JPH06160421A - Oscillatory type acceleration sensor - Google Patents

Oscillatory type acceleration sensor

Info

Publication number
JPH06160421A
JPH06160421A JP4332524A JP33252492A JPH06160421A JP H06160421 A JPH06160421 A JP H06160421A JP 4332524 A JP4332524 A JP 4332524A JP 33252492 A JP33252492 A JP 33252492A JP H06160421 A JPH06160421 A JP H06160421A
Authority
JP
Japan
Prior art keywords
bridge
mass
support
bridges
acceleration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4332524A
Other languages
Japanese (ja)
Inventor
Yasuhiro Negoro
泰宏 根来
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP4332524A priority Critical patent/JPH06160421A/en
Publication of JPH06160421A publication Critical patent/JPH06160421A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P2015/0805Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration
    • G01P2015/0808Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining in-plane movement of the mass, i.e. movement of the mass in the plane of the substrate
    • G01P2015/0811Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining in-plane movement of the mass, i.e. movement of the mass in the plane of the substrate for one single degree of freedom of movement of the mass
    • G01P2015/0814Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining in-plane movement of the mass, i.e. movement of the mass in the plane of the substrate for one single degree of freedom of movement of the mass for translational movement of the mass, e.g. shuttle type

Landscapes

  • Gyroscopes (AREA)

Abstract

PURPOSE:To only detect the acceleration applied to a mass section in the detecting direction with high accuracy by means of bridges by controlling the displacement of the mass section in the vertical direction. CONSTITUTION:The main body 23 of the title sensor is constituted in such a way that a mass section 25 is supported on a supporting body by means of four beam sections 28 formed by etching a silicon substrate 24 and bridges 30 and 30 are provided across grooves 26 between the section 25 and body 27. The vibrating section 30A of each bridge 30 is always naturally vibrated at its resonance frequency by means of an external oscillation circuit and, when acceleration is applied to the section 25 in the direction shown by the arrow (a), the resonance frequencies of the bridges 30 become lower on one side and high on the other side. Therefore, the acceleration applied to the section 25 in the detecting (X-axis) direction can be accurately detected.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、車両等の回転方向,姿
勢等を検出するのに用いて好適な振動型加速度センサに
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vibration type acceleration sensor suitable for detecting the rotation direction, posture, etc. of a vehicle or the like.

【0002】[0002]

【従来の技術】まず、従来技術の加速度センサとして特
開平2-183167号公報(米国特許第4901570 号)に記載の
振動型の加速度計は一般に知られている。
2. Description of the Related Art First, a vibration type accelerometer disclosed in Japanese Patent Laid-Open No. 2-183167 (US Pat. No. 4,901,570) is generally known as a conventional acceleration sensor.

【0003】ここで、図12ないし図14に特開平2-18
3167号公報による加速度計を示し説明する。
Here, FIGS. 12 to 14 show Japanese Patent Laid-Open No. 2-18.
An accelerometer according to Japanese Patent No. 3167 will be shown and described.

【0004】図中、1は振動型の加速度計としての加速
度センサ、2は該加速度センサ1の本体を構成するシリ
コン基板を示し、該シリコン基板2は外側に位置した矩
形状の支持基板3と該支持基板3の内周側に位置した基
準質量4とからなる。
In the figure, 1 is an acceleration sensor as a vibration type accelerometer, 2 is a silicon substrate which constitutes the main body of the acceleration sensor 1, and the silicon substrate 2 is a rectangular support substrate 3 located outside. The reference mass 4 is located on the inner peripheral side of the support substrate 3.

【0005】5はシリコン基板2の上面側に形成された
窒化シリコン膜、6はシリコン基板2の下面側に形成さ
れた窒化シリコン膜を示し、該窒化シリコン膜6にはV
字状の裏梁としての抑制ブリッジ7,7,…が基準質量
4を下側から支持するように形成されている。
Reference numeral 5 denotes a silicon nitride film formed on the upper surface side of the silicon substrate 2, 6 denotes a silicon nitride film formed on the lower surface side of the silicon substrate 2, and the silicon nitride film 6 has V
The restraining bridges 7, 7, ... As back beams are formed so as to support the reference mass 4 from below.

【0006】8,9,10,11はシリコン基板2の基
準質量4と支持基板3との間を跨ぐように形成された共
振ブリッジをそれぞれ示し、該ブリッジ8〜11のう
ち、ブリッジ8,10およびブリッジ9,11はそれぞ
れ対をなして長手方向が検出方向と同軸となるように配
置され、ブリッジ8,10がX軸方向、ブリッジ9,1
1がY軸方向を検出するようになっている。
Reference numerals 8, 9, 10, and 11 denote resonance bridges formed so as to straddle between the reference mass 4 of the silicon substrate 2 and the support substrate 3, and among the bridges 8 to 11, the bridges 8 and 10 are shown. And the bridges 9 and 11 are arranged in pairs so that the longitudinal direction is coaxial with the detection direction. The bridges 8 and 10 are arranged in the X-axis direction and the bridges 9 and 1 are arranged.
1 detects the Y-axis direction.

