JPH06160601A - Grounding electrode structure of panel with multilayered conductive antireflection film - Google Patents

Grounding electrode structure of panel with multilayered conductive antireflection film

Info

Publication number
JPH06160601A
JPH06160601A JP4332377A JP33237792A JPH06160601A JP H06160601 A JPH06160601 A JP H06160601A JP 4332377 A JP4332377 A JP 4332377A JP 33237792 A JP33237792 A JP 33237792A JP H06160601 A JPH06160601 A JP H06160601A
Authority
JP
Japan
Prior art keywords
layer
refractive index
transparent conductive
substrate
panel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4332377A
Other languages
Japanese (ja)
Inventor
Masayuki Okaniwa
正行 岡庭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujinon Corp
Original Assignee
Fuji Photo Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Optical Co Ltd filed Critical Fuji Photo Optical Co Ltd
Priority to JP4332377A priority Critical patent/JPH06160601A/en
Publication of JPH06160601A publication Critical patent/JPH06160601A/en
Pending legal-status Critical Current

Links

Landscapes

  • Surface Treatment Of Optical Elements (AREA)

Abstract

PURPOSE:To enable easy grounding by forming conductive antireflection films having a front surface consisting of a nonconductive layer on a panel, then forming a grounding electrode consisting of ultrasonic solder on the nonconductive layer of the front surface. CONSTITUTION:The multilayered transparent conductive antireflection films 21 are formed on a substrate 11. The antireflection films 21 consist of 4-layered films of H/L/H/L consisting, successively from the substrate 11 side, a transparent conductive layer 23 having a high refractive index, a low-refractive index layer 25, a high-refractive index layer 27 and a front surface low-refractive index layer 29. A transparent substrate consisting of glass, etc., is used as the substrate 11. Multi component oxides, such as Cd2SnO4, and tin oxide, etc., are used as the transparent conductive material. After the multilayered transparent conductive antireflection films 21 are formed on the substrate 11 in such a manner, the grounding electrode consisting of the ultrasonic solder 31 (solder soldered by an ultrasonic soldering method) is formed on the front surface low-refractive index layer 29 which is the uppermost layer. The direct soldering onto the antireflection films 21 is possible according to this structure.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、適度の導電性を有し、
かつ、反射防止機能が施された多層導電性反射防止膜が
形成されたパネルのアース電極取出し構造に関する。
BACKGROUND OF THE INVENTION The present invention has a moderate electrical conductivity,
In addition, the present invention relates to a structure for taking out a ground electrode of a panel on which a multilayer conductive antireflection film having an antireflection function is formed.

【0002】[0002]

【従来の技術】テレビジョン、コンピュータ端末のディ
スプレイ等においては、帯電による誤動作、ホコリの付
着防止などを目的として、前面ガラスパネルに透明導電
膜が形成されている。また、透明導電膜はガラス基板と
屈折率の差が大きく、ガラス基板の反射率が高くなるこ
とから、多層積層膜として導電性とともに反射防止能を
付与し、見やすい画面としている。
2. Description of the Related Art In a television, a display of a computer terminal, etc., a transparent conductive film is formed on a front glass panel for the purpose of preventing malfunction due to charging and adhesion of dust. Further, since the transparent conductive film has a large difference in refractive index from the glass substrate and the reflectance of the glass substrate is high, it is provided as a multilayer laminated film with conductivity and antireflection function, and thus an easy-to-see screen is provided.

【0003】従来、このような導電性反射防止膜として
は、基板側からAl23−In23−MgF2またはC
eF3膜からなる3層膜(勝部ら、光学、第7巻第6
号、250−254(1978))、ITO/MgF2
/ITO/MgF2の4層膜(特開昭61−16889
9号公報)、ITO−MgF2 −屈折率2.05〜2.
2の薄膜−MgF2 膜からなる4層膜(特公平4−15
443号公報)などが知られている。
[0003] Conventionally, as such a conductive anti-reflection film, Al 2 O from the substrate side 3 -In 2 O 3 -MgF 2 or C
3- layer film consisting of eF 3 film (Katsube et al., Optics, Vol. 7, No. 6)
No. 250-254 (1978)), ITO / MgF 2
/ ITO / MgF 2 4-layer film (Japanese Patent Laid-Open No. 61-16889)
9 JP), ITO-MgF 2 - refractive index from 2.05 to 2.
2 thin film-a four-layer film composed of MgF 2 film (Japanese Patent Publication No. 4-15
No. 443) is known.

