071B2 publication Critical patent/JPH0616071B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Testing Of Individual Semiconductor Devices (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体レーザ等の発光素子の熱抵抗測定方法に
関し、更に詳述すればAPC回路を利用して測定精度の向
上及び測定速度の高速化を図った発光素子の熱抵抗測定
方法を提案するものである。
The present invention relates to a method for measuring thermal resistance of a light emitting element such as a semiconductor laser, and more specifically, it will improve measurement accuracy and increase measurement speed by using an APC circuit. The proposed method is to measure the thermal resistance of a light-emitting device.

〔従来技術〕[Prior art]

半導体レーザはその素子寿命を長くする上で、素子間で
発生した熱をより効率よく外部へ放出することが重要で
あり、その指標として熱抵抗が用いられ、半導体レーザ
の開発過程ではこの熱抵抗の正確な測定が要求される。
In order to prolong the device life of a semiconductor laser, it is important to more efficiently dissipate the heat generated between the devices to the outside.Thermal resistance is used as an index, and this thermal resistance is used during the development process of the semiconductor laser. Accurate measurement of is required.

而して従来は半導体レーザに第4図に示すように電流値
、時間幅tの電流を供給してその温度を上昇させ
る過程の前後において電流値I、時間幅tのパルス
電流を通して第5図に示すように温度上昇前後の順方向
電圧VF1及びVF2を測定する。なお時間tはパルス電
流通電による温度上昇が十分無視できる程度の短い時間
とする。
Thus, conventionally, as shown in FIG. 4, a pulse having a current value I 1 and a time width t 1 is supplied before and after a process of supplying a current having a current value I 2 and a time width t 2 to a semiconductor laser to raise its temperature. The forward voltages VF 1 and VF 2 before and after the temperature rise are measured as shown in FIG. The time t 1 is a short time such that the temperature rise due to the pulse current application can be sufficiently ignored.

半導体レーザは一般のダイオードと同様第6図に示すよ
うに順方向電圧VFと温度Tとの間にリニアな関係を有
している。従ってVF1,VF2の測定値から温度上昇ΔT
を求めることができる。従って熱抵抗Rtは 但し、V・Iは供給電力 として算出できる。
The semiconductor laser has a linear relationship between the forward voltage VF and the temperature T as shown in FIG. 6, like a general diode. Therefore, the temperature rise ΔT from the measured values of VF 1 and VF 2
Can be asked. Therefore, the thermal resistance Rt is However, V · I can be calculated as the supplied power.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

上述の如き従来方法による場合は順方向電圧の変化VF2
−VF1が小さく、しかも短いパルス電流にて測定するた
めに所望の精度が得られないという問題点がある。
In the case of the conventional method as described above, the change in forward voltage VF 2
-VF 1 is small and there is a problem that a short pulse current desired accuracy for measuring at can not be obtained.

即ち第6図に示すように順方向電圧の変化は−0.85mV/
℃と小さく、測定時の電圧1.5Vに対し十分な測定分
解能が得られないのである。
That is, as shown in Fig. 6, the change in forward voltage is -0.85mV /
This is as small as ℃, and a sufficient measurement resolution cannot be obtained for a voltage of 1.5 V during measurement.

更に昇温のための時間tが数十秒と長く1回の測定に
長時間を要するという問題点もあった。
Furthermore, the time t 2 for raising the temperature is as long as several tens of seconds, and it takes a long time for one measurement.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は以上の問題点を解決するためになされたもので
あり、APC回路を利用して発光素子の動作電流の変化を
測定することにより、短時間で高精度の熱抵抗測定を可
能とした方法を提供することを目的とする。
The present invention has been made to solve the above problems, by measuring the change in the operating current of the light-emitting element using the APC circuit, it is possible to measure the thermal resistance with high accuracy in a short time. The purpose is to provide a method.

本発明に係る発光素子の熱抵抗測定方法は、発光素子
を、その光出力を一定とするAPC回路にて該発光素子に
パルス電流を供給することにより駆動し、該パルス電流
供給中における2時点にて前記発光素子の動作電流を測
定し、予め求めてなる前記一定の光出力における発光素
子の動作電流と温度の関係に基づいて前記2時点の動作
電流の差からこの間の温度上昇を求め、該温度上昇に基
づいて熱抵抗を求めることを特徴とする。
The method for measuring the thermal resistance of a light emitting device according to the present invention is to drive a light emitting device by supplying a pulse current to the light emitting device with an APC circuit that keeps the light output constant, and at two points during the pulse current supply. At, the operating current of the light emitting element is measured, and the temperature rise between the operating currents at the two time points is obtained based on the relationship between the operating current of the light emitting element and the temperature at the constant light output obtained in advance. It is characterized in that the thermal resistance is obtained based on the temperature rise.

〔実施例〕〔Example〕

以下本発明をその実施例を示す図面に基づいて詳述す
る。第1図はそれ自体公知のAPC回路に熱抵抗測定対象
の半導体レーザLDを接続した状態を示す回路図である。
Hereinafter, the present invention will be described in detail with reference to the drawings showing an embodiment thereof. FIG. 1 is a circuit diagram showing a state in which a semiconductor laser LD whose thermal resistance is to be measured is connected to an APC circuit known per se.