【0007】12,12,…はブリッジ8〜11の下側
に位置し、前記支持基板3の上面側に形成された駆動電
極を示し、該各駆動電極12には外部に設けられた図示
しない発振装置から所定の周波数を印加することによ
り、前記ブリッジ8〜10を共振周波数で固有振動させ
るものである。
Denoted by 12 and 12, are drive electrodes formed on the upper surface side of the support substrate 3 which are located below the bridges 8 to 11, and each drive electrode 12 is not provided outside. By applying a predetermined frequency from an oscillating device, the bridges 8 to 10 are naturally vibrated at a resonance frequency.

【0008】13,13,…はブリッジ8〜11の下側
に位置し、前記支持基板3の上面側に形成された検出電
極を示し、該各検出電極13は各ブリッジ8〜11に加
わる検出方向の加速度により該各ブリッジ8〜11の共
振周波数のずれを検出するものである。
.. are located below the bridges 8 to 11 and indicate detection electrodes formed on the upper surface side of the support substrate 3, and each detection electrode 13 detects the voltage applied to each of the bridges 8 to 11. The deviation of the resonance frequency of each of the bridges 8 to 11 is detected by the directional acceleration.

【0009】なお、前記発振装置はそれぞれの検出電極
13からの信号により駆動電極12の発振周波数を個々
に変化させ、ブリッジ8〜11を共振状態に保つフィー
ドバック制御を行う。また、基準質量4は各抑制ブリッ
ジ7により該基準質量4の上下方向の移動を規制するよ
うにしているが、シリコン基板2の上面側に支持基板3
と基準質量4とに交互に固着された機械的なストッパを
設け、基準質量4が上下方向に移動するのを規制してい
る。これにより、ブリッジ8〜11からの固有振動が基
準質量4に伝達されるを防止でき、該基準質量4の上下
方向の振動を防止する。
The oscillating device individually changes the oscillating frequency of the driving electrode 12 according to the signal from each detecting electrode 13 to perform feedback control for keeping the bridges 8 to 11 in a resonance state. Further, the reference mass 4 restricts the vertical movement of the reference mass 4 by the respective restraining bridges 7, but the support substrate 3 is provided on the upper surface side of the silicon substrate 2.
A mechanical stopper fixed alternately to the reference mass 4 and the reference mass 4 is provided to prevent the reference mass 4 from moving in the vertical direction. Thereby, the natural vibration from the bridges 8 to 11 can be prevented from being transmitted to the reference mass 4, and the vertical vibration of the reference mass 4 can be prevented.

【0010】このように構成される従来技術による加速
度センサにおいては、例えば図12の矢示A方向に加速
度が加わると、基準質量4は矢示A方向に移動し、ブリ
ッジ8には圧縮効力が作用し、ブリッジ10には引張応
力が作用する。そして、ブリッジ8では固有振動の共振
周波数よりも低い周波数となり、ブリッジ10では固有
振動の共振周波数よりも高い周波数となる。さらに、こ
の周波数変化を各検出電極13で検出して、発振装置で
再び共振周波数の固有振動にするためのフィードバック
制御を行っているから、駆動電極12から補正した周波
数を印加し、この補正周波数の変化量を加算することに
より矢示A方向の加速度を大きな信号として検出するよ
うになっている。
In the acceleration sensor according to the prior art configured as described above, for example, when acceleration is applied in the direction of arrow A in FIG. 12, the reference mass 4 moves in the direction of arrow A, and the bridge 8 has a compression effect. It acts, and tensile stress acts on the bridge 10. The bridge 8 has a frequency lower than the resonance frequency of natural vibration, and the bridge 10 has a frequency higher than the resonance frequency of natural vibration. Furthermore, since the detection electrode 13 detects this frequency change and feedback control is performed by the oscillating device to make the natural frequency of the resonance frequency again, the corrected frequency is applied from the drive electrode 12 and the corrected frequency is applied. The acceleration in the direction of the arrow A is detected as a large signal by adding the change amount of.

【0011】[0011]

【発明が解決しようとする課題】ところで、上述した従
来技術では、共振ブリッジ8〜11自体が基準質量4を
支持基板3に支持すると共に、裏梁となる各抑制ブリッ
ジ7も基準質量4を支持する構成となっているから、該
基準質量4の水平方向(X,Y軸方向)の加速度の変位
を低減し、加速度の検出感度を低下させるという問題が
ある。
By the way, in the above-mentioned conventional technique, the resonance bridges 8 to 11 themselves support the reference mass 4 on the support substrate 3, and the restraining bridges 7 serving as back beams also support the reference mass 4. Therefore, there is a problem in that the displacement of the acceleration of the reference mass 4 in the horizontal direction (X, Y axis direction) is reduced, and the acceleration detection sensitivity is reduced.

【0012】また、検出感度を向上させるために、シリ
コン基板2の裏面側に形成した裏梁となる各抑制ブリッ
ジ7を排除すると、基準質量4はブリッジ8〜11の固
有振動の影響を受けて、基準質量4は上下方向(Z軸方
向)に振動し、水平の検出方向の加速度を正確に検出す
ることができなくなるという問題がある。
Further, in order to improve the detection sensitivity, if the suppression bridges 7 which are the back beams formed on the back surface side of the silicon substrate 2 are eliminated, the reference mass 4 is affected by the natural vibration of the bridges 8-11. However, there is a problem that the reference mass 4 vibrates in the vertical direction (Z-axis direction), and it becomes impossible to accurately detect the acceleration in the horizontal detection direction.

