JPH06160419A - Semiconductor acceleration sensor and its detecting device - Google Patents

Semiconductor acceleration sensor and its detecting device

Info

Publication number
JPH06160419A
JPH06160419A JP4332172A JP33217292A JPH06160419A JP H06160419 A JPH06160419 A JP H06160419A JP 4332172 A JP4332172 A JP 4332172A JP 33217292 A JP33217292 A JP 33217292A JP H06160419 A JPH06160419 A JP H06160419A
Authority
JP
Japan
Prior art keywords
electrodes
acceleration
electrode
acceleration sensor
movable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4332172A
Other languages
Japanese (ja)
Other versions
JP3289069B2 (en
Inventor
Hidenobu Umeda
秀信 梅田
Koichi Hikasa
浩一 日笠
Keisuke Uno
圭輔 宇野
Yoshiyuki Morita
善之 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Omron Corp
Omron Tateisi Electronics Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Corp, Omron Tateisi Electronics Co filed Critical Omron Corp
Priority to JP33217292A priority Critical patent/JP3289069B2/en
Publication of JPH06160419A publication Critical patent/JPH06160419A/en
Application granted granted Critical
Publication of JP3289069B2 publication Critical patent/JP3289069B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P2015/0805Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration
    • G01P2015/0822Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass
    • G01P2015/0825Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass for one single degree of freedom of movement of the mass
    • G01P2015/0828Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass for one single degree of freedom of movement of the mass the mass being of the paddle type being suspended at one of its longitudinal ends

Landscapes

  • Pressure Sensors (AREA)

Abstract

PURPOSE:To provide a semiconductor acceleration sensor the characteristics of which do not vary much and the output of which has excellent linearity against acceleration changes. CONSTITUTION:After forming an n-layer (diffusion layer) 10a at a prescribed middle position of a silicon board 10 formed basically of P-type silicon, the P-type silicon is removed from the prescribed part of the board 10 by performing electrochemical etching from the bottom side until the etching reaches the layer 10a and a beam section 13 is constituted of the remaining layer 10a. Since the thickness of the layer 10a can be accurately controlled, the thickness of the section 13 can be accurately controlled and the sensitivity variation between each sensor can be suppressed. In addition, when the areas S1 and S2 of electrodes and distances d1 and d2 between the electrodes and this sensor are set so that the relation between them can be expressed by d2=d1(S2/S1)<1/3>, the output of the sensor in its normal condition coincides with the changing point of the output characteristics of the sensor.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、静電容量型の半導体加
速度センサならびにその検出装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a capacitance type semiconductor acceleration sensor and its detecting device.

【0002】[0002]

【従来の技術】従来の静電容量型の半導体加速度センサ
は、例えば図10に示すようなものがある。この図示の
例では、いわゆる差動型と称されるもので、半導体基板
であるシリコン板1の中央に梁部2を介して重り部3を
一体的に形成し、またシリコン板1の上下両面にガラス
板4を配置する。この時、重り部3の上下両面と、ガラ
ス板4の対向面との間には、所定の空隙が形成され、重
り部3の揺動を許容している。そして重り部3の上下両
面を第1,第2の可動電極5,6とし、この両可動電極
5,6に対向するガラス板4の内面所定位置にアルミ蒸
着等により第1,第2の固定電極7,8を形成する。
2. Description of the Related Art A conventional electrostatic capacitance type semiconductor acceleration sensor is, for example, as shown in FIG. In the illustrated example, a so-called differential type is used, in which a weight portion 3 is integrally formed at the center of a silicon plate 1 which is a semiconductor substrate via a beam portion 2, and the upper and lower surfaces of the silicon plate 1 are both formed. The glass plate 4 is placed in the. At this time, a predetermined gap is formed between the upper and lower surfaces of the weight portion 3 and the facing surface of the glass plate 4 to allow the weight portion 3 to swing. The upper and lower surfaces of the weight portion 3 are used as the first and second movable electrodes 5 and 6, and the first and second movable electrodes 5 and 6 are fixed at predetermined positions on the inner surface of the glass plate 4 by aluminum vapor deposition or the like. The electrodes 7 and 8 are formed.