半導体レーザはトランジスタTrを流れる電流にて駆動
されて発光するが、これから出射された光は受光ダイオ
ードPINにて受光される。この受光量に基づく電圧信号
はオペアンプOPの反転入力に与えられる。一方オペアン
プOPの非反転入力には定電圧ダイオードD、コンデンサ
及び可変抵抗VRからなる定電圧回路より発生する一
定電圧が印加されている。
The semiconductor laser is driven by the current flowing through the transistor Tr to emit light, and the light emitted from this is received by the light receiving diode PIN. A voltage signal based on this amount of received light is given to the inverting input of the operational amplifier OP. On the other hand, a constant voltage generated by a constant voltage circuit including a constant voltage diode D, a capacitor C 1 and a variable resistor VR is applied to the non-inverting input of the operational amplifier OP.

またオペアンプOPの出力はトランジスタTrのベースに
与えられる。なおコンデンサCは発振防止用のもので
ある。
The output of the operational amplifier OP is given to the base of the transistor Tr. The capacitor C 2 is for preventing oscillation.

叙上の如き構成のAPC回路を用いる場合は、半導体レー
ザLDの出力が増大(減少)すると、オペアンプOPの反転
入力電位が上昇(下降)し、オペアンプOPの出力は低下
(上昇)するから、これに伴いトランジスタTrのベー
ス電流が減少(増加)して半導体レーザLDの動作電流を
抑制し、これによりその出力を減少(増大)させるよう
に制御される。これによって半導体レーザLDの出力が一
定に保たれる。
When the APC circuit configured as above is used, when the output of the semiconductor laser LD increases (decreases), the inverting input potential of the operational amplifier OP increases (decreases), and the output of the operational amplifier OP decreases (rises). Along with this, the base current of the transistor Tr decreases (increases) and the operating current of the semiconductor laser LD is suppressed, whereby the output thereof is controlled to decrease (increase). As a result, the output of the semiconductor laser LD is kept constant.

さて本発明では第1図に図示しない電源との間に設けた
スイッチのオン,オフ制御等により第2図に示すように
半導体レーザにパルス電流を供給して、図示しない電流
測定手段によりその供給開始直後と、供給終了の直前に
て半導体レーザの動作電流I,Iを測定する(第2
図参照)。
Now, in the present invention, a pulse current is supplied to the semiconductor laser as shown in FIG. 2 by on / off control of a switch provided between the semiconductor laser and a power source not shown in FIG. Immediately after the start and immediately before the end of the supply, the operating currents I 1 and I 2 of the semiconductor laser are measured (second
See figure).

第3図は半導体レーザの光出力−動作電流特性を温度を
パラメータとして示したものであり、APC回路によって
光出力を一定に制御したものとすると温度によって電流
値が大きく変化することが解る。
FIG. 3 shows the optical output-operating current characteristics of the semiconductor laser with temperature as a parameter, and it can be seen that the current value greatly changes with temperature if the optical output is controlled to be constant by the APC circuit.

半導体レーザLDはこれに供給された電流にてジュール熱
を発して昇温するが、光出力一定とするためにそれに伴
って動作電流が増加する。この動作電流の増加の割合は
約0.4mA/℃であり、測定時の動作電流約40mAに対して十
分精度の高い測定が可能である。
The semiconductor laser LD emits Joule heat by the current supplied to the semiconductor laser LD to raise the temperature thereof, but since the optical output is kept constant, the operating current increases accordingly. The rate of increase of this operating current is approximately 0.4mA / ° C, and it is possible to perform measurement with sufficient accuracy for an operating current of approximately 40mA during measurement.

そして半導体レーザLDへの通電時間も数msec〜1sec程
度にて十分な電流変化(温度変化)が得られ短時間で測
定が可能である。
In addition, a sufficient current change (temperature change) can be obtained within a period of several msec to 1 sec for energizing the semiconductor laser LD, and measurement can be performed in a short time.

以上のようにして測定した電流値I,Iの差からこ
の測定時点間の温度上昇値ΔTが求められる。このΔT
を(1)式に代入することにより熱抵抗Rtが算出される
のである。
From the difference between the current values I 2 and I 1 measured as described above, the temperature rise value ΔT between the measurement time points can be obtained. This ΔT
The thermal resistance Rt is calculated by substituting in the equation (1).

なお本発明は半導体レーザに限らず他の発光素子にも適
用可能である。
The present invention is not limited to the semiconductor laser and can be applied to other light emitting elements.