【0013】本発明は上述した従来技術の問題に鑑みな
されたもので、本発明は検出方向に高感度で分解能の良
い加速度検出を行うことのできる振動型加速度センサを
提供することを目的としている。
The present invention has been made in view of the above-mentioned problems of the prior art, and an object of the present invention is to provide a vibration type acceleration sensor capable of performing acceleration detection with high sensitivity and high resolution in the detection direction. .

【0014】[0014]

【課題を解決するための手段】上述した課題を解決する
ために、本発明が採用する構成の特徴は、質量部と支持
体とをシリコン板により一体形成し、該シリコン板には
前記質量部を支持体に連結し、前記質量部が支持体に対
して上下方向に変位するのを抑える梁部を形成したこと
にある。
In order to solve the above problems, the present invention is characterized in that the mass part and the support are integrally formed by a silicon plate, and the mass part is provided on the silicon plate. Is connected to the support body to form a beam portion that suppresses the vertical displacement of the mass portion with respect to the support body.

【0015】また、前記梁部の幅寸法は厚さ寸法よりも
十分小さく形成することが望ましい。
Further, it is desirable that the width dimension of the beam portion is sufficiently smaller than the thickness dimension.

【0016】[0016]

【作用】上記構成により、質量部には垂直方向の加速度
は規制されて水平の検出方向の加速度のみが加わり、こ
の加速度の加わる方向によりブリッジに圧縮または引張
応力が加わり、該ブリッジの固有振動の共振周波数を低
くまたは高くすることができる。
With the above structure, the vertical direction acceleration is restricted to the mass portion, and only the horizontal detection direction acceleration is applied. The bridge is subjected to compressive or tensile stress depending on the direction in which the acceleration is applied, and the natural vibration of the bridge is The resonant frequency can be low or high.

【0017】また、シリコン基板に一体形成された梁部
は、質量部の上下方向の移動を規制し、水平の検出方向
の移動を容易にすることができ、ブリッジからの上下方
向の固有振動が質量部に作用するのをなくすことができ
る。
Further, the beam portion integrally formed on the silicon substrate can regulate the vertical movement of the mass portion and facilitate the movement in the horizontal detection direction, and the natural vibration in the vertical direction from the bridge can be prevented. It is possible to eliminate the effect on the mass part.

【0018】[0018]

【実施例】以下、本発明の実施例を図1ないし図11に
基づき説明する。なお、実施例では前述した従来技術と
同一の構成要素に同一の符号を付し、その説明を省略す
るものとする。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT An embodiment of the present invention will be described below with reference to FIGS. In the embodiments, the same components as those of the above-described conventional technique are designated by the same reference numerals, and the description thereof will be omitted.

【0019】図中、21は本実施例による加速度センサ
を示し、該加速度センサ21は基台となるガラス基板2
2と、該ガラス基板22の上面に固着された後述するセ
ンサ本体23とから大略構成されている。
In the figure, reference numeral 21 denotes an acceleration sensor according to this embodiment, and the acceleration sensor 21 is a glass substrate 2 serving as a base.
2 and a sensor body 23, which will be described later, fixed to the upper surface of the glass substrate 22.

【0020】23はセンサ本体を示し、該センサ本体2
3はシリコン板としてのシリコン基板24に一体形成さ
れ、長方形状の質量部25と、該質量部25の周囲に溝
26を介して設けられた矩形状の支持体27と、該支持
体27に前記質量部25を支持するように、該質量部2
5の4個の頂点から支持体27に向けて伸長する(図1
中のY軸方向)梁部28,28,…と、前記質量部25
と支持体27との間に設けられたブリッジ30,30と
から構成されている。
Reference numeral 23 denotes a sensor body, and the sensor body 2
3 is formed integrally with a silicon substrate 24 as a silicon plate, and has a rectangular mass portion 25, a rectangular support body 27 provided around the mass portion 25 through a groove 26, and the support body 27. In order to support the mass part 25, the mass part 2
5 from the four apexes toward the support 27 (see FIG. 1).
(Y-axis direction inside) beam portions 28, 28, ... And the mass portion 25
And bridges 30 provided between the support 27 and the support 27.

【0021】ここで、前記センサ本体23はシリコン基
板24を後述のエッチング処理で溝26を形成すること
により、質量部25,支持体27および各梁部28はシ
リコン基板24により一体形成されているから、該質量
部25,支持体27および各梁部28は同一平面上に位
置している。また、図1に示すように、各梁部28の幅
寸法dは厚さ寸法hよりも小さくなっているから質量部
25にZ軸方向の加速度が加わった場合でも、変位を規
制するようになっている。
Here, in the sensor main body 23, the silicon substrate 24 is formed with the groove 26 by an etching process described later, so that the mass portion 25, the support 27 and each beam portion 28 are integrally formed by the silicon substrate 24. Therefore, the mass portion 25, the support body 27, and the beam portions 28 are located on the same plane. Further, as shown in FIG. 1, since the width dimension d of each beam portion 28 is smaller than the thickness dimension h, displacement is regulated even when acceleration in the Z-axis direction is applied to the mass portion 25. Has become.