【0003】ところで、上記第1の可動電極5と,第1
の固定電極7との間には静電容量C1が生じており、ま
た同様に第2の可動電極6と,第2の固定電極8との間
には、静電容量C2が生じている。そして、このセンサ
に加速度が加わると梁部2が撓み、対向する両電極5と
7,6と8間の距離が変化し、この距離の変化により上
記の両静電容量C1,C2も変化する。この時、両性で
容量の差ΔC(ΔC=C1−C2)を検知することによ
り加速度を求めるようになっている。
By the way, the first movable electrode 5 and the first movable electrode 5
A static capacitance C1 is generated between the second movable electrode 6 and the second fixed electrode 8, and a static capacitance C2 is generated between the second movable electrode 6 and the second fixed electrode 8. Then, when acceleration is applied to this sensor, the beam portion 2 bends, the distance between the opposing electrodes 5 and 7, 6 and 8 changes, and the capacitances C1 and C2 also change due to the change in this distance. . At this time, the acceleration is obtained by detecting the capacitance difference ΔC (ΔC = C1−C2) in both sexes.

【0004】かかる構成(差動型)とすることにより、
第1,第2の静電容量C1,C2が有している温度特性
ならびに寄生容量が互いに減算されてキャンセルされる
ため、特性が向上する。さらに、以下に示す理由から加
速度の変化に対する出力(静電容量の差ΔC)の直線性
が向上する。すなわち、上側の電極面積(第1の可動電
極と固定電極の重合する面積で、通常は両者を一致させ
るか、固定電極側を大きくするため第1の可動電極5の
大きさと等しい)をS1とし、下側の電極面積(同様の
理由から第2の可動電極6の大きさと等しい)をS2と
し、さらに、それぞれの対向する電極間の距離をd1,
d2とする。この状態で加速度が加わり重り部3がx
(便宜上下方への移動を正とする)だけ変位した時の各
静電容量C1,C2は、 C1=εS1/(d1+x) (1) C2=εS2/(d2−x) (2) となり、その静電容量の差ΔCは、
By adopting such a configuration (differential type),
Since the temperature characteristics and the parasitic capacitances of the first and second electrostatic capacitances C1 and C2 are subtracted from each other and cancelled, the characteristics are improved. Further, the linearity of the output (capacitance difference ΔC) with respect to the change in acceleration is improved for the following reason. That is, the electrode area on the upper side (the area where the first movable electrode and the fixed electrode are overlapped, which are usually equal to each other or equal to the size of the first movable electrode 5 in order to enlarge the fixed electrode side) is S1. , The lower electrode area (equal to the size of the second movable electrode 6 for the same reason) is S2, and the distance between the opposing electrodes is d1,
Let d2. In this state, acceleration is applied and the weight part 3 becomes x.
The capacitances C1 and C2 when displaced by (moving downward for convenience for convenience) are C1 = εS1 / (d1 + x) (1) C2 = εS2 / (d2-x) (2) The difference in capacitance ΔC is

【0005】[0005]

【数1】 ΔC=εS1/(d1+x)−εS2/(d2−x) (3) となる。そして、特性上、その形状を上下対象に形成す
るのが好ましいため、S1=S2,d1=d2とした時
の加速度に対する静電容量ならびにその差の変化を図1
1に示す。なお、変位xは加速度の大きさに比例するも
のとする。そして、図から明らかなように加速度0G付
近ではC1,C2単独のものに比し、ΔCの方が直線性
が良くなっている。
ΔC = εS1 / (d1 + x) −εS2 / (d2-x) (3) In terms of characteristics, it is preferable to form the shape in a vertically symmetrical manner. Therefore, when S1 = S2 and d1 = d2, the capacitance and the difference between the capacitance and the acceleration are shown in FIG.
Shown in 1. The displacement x is assumed to be proportional to the magnitude of acceleration. Then, as is clear from the figure, in the vicinity of the acceleration of 0 G, the linearity is better in ΔC than in the case of C1 and C2 alone.

【0006】[0006]

【発明が解決しようとする課題】しかし、上記した従来
の差動型の加速度センサでは、以下に示す問題を有して
いる。すなわち、梁部2や重り部3は、平板状のシリコ
ン基板を異方性エッチングを行い、その基板の所定部位
を除去することにより形成するが、その除去量すなわち
梁部2の厚さは、エッチング時間により制御されるが、
処理対象となるシリコンウエハの厚さが異なることか
ら、製造された梁部2の厚さもばらつく。すると、その
梁部2の剛性(弾性係数)等もばらつき、センサの感度
のばらつきを生じる。
However, the above-mentioned conventional differential type acceleration sensor has the following problems. That is, the beam portion 2 and the weight portion 3 are formed by anisotropically etching a flat plate-shaped silicon substrate and removing a predetermined portion of the substrate. The removal amount, that is, the thickness of the beam portion 2 is Controlled by etching time,
Since the silicon wafers to be processed have different thicknesses, the thickness of the manufactured beam portion 2 also varies. Then, the rigidity (elastic coefficient) of the beam portion 2 also varies, and the sensitivity of the sensor also varies.