〔効果〕〔effect〕

以上のように本発明によれば短時間で高精度の熱抵抗測
定が可能になり、半導体レーザ等の発光素子の開発途上
における寿命評価を能率よく、正確に行うことが可能に
なる。
As described above, according to the present invention, it is possible to measure the thermal resistance with high accuracy in a short time, and it is possible to efficiently and accurately evaluate the life of a light emitting element such as a semiconductor laser during development.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明方法の実施のための回路図、第2図は半
導体レーザの動作電流の変化を示すグラフ、第3図は半
導体レーザの光出力−動作電流特性図、第4〜6図は従
来方法の説明図である。 LD……半導体レーザ、PIN……受光ダイオード Tr……トランジスタ、OP……オペアンプ D……定電圧ダイオード
FIG. 1 is a circuit diagram for carrying out the method of the present invention, FIG. 2 is a graph showing changes in the operating current of a semiconductor laser, FIG. 3 is a light output-operating current characteristic diagram of the semiconductor laser, and FIGS. FIG. 6 is an explanatory diagram of a conventional method. LD: Semiconductor laser, PIN: Light receiving diode Tr: Transistor, OP: Operational amplifier D: Constant voltage diode

フロントページの続き (72)発明者 田渕 規夫 大阪府守口市京阪本通2丁目18番地 三洋 電機株式会社内 (56)参考文献 特開 昭59−145586(JP,A) 昭和55年度電気通信学会総合全国大会講 演論文集 〔分冊4〕第61Front page continuation (72) Inventor Norio Tabuchi 2-18 Keihan Hondori, Moriguchi City, Osaka Sanyo Electric Co., Ltd. (56) Reference JP-A-59-145586 (JP, A) National Convention Lecture Collection [Volume 4] No. 61

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】発光素子を、その光出力を一定とするAPC
回路にて該発光素子にパルス電流を供給することにより
駆動し、該パルス電流供給中における2時点にて前記発
光素子の動作電流を測定し、予め求めてなる前記一定の
光出力における発光素子の動作電流と温度の関係に基づ
いて前記2時点の動作電流の差からこの間の温度上昇を
求め、該温度上昇に基づいて熱抵抗を求めることを特徴
とする発光素子の熱抵抗測定方法。
1. An APC in which a light emitting element has a constant light output.
The circuit is driven by supplying a pulse current to the light emitting element, the operating current of the light emitting element is measured at two points during the supply of the pulse current, and the light emitting element of the light emitting element at the constant light output obtained in advance is measured. A method for measuring thermal resistance of a light-emitting element, characterized in that a temperature rise during this period is obtained from the difference between the operating currents at the two points of time based on the relationship between operating current and temperature, and the thermal resistance is obtained based on the temperature rise.
JP18088985A 1985-08-17 1985-08-17 Method of measuring thermal resistance of light emitting device Expired - Lifetime JPH0616071B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18088985A JPH0616071B2 (en) 1985-08-17 1985-08-17 Method of measuring thermal resistance of light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18088985A JPH0616071B2 (en) 1985-08-17 1985-08-17 Method of measuring thermal resistance of light emitting device

Publications (2)

Publication Number Publication Date
JPS6242071A JPS6242071A (en) 1987-02-24
JPH0616071B2 true JPH0616071B2 (en) 1994-03-02

Family

ID=16091100

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18088985A Expired - Lifetime JPH0616071B2 (en) 1985-08-17 1985-08-17 Method of measuring thermal resistance of light emitting device

Country Status (1)

Country Link
JP (1) JPH0616071B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011129842A (en) * 2009-12-21 2011-06-30 Casio Computer Co Ltd Light source device, projection device and projection method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
昭和55年度電気通信学会総合全国大会講演論文集〔分冊4〕第61

Also Published As

Publication number Publication date
JPS6242071A (en) 1987-02-24

Similar Documents

Publication Publication Date Title
JP2704133B2 (en) Laser diode drive circuit
EP0497431B1 (en) An apparatus for driving a semiconductor laser device
KR910013640A (en) Stable Feedback Controller for Semiconductor Lasers
JPS62218155A (en) Led array head
JPH0616071B2 (en) Method of measuring thermal resistance of light emitting device
JPS59105568A (en) Apparatus for measuring oscillation threshold current and temperature characteristics of semiconductive laser diode
JPH02257441A (en) System for controlling emissive light quantity of laser diode
JPH0219703Y2 (en)
TWI274315B (en) LED drive circuit having temperature compensation
JP4632668B2 (en) Test method for integrated circuits for laser diode drivers
JPH0669600A (en) Apc temperature compensator for semiconductor laser and semiconductor laser using the same
JPS6263483A (en) Driving circuit for light emitting element
JP2009076913A (en) Circuit device and method for operating pulse laser diode
JPS62236208A (en) Drive circuit for semiconductor light emitting element
JP2002067376A (en) Image forming device
KR100526248B1 (en) A method for measuring thermal resistance of laser diode
JPS6196785A (en) Inspecting device of semiconductor laser
JP2746401B2 (en) Semiconductor laser controller
JPH0614572B2 (en) Semiconductor laser characteristic measuring device
JPH04268466A (en) Characteristic measuring apparatus for semiconductor laser
JPS6142174A (en) Method of light amount adjustment of light emitting element and device therefor
JP3263479B2 (en) Auto laser power control circuit
JPS6321887A (en) Light source for semiconductor laser
JPH0340531A (en) Optical transmitter
JPH0521876A (en) Temperature control circuit for laser diode