【0022】29はガラス基板22とセンサ本体23と
の間に設けられたスペーサを示し、該スペーサ29は前
記センサ本体23の支持体27と同一の矩形状に形成さ
れ、前記ガラス基板22と質量部25との間に隙間を形
成している。
Reference numeral 29 denotes a spacer provided between the glass substrate 22 and the sensor body 23. The spacer 29 is formed in the same rectangular shape as the support body 27 of the sensor body 23, and has the same mass as the glass substrate 22. A gap is formed with the portion 25.

【0023】30,30は導電性材料により形成された
略コ字状のブリッジを示し、該各ブリッジ30は図3に
示す如く、中央が支持体27との間に隙間を有する振動
部30A、該振動部30Aの両端が固着端部30B,3
0Cとなって、該各固着端部30B,30Cをそれぞれ
質量部25および支持体27に固着することで、質量部
25と支持体27との間即ち溝26を跨ぐようにして設
けられている。そして、該各ブリッジ30の長手方向が
図1中のX軸方向に位置するように軸線を揃えて設けら
れている。
Reference numerals 30 and 30 denote substantially U-shaped bridges made of a conductive material, and each of the bridges 30 has a vibrating portion 30A having a gap between the center and the support 27, as shown in FIG. Both ends of the vibrating portion 30A are fixed end portions 30B, 3
It becomes 0C, and the fixing end portions 30B and 30C are fixed to the mass portion 25 and the support body 27, respectively, so as to straddle between the mass portion 25 and the support body 27, that is, the groove 26. . The axes of the bridges 30 are aligned so that the longitudinal direction of each bridge 30 is located in the X-axis direction in FIG.

【0024】なお、前記質量部25は各梁部28により
支持体27に支持されるもので、各ブリッジ30は質量
部25と支持体27とに固着されているものの、該各ブ
リッジ30が質量部25を支持するものではない。
The mass portion 25 is supported by the support member 27 by the beam portions 28, and the bridges 30 are fixed to the mass portion 25 and the support member 27. It does not support the part 25.

【0025】31,31,32,32,33,33は各
ブリッジ30のそれぞれの下側に位置し、支持体27上
に形成されたブリッジ電極,容量検出電極,駆動電極を
それぞれ示し、該各電極31〜33は図2に示す如く、
該ブリッジ電極31の一端側はブリッジ30の固着端部
30Cに接続され、容量検出電極32および駆動電極3
3の一端側はブリッジ30の振動部30Aの下側に位置
し、容量検出電極32の一端側のY軸方向両側に駆動電
極33の一端側が位置するようになっている。そして、
各電極31〜33の他端側にはシリコン基板24から突
出する取出電極31A〜33Aが形成され、該各取出電
極31A〜33Aとそれぞれの一端側とはリン(P)を
拡散したパターン31B〜33Bを介して接続されてい
る。
Reference numerals 31, 31, 32, 32, 33, and 33 indicate the bridge electrodes, the capacitance detection electrodes, and the drive electrodes formed on the support 27, which are located below the respective bridges 30, respectively. The electrodes 31 to 33 are, as shown in FIG.
One end side of the bridge electrode 31 is connected to the fixed end portion 30C of the bridge 30, and the capacitance detection electrode 32 and the drive electrode 3 are connected.
One end side of 3 is located below the vibrating portion 30A of the bridge 30, and one end side of the drive electrode 33 is located on both sides of one end side of the capacitance detection electrode 32 in the Y-axis direction. And
Extraction electrodes 31A to 33A protruding from the silicon substrate 24 are formed on the other end side of each of the electrodes 31 to 33. It is connected through 33B.

【0026】一方、前記ブリッジ電極31と駆動電極3
3とは振動発生手段としての発振回路に接続され、容量
検出電極32と駆動電極33とは検出手段としての信号
処理回路(いずれも図示せず)に接続されている。
On the other hand, the bridge electrode 31 and the drive electrode 3
3 is connected to an oscillation circuit as a vibration generating means, and the capacitance detection electrode 32 and the drive electrode 33 are connected to a signal processing circuit (neither is shown) as a detection means.

【0027】本実施例による加速度センサは上述の如く
構成を有するもので、次にその製造方法について図4な
いし図11を参照しつつ説明する。なお、図面の説明上
一方のブリッジ30についてのみ図示している。
The acceleration sensor according to the present embodiment has the structure as described above, and a method of manufacturing the acceleration sensor will be described below with reference to FIGS. It should be noted that only one bridge 30 is shown in the drawings for explanation.