【0004】このように、多層導電性反射防止において
は、反射防止膜としての膜設計の制約上、最上層をMg
2,SiO2等の非導電性の低屈折率膜とすることが必
要であるため、最上層にアース電極を設け非導電性最上
層を介して下層の導電性薄膜との間の電気的導通を取る
ことは、効率が悪く十分なアース特性が得られないと考
えられてきた。
As described above, in the case of the multilayer conductive antireflection, the uppermost layer is made of Mg because of the restriction of the film design as the antireflection film.
Since it is necessary to use a non-conductive, low-refractive-index film such as F 2 or SiO 2 , an earth electrode is provided on the uppermost layer, and an electrical conductivity between the lower conductive thin film is provided via the non-conductive uppermost layer. It has been considered that the conduction is inefficient and sufficient ground characteristics cannot be obtained.

【0005】そこで、ガラス、プラスチック等のパネル
基板上に、予め導体ペーストを印刷して焼き固めてアー
ス電極を形成し、この上に導電性反射防止膜を形成する
方法が一般に行なわれている。
Therefore, a method of printing a conductor paste in advance on a panel substrate of glass, plastic or the like and baking it to form a ground electrode, and forming a conductive antireflection film on this is generally performed.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、導体ペ
ーストを用いてアース電極を形成する方法には、以下の
ような欠点がある。 (1) 導体ペースト上に形成される第1層目をITO
等の導電性物質から形成する必要があるため、導電性反
射防止膜の膜設計上の自由度が制約される。
However, the method of forming the ground electrode using the conductor paste has the following drawbacks. (1) The first layer formed on the conductor paste is ITO
Since it is necessary to form the conductive anti-reflection film, the degree of freedom in designing the conductive anti-reflection film is limited.

【0007】(2) 導体ペースト上の全面に導電性反
射防止膜を形成したのではアースを取れないので、マス
キングにより一部の導体ペーストを露出せしめておく必
要がある。このためのマスキングが面倒であり、また、
マスキングやその後にアース端子を取り付ける際の位置
決めが面倒となる。
(2) If the conductive antireflection film is formed on the entire surface of the conductor paste, grounding cannot be established, so it is necessary to expose a part of the conductor paste by masking. Masking for this is troublesome, and also
Positioning becomes difficult when masking and then attaching the ground terminal.

【0008】特開平2−256089号公報には、表面
凹凸部を有する部分に導体ペーストを形成することによ
り、全面に導電性反射防止膜を形成した場合にも凹凸部
上の導体ペースト部から集電可能とすることが報告され
ている。しかしこの場合も、表面凹凸部の形成やその凹
凸度の管理が必要であり、また、以下の欠点は解消され
ない。
In Japanese Patent Laid-Open No. 2-256089, a conductive paste is formed on a portion having an uneven surface portion, so that even when a conductive antireflection film is formed on the entire surface, the conductive paste is collected from the conductive paste portion on the uneven portion. It has been reported that it can be powered. However, also in this case, it is necessary to form the surface irregularities and control the degree of irregularities, and the following drawbacks cannot be eliminated.

【0009】(3) 導体ペーストとしては、一般的に
はコストや抵抗値の関係から銀ペーストが用いられてい
るが、パネルガラスが強化処理されているため、あまり
高温で銀ペーストを焼き固めることができない。そのた
め、銀ペーストの特性を十二分に引き出すことができ
ず、パネル基板との密着性が弱くなったり、耐溶解性
(塩水浸漬テスト)や耐湿テスト(50℃−90%RH
×24Hr)で変色や剥離が起こることがあり、製品品
質に対する信頼性が得られない。
(3) As the conductor paste, a silver paste is generally used because of its cost and resistance. However, since the panel glass is strengthened, the silver paste should be baked at too high a temperature. I can't. Therefore, the characteristics of the silver paste cannot be fully brought out, the adhesion to the panel substrate becomes weak, and the dissolution resistance (salt water immersion test) and humidity resistance test (50 ° C-90% RH)
Discoloration or peeling may occur at x 24 Hr), and reliability of product quality cannot be obtained.