【0028】図4に示す電極パターンおよび第1の窒化
膜形成工程では、p型(110)のシリコン基板24の
上面に図2に示すような各電極31,32,33をホト
エッチングした後に、リン(P)を拡散させて各電極3
1〜33のパターン31B〜33Bを形成する。その後
に、上面には各ブリッジ30の固着端部30B,30C
が固着される部分を除いて窒化膜が形成されるようにホ
トエッチングされ、下面には溝26(窒化膜42におい
ては切込部42′)が形成される部分を除いて窒化膜が
形成されるようにホトエッチングを施す。そして、減圧
CVD法により上,下面に第1の窒化膜41,42を形
成する。
In the step of forming the electrode pattern and the first nitride film shown in FIG. 4, the electrodes 31, 32 and 33 as shown in FIG. 2 are photo-etched on the upper surface of the p-type (110) silicon substrate 24, and then, Each electrode 3 by diffusing phosphorus (P)
Patterns 31B to 33B of 1 to 33 are formed. After that, the fixed ends 30B and 30C of each bridge 30 are provided on the upper surface.
Are photo-etched so that a nitride film is formed except for a portion where is fixed, and a nitride film is formed on the lower surface except a portion where the groove 26 (cutout 42 'in the nitride film 42) is formed. Photoetching is performed so that Then, the first nitride films 41 and 42 are formed on the upper and lower surfaces by the low pressure CVD method.

【0029】図5に示す犠牲層形成工程では、各ブリッ
ジ30の振動部30Aの高さを確保するために、各ブリ
ッジ30の形成位置にリン珪酸ガラス(PSG)の犠牲
層43を形成する。
In the sacrifice layer forming step shown in FIG. 5, in order to secure the height of the vibrating portion 30A of each bridge 30, a sacrifice layer 43 of phosphosilicate glass (PSG) is formed at the position where each bridge 30 is formed.

【0030】図6に示すブリッジおよび電極形成工程で
は、犠牲層43を跨ぐように上側から減圧CVD法によ
り多結晶シリコンを蒸着させ、その多結晶シリコンにリ
ン(P)を拡散させて低抵抗化した後に、エッチング加
工を施してブリッジ30を形成する。一方、各電極31
〜33の他方に白金/クロムを蒸着し、取出用電極31
A〜33Aを突出形成する。
In the bridge and electrode forming step shown in FIG. 6, polycrystalline silicon is vapor-deposited by a low pressure CVD method from above so as to straddle the sacrificial layer 43, and phosphorus (P) is diffused in the polycrystalline silicon to reduce the resistance. After that, an etching process is performed to form the bridge 30. On the other hand, each electrode 31
~ 33 of platinum / chromium vapor-deposited to extract electrode 31
A to 33A are formed to project.

【0031】図7に示す第2の窒化膜形成工程では、シ
リコン基板24の上側から窒化膜41およびブリッジ3
0を覆うようにプラズマCVD法で第2の窒化膜44を
形成する。
In the second nitride film forming step shown in FIG. 7, the nitride film 41 and the bridge 3 are formed from the upper side of the silicon substrate 24.
A second nitride film 44 is formed by plasma CVD so as to cover 0.

【0032】図8に示す溝形成工程では、アルカリ水溶
液(例えば、TMAH:テトラナチルアンモニウムハイ
ドロオキサイドまたはKOH)によりシリコン基板24
のエッチングを行うが、該シリコン基板24が露出して
いる部分は下面側の窒化膜42の切込部42′部分だけ
であるから、この部分からアルカリ水溶液が侵入しシリ
コン基板24を溶かし、貫通する溝26を形成し、シリ
コン基板24を質量部25と支持体27に分ける。
In the groove forming step shown in FIG. 8, the silicon substrate 24 is treated with an alkaline aqueous solution (for example, TMAH: tetranaphthyl ammonium hydroxide or KOH).
However, since the exposed portion of the silicon substrate 24 is only the cutout portion 42 'of the nitride film 42 on the lower surface side, the alkaline aqueous solution penetrates from this portion to melt the silicon substrate 24 and penetrate it. A groove 26 is formed to divide the silicon substrate 24 into a mass portion 25 and a support body 27.

【0033】図9に示す酸化膜形成および窒化膜除去工
程では、プラズマCVD法により第2の窒化膜44の上
側に酸化膜45を形成する。一方、熱燐酸でシリコン基
板24の下面側の第1の窒化膜42および溝26から露
出された窒化膜41の部分をエッチングして除去する。
In the oxide film forming and nitride film removing steps shown in FIG. 9, the oxide film 45 is formed on the upper side of the second nitride film 44 by the plasma CVD method. On the other hand, the portion of the first nitride film 42 on the lower surface side of the silicon substrate 24 and the portion of the nitride film 41 exposed from the groove 26 are removed by etching with hot phosphoric acid.

【0034】図10に示す酸化膜除去工程では、酸化膜
45およびPSGの犠牲層43をエッチングにより除去
する。
In the oxide film removing step shown in FIG. 10, the oxide film 45 and the PSG sacrificial layer 43 are removed by etching.

【0035】図11に示す窒化膜除去工程では、窒化膜
41および窒化膜44をCF4 のガスにより除去してセ
ンサ本体23を形成する。
In the nitride film removing step shown in FIG. 11, the sensor film 23 is formed by removing the nitride film 41 and the nitride film 44 with CF 4 gas.

【0036】そして、図3に示すように、前述したよう
に形成したセンサ本体23をスペーサ29(アルカリガ
ラス)を有するガラス基板22に接着剤Sで接合するこ
とで、加速度センサ21を構成するようになっている。
Then, as shown in FIG. 3, the sensor body 23 formed as described above is bonded to the glass substrate 22 having the spacer 29 (alkali glass) with the adhesive S to form the acceleration sensor 21. It has become.

【0037】このように構成される本実施例による加速
度センサにおいても、従来技術の加速度センサ1と同様
で、ブリッジ電極31と駆動電極33との間にブリッジ
30の固有振動となる共振周波数の交流波が発振回路か
ら入力され、各ブリッジ30は常時固有振動状態に維持
されている。
Also in the acceleration sensor according to the present embodiment having the above-described structure, as in the case of the acceleration sensor 1 of the prior art, an alternating current having a resonance frequency between the bridge electrode 31 and the drive electrode 33, which is a natural vibration of the bridge 30, is used. A wave is input from the oscillation circuit, and each bridge 30 is always kept in a natural vibration state.

【0038】ここで、質量部25に検出方向となるX軸
方向の加速度(図1中の矢示a)が加わると、右側に位
置したブリッジ30には圧縮応力が作用し、左側に位置
したブリッジ30には引張応力が作用する。これによ
り、一方のブリッジ30の共振周波数は低くなり、他方
のブリッジ30の共振周波数は高くなる。この周波数の
ずれを容量検出電極32で検出し、信号処理回路から再
びブリッジ30を固有振動の共振周波数に戻すために補
正した交流波をブリッジ電極31と駆動電極33の間に
出力する。このときの補正した交流波の周波数の差を演
算することにより温度変化による熱応力の影響やY軸方
向の加速度の影響を除去することができ、質量部25に
加わる加速度の大きさを正確に検出することができる。
Here, when an acceleration (indicated by an arrow a in FIG. 1) in the X-axis direction, which is the detection direction, is applied to the mass portion 25, a compressive stress acts on the bridge 30 located on the right side, and the bridge 30 located on the left side is located. Tensile stress acts on the bridge 30. As a result, the resonance frequency of the one bridge 30 becomes low, and the resonance frequency of the other bridge 30 becomes high. This frequency shift is detected by the capacitance detection electrode 32, and an AC wave corrected to return the bridge 30 to the resonance frequency of the natural vibration is output from the signal processing circuit between the bridge electrode 31 and the drive electrode 33. By calculating the difference in frequency of the corrected AC wave at this time, the influence of thermal stress due to temperature change and the influence of acceleration in the Y-axis direction can be removed, and the magnitude of acceleration applied to the mass portion 25 can be accurately determined. Can be detected.

【0039】そして、センサ本体23の質量部25は4
本の梁部28,28,…により支持体27に支持されて
いて、該各梁部28は幅寸法よりも厚さ寸法が小さくな
るように形成されているから、Z軸方向の加速度が加わ
った場合でも質量部25がZ軸方向に変位するのを規制
する。また、各ブリッジ30の振動部30Aが振動して
いるときでも、その振動が質量部25に伝わるのを防止
できる。
The mass portion 25 of the sensor main body 23 is 4
Since the beam portions 28 are supported by the supporting body 27 by the beam portions 28, 28, ... And each of the beam portions 28 is formed so that the thickness dimension is smaller than the width dimension, acceleration in the Z-axis direction is applied. Even in the case of the above, the mass portion 25 is restricted from being displaced in the Z-axis direction. Further, even when the vibrating portion 30A of each bridge 30 is vibrating, the vibration can be prevented from being transmitted to the mass portion 25.

【0040】従って、本実施例による加速度センサ21
においては、各梁部28の形状により、質量部25はX
軸方向の変位を許すものの、Y,Z軸方向の変位は規制
するようになっているから、各ブリッジ30では、質量
部25に加わるX軸方向の加速度のみを高感度に検出す
ることができる。
Therefore, the acceleration sensor 21 according to the present embodiment.
In the above, the mass portion 25 is X due to the shape of each beam portion 28.
Although the displacement in the axial direction is allowed, the displacement in the Y and Z axis directions is regulated, so that each bridge 30 can detect only the acceleration in the X axis direction applied to the mass portion 25 with high sensitivity. .

【0041】さらに、従来技術のように、シリコン基板
の裏面に設けた裏梁としての各抑制ブリッジ7をなくす
ことができ、部品点数を少なくすることができる。
Further, unlike the prior art, each restraining bridge 7 as a back beam provided on the back surface of the silicon substrate can be eliminated, and the number of parts can be reduced.

【0042】なお、前記実施例では、質量部25を支持
する梁部28は該質量部25X軸方向に変位し易いよう
にY軸方向に伸長するように4本形成したが、本発明は
これに限らず、2本,1本でもよく、要はZ軸方向に変
位しにくいように支持体27に対して質量部25を支持
すればよい。
In the above embodiment, four beam portions 28 supporting the mass portion 25 are formed so as to extend in the Y-axis direction so that the mass portion 25 can be easily displaced in the X-axis direction. However, the number is not limited to this, and may be two or one. The point is to support the mass portion 25 with respect to the support body 27 so that it is difficult to displace in the Z-axis direction.