【0010】(4) 上記(3)の問題点を解決しよう
とすると、パネルガラスの強化処理が消減してしまうよ
うな600℃程度の高温で、印刷された銀ペーストを焼
き固める必要がある。そのためには、ペーストを焼き固
めた後にガラスパネルを強化処理しなければならない
が、これにはかなり大掛かりな設備が必要となり、現実
的でない場合が多い。
(4) In order to solve the problem of (3), it is necessary to bake the printed silver paste at a high temperature of about 600 ° C. at which the tempering treatment of the panel glass is diminished. For that purpose, it is necessary to strengthen the glass panel after the paste is baked and hardened, but this requires a considerably large-scale facility and is often not realistic.

【0011】本発明は、導体ペーストのように焼き付け
処理を必要とすることがなく、導電性反射防止膜の膜設
計上の制約が少なく、しかも簡単な設備で形成可能なア
ース電極構造を提供するものである。
The present invention provides a ground electrode structure which does not require a baking process like a conductor paste, has few restrictions on the film design of the conductive antireflection film, and can be formed by simple equipment. It is a thing.

【0012】[0012]

【課題を解決するための手段】本発明の多層導電性反射
防止膜付きパネルのアース電極構造は、最上層が非導電
性薄膜からなり少なくとも1層の透明導電層を有する多
層導電性反射防止膜が形成されたパネルにおいて、超音
波ハンダ法により、最上層上にハンダからなるアース電
極が形成され、該アース電極と前記透明導電層との間に
電気的導通が取られていることを特徴とする。
A ground electrode structure for a panel with a multilayer conductive antireflection film according to the present invention has a multilayer conductive antireflection film having an uppermost layer made of a nonconductive thin film and at least one transparent conductive layer. In the panel formed with, a ground electrode made of solder is formed on the uppermost layer by ultrasonic soldering, and electrical continuity is established between the ground electrode and the transparent conductive layer. To do.

【0013】[0013]

【実施例】図1は、本発明のアース電極構造の実施例を
示す模式断面図である。基板11上には多層透明導電性
反射防止膜21が形成されており、多層透明導電性反射
防止膜21は、基板11側から、高屈折率の透明導電層
23、低屈折率層25、高屈折率層27、表面低屈折率
層29が順次形成されたH/L/H/Lの4層膜からな
る。基板11としては、ガラスなどの透明基板が用いら
れる。
EXAMPLE FIG. 1 is a schematic sectional view showing an example of the earth electrode structure of the present invention. A multilayer transparent conductive antireflection film 21 is formed on the substrate 11, and the multilayer transparent conductive antireflection film 21 has a high refractive index transparent conductive layer 23, a low refractive index layer 25, and a high refractive index layer 25 from the substrate 11 side. The H / L / H / L four-layer film is formed by sequentially forming the refractive index layer 27 and the surface low refractive index layer 29. A transparent substrate such as glass is used as the substrate 11.

【0014】透明導電層23を形成する透明導電性物質
としては、ITO(IndiumTin Oxide;
すずをドープした酸化インジウム)、ZnOにAlある
いはSiをドーピングしたもの、あるいはCd2SnO4
等の複合酸化物、酸化スズなどが用いられる。
As a transparent conductive material forming the transparent conductive layer 23, ITO (Indium Tin Oxide;
Tin-doped indium oxide), ZnO doped with Al or Si, or Cd 2 SnO 4
A complex oxide such as tin oxide is used.

【0015】低屈折率層25,29を形成する物質とし
ては、屈折率1.35〜1.55のものが好ましく、フ
ッ化マグネシウム(MgF2 )、二酸化ケイ素(SiO
2 )等の酸化物などの誘電体が代表的である。
As the material for forming the low refractive index layers 25 and 29, those having a refractive index of 1.35 to 1.55 are preferable, and magnesium fluoride (MgF 2 ) and silicon dioxide (SiO 2 ).
2 ) Dielectrics such as oxides are typical.

【0016】高屈折率層27を形成する物質としては、
屈折率1.8〜2.9のものが好ましく、酸化チタン
(TiO2 )、酸化タンタル(Ta25)、酸化ハフニ
ウム(HfO2 )、酸化ジルコニウム(ZrO2)、T
iO2+Pr611、ZrO2+TiO2 などの誘電体酸
化物、あるいはITO等の透明導電性物質などが用いら
れる。
As the material forming the high refractive index layer 27,
Those having a refractive index of 1.8 to 2.9 are preferable, and titanium oxide (TiO 2 ), tantalum oxide (Ta 2 O 5 ), hafnium oxide (HfO 2 ), zirconium oxide (ZrO 2 ), T
A dielectric oxide such as iO 2 + Pr 6 O 11 or ZrO 2 + TiO 2 or a transparent conductive material such as ITO is used.