【0043】また、前記実施例ではブリッジ30はX軸
方向に質量部25と支持体27との溝26を跨ぐように
2個設けたが、本発明は一方に1個設けるようにしても
よく、この場合には前記実施例よりも検出信号は小さく
なると共に、温度変化の影響を受け、検出精度が低下す
る。
In the above embodiment, two bridges 30 are provided so as to straddle the groove 26 between the mass portion 25 and the support 27 in the X-axis direction, but the present invention may be provided with one bridge 30 on one side. In this case, the detection signal becomes smaller than that in the above embodiment, and the detection accuracy is lowered due to the influence of the temperature change.

【0044】[0044]

【発明の効果】以上詳述した如く、本発明によれば、シ
リコン板により一体形成し、質量部を上下方向に変位す
るのを抑える梁部を介して支持体に支持し、該支持体と
質量部との間には溝を跨ぐように質量部に加わる加速度
を検出するブリッジを設けるようにしたから、常に固有
振動状態の共振周波数にあるブリッジの上下方向の振動
が質量部に伝達されるのを防止すると共に、該質量部に
加わる水平な検出方向の加速度のみで質量部が変位する
ようにしたから、質量部の垂直方向に加わる加速度がブ
リッジに作用することなく、検出方向の加速度を高精度
に検出することができる。
As described above in detail, according to the present invention, a silicon plate is integrally formed, and the mass portion is supported by a support through a beam portion that suppresses vertical displacement of the mass portion. Since the bridge for detecting the acceleration applied to the mass unit is provided so as to straddle the groove with the mass unit, the vertical vibration of the bridge at the resonance frequency of the natural vibration state is always transmitted to the mass unit. In addition to preventing the above, the mass section is displaced only by the acceleration in the horizontal detection direction applied to the mass section. Therefore, the acceleration applied in the vertical direction of the mass section does not act on the bridge, and the acceleration in the detection direction is It can be detected with high accuracy.

【0045】また、前記梁部の幅寸法は厚さ寸法よりも
十分小さく形成することで、質量部の上下方向の変位を
規制し、水平方向の変位のみを許す形状にでき、加速度
を正確に検出することができる。
Further, by forming the width of the beam portion to be sufficiently smaller than the thickness dimension, it is possible to regulate the displacement of the mass portion in the vertical direction and to allow only the displacement in the horizontal direction to accurately measure the acceleration. Can be detected.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例による振動型加速度センサの斜
視図である。
FIG. 1 is a perspective view of a vibration type acceleration sensor according to an embodiment of the present invention.

【図2】図1中の共振ブリッジの要部拡大して示す平面
図である。
2 is a plan view showing an enlarged main part of a resonance bridge in FIG. 1. FIG.

【図3】図2中の矢示III −III 方向からみた断面図で
ある。
3 is a cross-sectional view as seen from the direction of arrows III-III in FIG.

【図4】第1の窒化膜形成工程を示す断面図である。FIG. 4 is a cross-sectional view showing a first nitride film forming step.

【図5】図4に続く犠牲層形成工程を示す断面図であ
る。
5 is a cross-sectional view showing a sacrifice layer forming step following FIG.

【図6】図5に続くブリッジおよび電極形成工程を示す
断面図である。
FIG. 6 is a cross-sectional view showing a bridge and electrode forming step following FIG.

【図7】図6に続く第2の窒化膜形成工程を示す断面図
である。
FIG. 7 is a cross-sectional view showing a second nitride film forming step following FIG.

【図8】図7に続く溝形成工程を示す断面図である。8 is a cross-sectional view showing a groove forming step following FIG.

【図9】図8に続く酸化膜形成および窒化膜除去工程を
示す断面図である。
FIG. 9 is a cross-sectional view showing an oxide film forming and nitride film removing step following FIG.

【図10】図9に続く酸化膜除去工程を示す断面図であ
る。
10 is a cross-sectional view showing an oxide film removing step following FIG.

【図11】図10に続く窒化膜除去工程を示す断面図で
ある。
11 is a cross-sectional view showing a nitride film removing step following FIG.

【図12】従来技術による振動型加速度センサの平面図
である。
FIG. 12 is a plan view of a conventional vibration type acceleration sensor.

【図13】図12中の矢示XIII−XIII方向からみた断面
図である。
13 is a cross-sectional view seen from the direction of arrows XIII-XIII in FIG.

【図14】従来技術による裏梁を示す平面図である。FIG. 14 is a plan view showing a back beam according to a conventional technique.

【符号の説明】[Explanation of symbols]

21 加速度センサ 23 センサ本体 24 シリコン基板 25 質量部 26 溝 27 支持体 28 梁部 30 ブリッジ 31 ブリッジ電極 32 容量検出電極 33 駆動電極 21 acceleration sensor 23 sensor body 24 silicon substrate 25 mass part 26 groove 27 support 28 beam part 30 bridge 31 bridge electrode 32 capacitance detection electrode 33 drive electrode

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 質量部と、該質量部の周囲に隙間を介し
て設けられた支持体と、前記質量部と支持体との間を跨
ぐように水平の検出方向に少なくとも1個形成されたブ
リッジと、該ブリッジに所定周波数を印加することによ
り、該ブリッジの上下方向に固有振動を与える振動発生
手段と、前記質量部に加わる検出方向の加速度を、前記
ブリッジの固有振動の変化として検出する検出手段とか
らなる振動型加速度センサにおいて、前記質量部と支持
体とをシリコン板により一体形成し、該シリコン板には
前記質量部を支持体に連結し、前記質量部が支持体に対
して上下方向に変位するのを抑える梁部を形成したこと
を特徴とする振動型加速度センサ。
1. A mass part, a support provided around the mass part with a gap, and at least one in the horizontal detection direction so as to straddle between the mass part and the support. A bridge, a vibration generating means for applying a natural frequency to the bridge by applying a predetermined frequency to the bridge, and an acceleration in a detection direction applied to the mass part are detected as a change in the natural vibration of the bridge. In a vibration type acceleration sensor including a detection means, the mass part and the support are integrally formed by a silicon plate, the mass part is connected to the support on the silicon plate, and the mass part is connected to the support. A vibration-type acceleration sensor, characterized in that a beam portion is formed to prevent displacement in the vertical direction.
【請求項2】 前記梁部の幅寸法は厚さ寸法よりも十分
小さく形成してなる請求項1記載の振動型加速度セン
サ。
2. The vibration type acceleration sensor according to claim 1, wherein the beam portion has a width dimension sufficiently smaller than a thickness dimension.
JP4332524A 1992-11-18 1992-11-18 Oscillatory type acceleration sensor Pending JPH06160421A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4332524A JPH06160421A (en) 1992-11-18 1992-11-18 Oscillatory type acceleration sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4332524A JPH06160421A (en) 1992-11-18 1992-11-18 Oscillatory type acceleration sensor

Publications (1)

Publication Number Publication Date
JPH06160421A true JPH06160421A (en) 1994-06-07

Family

ID=18255890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4332524A Pending JPH06160421A (en) 1992-11-18 1992-11-18 Oscillatory type acceleration sensor

Country Status (1)

Country Link
JP (1) JPH06160421A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10339640A (en) * 1997-04-10 1998-12-22 Nissan Motor Co Ltd Angular speed sensor
JP2000199714A (en) * 1999-01-06 2000-07-18 Murata Mfg Co Ltd Angular velocity sensor
JP2013246180A (en) * 2012-05-29 2013-12-09 Samsung Electro-Mechanics Co Ltd Angular velocity sensor
WO2015178117A1 (en) * 2014-05-23 2015-11-26 日立オートモティブシステムズ株式会社 Inertia sensor

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10339640A (en) * 1997-04-10 1998-12-22 Nissan Motor Co Ltd Angular speed sensor
JP2000199714A (en) * 1999-01-06 2000-07-18 Murata Mfg Co Ltd Angular velocity sensor
JP2013246180A (en) * 2012-05-29 2013-12-09 Samsung Electro-Mechanics Co Ltd Angular velocity sensor
US8919198B2 (en) 2012-05-29 2014-12-30 Samsung Electro-Mechanics Co., Ltd. Angular velocity sensor
US9631927B2 (en) 2012-05-29 2017-04-25 Samsung Electro-Mechanics Co., Ltd. Angular velocity sensor with flexible parts providing different rigidities
WO2015178117A1 (en) * 2014-05-23 2015-11-26 日立オートモティブシステムズ株式会社 Inertia sensor
JP2015222246A (en) * 2014-05-23 2015-12-10 日立オートモティブシステムズ株式会社 Inertial sensor
US10551192B2 (en) 2014-05-23 2020-02-04 Hitachi Automotive Systems, Ltd. Inertial sensor

Similar Documents

Publication Publication Date Title
US5728936A (en) Rotary speed sensor
KR100327481B1 (en) Micro gyroscope
US5952572A (en) Angular rate sensor and acceleration sensor
EP0419596B1 (en) Accelerometer with coplanar push-pull force transducers
US6089088A (en) Vibrating microgyrometer
JP3327150B2 (en) Resonant angular velocity sensor
JP2000009472A (en) Angular velocity sensor
EP1302744A2 (en) Angular velocity sensor
EP0812424A1 (en) A device for the measurement of angular rate in monocrystalline material
JP2006053152A (en) Microgyrometer employing frequency detection
US6450033B1 (en) Semiconductor physical quantity sensor
JPH02189433A (en) Vibration type power-frequency converter
JPH112526A (en) Vibrating angular velocity sensor
US6192756B1 (en) Vibrators vibratory gyroscopes a method of detecting a turning angular rate and a linear accelerometer
JP2000046560A (en) Angular velocity sensor
JP4362877B2 (en) Angular velocity sensor
US6453744B2 (en) Low radiation capture cross-section electrode material for prompt radiation environments
JPH06123632A (en) Dynamic quantity sensor
JPH05312576A (en) Angular velocity sensor
JPH0643179A (en) Acceleration sensor and manufacture of said sensor
JPH06160421A (en) Oscillatory type acceleration sensor
JP2001133268A (en) Angular velocity sensor
JP2000055669A (en) Oscillating type angular velocity detector
JPH11132770A (en) Vibration type angular speed detector
JPH11271064A (en) Angular velocity sensor