【0017】具体的な層構成は、反射率を低下させる中
心波長ピークを定め、使用する透明導電性物質、高屈折
率物質および低屈折率物質を選択することにより、これ
らの屈折率と積層数とから、各層の最適膜厚を決定する
ことができる。多層透明導電性反射防止膜21を構成す
る各層23〜29は、真空蒸着法、スパッタリング法等
の通常の薄膜形成方法により基板11上に形成できる。
The specific layer structure is such that the central wavelength peak that lowers the reflectance is determined, and the transparent conductive material, the high refractive index material and the low refractive index material to be used are selected, and the refractive index and the number of laminated layers of these materials are selected. From this, the optimum film thickness of each layer can be determined. Each of the layers 23 to 29 forming the multilayer transparent conductive antireflection film 21 can be formed on the substrate 11 by a usual thin film forming method such as a vacuum deposition method or a sputtering method.

【0018】本発明では、このようにして基板11上に
多層透明導電性反射防止膜21を形成したのち、この最
上層である表面低屈折率層29上に、超音波ハンダ31
(超音波ハンダ法によりハンダ付けされたハンダ)から
なるアース電極を形成する。
In the present invention, after the multilayer transparent conductive antireflection film 21 is formed on the substrate 11 in this way, the ultrasonic solder 31 is formed on the uppermost surface low refractive index layer 29.
A ground electrode made of (solder soldered by ultrasonic soldering method) is formed.

【0019】超音波ハンダ法は、図2に示すように、チ
ップ加熱用のヒータ47によって加熱されたチップ41
(こて先端)を、ホーン43を介して超音波振動子45
によって超音波振動させつつ、超音波ハンダ付け用ハン
ダをチップ41に供給して超音波ハンダ31を接着させ
るものである。超音波ハンダ法によれば、多層透明導電
性反射防止膜21の表面上に直接ハンダ付けを行なうこ
とができ、また、下層の透明導電層23との間で、アー
スのための集電に必要な電気的導通を取ることができ
る。この理由は必ずしも明確ではないが、本発明者の検
討によれば、超音波ハンダ31が層内の透明導電層23
内あるいはその近傍まで拡散、浸入していることが確認
され、また、再現性があることも確かめられた。
In the ultrasonic soldering method, as shown in FIG. 2, a chip 41 heated by a chip heating heater 47 is used.
(Tip of the iron) through the horn 43 to the ultrasonic transducer 45
The ultrasonic soldering solder is supplied to the chip 41 to bond the ultrasonic solder 31 while ultrasonically vibrating the ultrasonic wave. According to the ultrasonic soldering method, it is possible to perform soldering directly on the surface of the multilayer transparent conductive antireflection film 21, and between the transparent conductive layer 23 and the lower transparent conductive layer 23, it is necessary for collecting current for grounding. A good electrical continuity can be achieved. The reason for this is not always clear, but according to the study by the present inventor, the ultrasonic solder 31 has the transparent conductive layer 23 in the layer.
It was confirmed that it diffused and invaded inside or in the vicinity thereof, and it was also confirmed that there was reproducibility.

【0020】以上の説明では、最下層を透明導電層23
とする4層膜からなる多層透明導電性反射防止膜21に
超音波ハンダ31からなるアース電極を設ける場合を説
明したが、本発明はこれに限定されず、種々の積層数お
よび膜構成の導電性反射防止膜に適用でき、必ずしも基
板側の第1層を透明導電層とする必要はなく、また、複
数の透明導電層を設けてもよい。
In the above description, the lowermost layer is the transparent conductive layer 23.
The case where the ground electrode made of the ultrasonic solder 31 is provided on the multilayer transparent conductive antireflection film 21 made of the four-layer film described above has been described, but the present invention is not limited to this, and the number of layers and the conductive film having various film configurations are used. The first layer on the substrate side does not necessarily have to be a transparent conductive layer, and a plurality of transparent conductive layers may be provided.

【0021】超音波ハンダ31からなるアース電極を外
部にアースする方法は特に限定されず、例えば、超音波
ハンダ31に直接アース線51を結合する方法(図3
(A))、超音波ハンダ31上に通常ハンダ53により
アース線51を結合する方法(図3(B))超音波ハン
ダ31に金属製の爪55を圧締し、爪55を介してアー
ス線(図示せず)に接続する方法(図3(C))などい
ずれでもよい。
The method of grounding the earth electrode composed of the ultrasonic solder 31 to the outside is not particularly limited. For example, the method of directly connecting the earth wire 51 to the ultrasonic solder 31 (see FIG. 3).
(A)), a method of connecting the ground wire 51 to the ultrasonic solder 31 with the normal solder 53 (FIG. 3 (B)) A metal claw 55 is clamped to the ultrasonic solder 31 and grounded via the claw 55. Any method such as connecting to a wire (not shown) (FIG. 3C) may be used.

【0022】[0022]

【発明の効果】本発明によれば、パネル上に形成された
表面が非導電性層からなる導電性反射防止膜をパネル上
に形成した後、この表面非導電性層上に超音波ハンダか
らなるアース電極を形成することにより、導電性反射防
止膜内部の透明導電層との間にアースに必要な電気的導
通を取ることができる。よって、予め導電ペーストを印
刷、焼結してアース電極を形成する必要がなく、また、
導電性反射防止膜の膜構成にかかわらず簡便にアースを
取ることができ、膜設計の自由度が大きく、大掛かりな
設備も必要としない。
According to the present invention, after a conductive antireflection film having a surface formed of a non-conductive layer on the panel is formed on the panel, an ultrasonic solder is applied on the surface non-conductive layer. By forming such a grounding electrode, it is possible to establish electrical continuity required for grounding with the transparent conductive layer inside the conductive antireflection film. Therefore, it is not necessary to print and sinter the conductive paste in advance to form the ground electrode.
The conductive antireflection film can be grounded easily regardless of the film structure, the film design is highly flexible, and large-scale equipment is not required.

【0023】実験例 透明ガラス基板上に、ITO薄膜(23.43nm)、
SiO2 薄膜(31.58nm)、TiO2 薄膜(9
5.93nm)、表面SiO2 薄膜(83.57nm)
を順次形成して透明導電性反射防止膜を形成した。この
表面SiO2 薄膜上に、超音波ハンダ付け装置サンボー
ダーUSM−III(旭硝子(株)製)を用い、セラソル
ザ#297(超音波ハンダ付け用ハンダ、旭硝子(株)
製)をハンダ付けして、図1に示したようなアース電極
を形成した。このITO透明導電層とアース電極との抵
抗値は、0.5Ω以下であり、良好なアース特性を示し
た。
Experimental Example On a transparent glass substrate, an ITO thin film (23.43 nm),
SiO 2 thin film (31.58 nm), TiO 2 thin film (9
5.93 nm), surface SiO 2 thin film (83.57 nm)
Were sequentially formed to form a transparent conductive antireflection film. Cerasolzer # 297 (solder for ultrasonic soldering, Asahi Glass Co., Ltd.) was used on this surface SiO 2 thin film using an ultrasonic soldering device Sunborder USM-III (manufactured by Asahi Glass Co., Ltd.).
(Manufactured by K.K.) was soldered to form an earth electrode as shown in FIG. The resistance value of the ITO transparent conductive layer and the ground electrode was 0.5Ω or less, which showed good ground characteristics.

【0024】さらに、上記のアース電極が形成された導
電性反射防止膜付きガラスパネルに対して、以下の強度
テストを試みたが、アース電極の剥離、変色等はなくい
ずれも合格であった。なお、MILは米軍規格を示す。
Further, the following strength test was attempted on the above-mentioned glass panel with a conductive antireflection film on which the ground electrode was formed, but the ground electrode did not peel or discolor, and all passed. MIL indicates the US military standard.

【0025】(1) 耐溶剤テスト:重量比でNaCl
1:水 22.3の塩水に24時間浸漬、MIL−C
−675C.4.5.7 (2) 耐湿テスト:50℃−90%RH×24時間、
MIL−C−475C.4.5.8 (3) メチレンクロライドに8時間浸漬
(1) Solvent resistance test: NaCl by weight
1: Water immersed in 22.3 salt water for 24 hours, MIL-C
-675C. 4.5.7 (2) Moisture resistance test: 50 ° C.-90% RH × 24 hours,
MIL-C-475C. 4.5.8 (3) Immerse in methylene chloride for 8 hours

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の多層導電性反射防止膜付きパネルのア
ース電極構造の実施例を示す模式図である。
FIG. 1 is a schematic view showing an example of a ground electrode structure of a panel with a multilayer conductive antireflection film of the present invention.

【図2】超音波ハンダ方法について示す説明図である。FIG. 2 is an explanatory diagram showing an ultrasonic soldering method.

【図3】アース電極と外部端子との結合方法を示す説明
図である。
FIG. 3 is an explanatory diagram showing a method of connecting a ground electrode and an external terminal.

【符号の説明】[Explanation of symbols]

11 基板 21 多層透明導電性反射防止膜 23 透明導電層 25 低屈折率層 27 高屈折率層 29 表面低屈折率層 31 超音波ハンダ 41 チップ 43 ホーン 45 超音波振動子 47 ヒータ 51 アース線 53 通常ハンダ 55 爪 11 Substrate 21 Multilayer Transparent Conductive Antireflection Film 23 Transparent Conductive Layer 25 Low Refractive Index Layer 27 High Refractive Index Layer 29 Surface Low Refractive Index Layer 31 Ultrasonic Solder 41 Chip 43 Horn 45 Ultrasonic Transducer 47 Heater 51 Earth Wire 53 Normal Solder 55 claws

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 最上層が非導電性薄膜からなり少なくと
も1層の透明導電層を有する多層導電性反射防止膜が形
成されたパネルにおいて、超音波ハンダ法により、最上
層上にハンダからなるアース電極が形成され、該アース
電極と前記透明導電層との間に電気的導通が取られてい
ることを特徴とする多層導電性反射防止膜付きパネルの
アース電極構造。
1. In a panel in which a multilayer conductive antireflection film having a non-conductive thin film as the uppermost layer and having at least one transparent conductive layer is formed, an earth made of solder is formed on the uppermost layer by ultrasonic soldering. An earth electrode structure for a panel with a multilayer conductive antireflection film, characterized in that an electrode is formed and electrical continuity is established between the earth electrode and the transparent conductive layer.
JP4332377A 1992-11-17 1992-11-17 Grounding electrode structure of panel with multilayered conductive antireflection film Pending JPH06160601A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4332377A JPH06160601A (en) 1992-11-17 1992-11-17 Grounding electrode structure of panel with multilayered conductive antireflection film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4332377A JPH06160601A (en) 1992-11-17 1992-11-17 Grounding electrode structure of panel with multilayered conductive antireflection film

Publications (1)

Publication Number Publication Date
JPH06160601A true JPH06160601A (en) 1994-06-07

Family

ID=18254289

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4332377A Pending JPH06160601A (en) 1992-11-17 1992-11-17 Grounding electrode structure of panel with multilayered conductive antireflection film

Country Status (1)

Country Link
JP (1) JPH06160601A (en)

Similar Documents

Publication Publication Date Title
EP1056596B1 (en) Process for forming electrodes
US7740946B2 (en) Electroconductive laminate, and electromagnetic wave shielding film for plasma display and protective plate for plasma display
US8040062B2 (en) Electroconductive laminate, and electromagnetic wave shielding film and protective plate for plasma display
US6014196A (en) Transparent electrically conductive film-attached substrate
EP0059063A1 (en) Transparent electromagnetic shield and method of manufacturing thereof
JP2000294980A (en) Translucent electromagnetic wave filter and fabrication thereof
JPS63239044A (en) Transparent conductive laminate
JP4893097B2 (en) Conductive laminate and protective plate for plasma display
JPH10100303A (en) Substrate fitted with transparent conductive film and display element using the same
KR20070115702A (en) A conductive laminate, an electromagnetic wave shielding film for plasma display and a protective plate for plasma display
KR19990083219A (en) Electromagnetic wave filter for plasma display panel
JP2012009873A (en) Conductive stacked body, manufacturing method for the same, electromagnetic wave shielding film for plasma display, and protection plate for plasma display
JP3031224B2 (en) Transparent conductive film
US4778732A (en) Electrically conductive glass sheet
JPH07325313A (en) Conductive laminate
JPH06160601A (en) Grounding electrode structure of panel with multilayered conductive antireflection film
JPH09221340A (en) Substrate with transparent conductive film
JP3924849B2 (en) Transparent conductive film and electromagnetic wave shielding filter using the same
JPH0634802A (en) Conductive antireflection film
JPH10114008A (en) Transparent electrical conductive laminate and touch panel using laminate
JP3318142B2 (en) Transparent conductive film
JP2001179868A (en) Method for manufacturing transparent laminate
JPH11262968A (en) Transparent conductive film
JPH09143680A (en) Transparent conductive film
JPH1123804A (en) Electrically conductive antireflection film