【0007】また、縦方向(重力加速度の方向と同一方
向)の加速度を検出する場合には、定常状態において、
重り部3に常時重力加速度(1G)が加わるため、実際
には重り部3は図10に示す状態より下方に位置、すな
わち、所定の距離xだけ変位する。よって、下方の距離
d2の方が上方の距離d1より短くなり、図11に示す
特性図中、点Qを中心に静電容量が変化することにな
る。その結果、直線性が低下する。
When detecting the acceleration in the vertical direction (the same direction as the direction of gravitational acceleration), in the steady state,
Since the gravitational acceleration (1 G) is constantly applied to the weight portion 3, the weight portion 3 is actually located below the state shown in FIG. 10, that is, displaced by a predetermined distance x. Therefore, the lower distance d2 becomes shorter than the upper distance d1, and the capacitance changes around the point Q in the characteristic diagram shown in FIG. As a result, the linearity decreases.

【0008】さらにまた、従来の加速度センサは、いず
れも静電容量の変化を周波数の変化として検出するよう
にしていたが、例えば係る加速度センサを自動車のアク
ティブサスペンションやエアバックシステム等の作動を
制御するための検出部に用いる場合には、係る周波数を
用いた加速度検出では、十分な応答を得ることができな
い。
Further, all of the conventional acceleration sensors have been designed to detect a change in capacitance as a change in frequency. For example, such an acceleration sensor controls the operation of an active suspension of a vehicle or an airbag system. When it is used as a detection unit for this purpose, a sufficient response cannot be obtained by acceleration detection using such a frequency.

【0009】本発明は、上記した背景に鑑みてなされた
もので、その目的とするところは、特性のばらつきが少
なく、しかも加速度の変化に対して直線性の良い半導体
加速度センサを提供すること、ならびにそれに用いる検
出装置を提供することにある。
The present invention has been made in view of the above background, and an object of the present invention is to provide a semiconductor acceleration sensor having a small variation in characteristics and excellent linearity with respect to changes in acceleration. Another object of the present invention is to provide a detection device used therefor.

【0010】[0010]

【課題を解決するための手段】上記した目的を達成する
ために、本発明に係る半導体加速度センサでは、枠体に
対して梁部を介して一体に接続され、加速度に応じて変
位する重り部の両面に可動電極が形成された半導体板
と、前記両可動電極にそれぞれ所定の間隙をおいて対向
させた固定電極を備え、前記半導体板を挟持するように
配置されたガラス板等の基板とを備え、前記変位にとも
ない、それぞれ対となる前記可動電極と前記固定電極と
の間で生じる静電容量の差から加速度を検出する半導体
加速度センサであって、前記半導体板が、所定位置に配
置されたn層とp層を備え、前記重り部を変位可能に支
持する前記梁部の表面及びその延長部位に前記両層の境
界面を位置させた。
In order to achieve the above object, in a semiconductor acceleration sensor according to the present invention, a weight portion which is integrally connected to a frame body through a beam portion and which is displaced in accordance with acceleration. A semiconductor plate having movable electrodes formed on both surfaces thereof, and a substrate such as a glass plate provided with fixed electrodes facing the movable electrodes with a predetermined gap, respectively, and sandwiching the semiconductor plate. A semiconductor acceleration sensor that detects acceleration from a difference in electrostatic capacitance between the movable electrode and the fixed electrode that form a pair with the displacement, and the semiconductor plate is arranged at a predetermined position. A boundary surface between the two layers is located on the surface of the beam portion that supports the weight portion so as to be displaceable and the extension portion thereof.

【0011】また、好ましくは、前記重り部の一方の面
に形成された前記可動電極とそれと対向する前記固定電
極との距離とその電極面積、ならびに前記重り部の他方
の面に形成された前記可動電極とそれと対向する前記固
定電極との距離とその電極面積とが、検出対象の加速度
がかっていない基準状態で、対となる前記電極間で生じ
る両静電容量が、略等しくなるように設定することであ
る。
Further, preferably, the distance between the movable electrode formed on one surface of the weight portion and the fixed electrode facing the movable electrode and the electrode area thereof, and the distance formed on the other surface of the weight portion. The distance between the movable electrode and the fixed electrode facing the movable electrode and the electrode area thereof are set so that both capacitances generated between the paired electrodes are substantially equal in a reference state where the acceleration of the detection target is not measured. It is to be.

【0012】また、少なくとも2組の可動電極と固定電
極とを備え、両電極間に生じる各静電容量の差から、発
生した加速度を検出する差動型の半導体加速度センサの
検出装置としては、電気的に接続された前記各可動電極
に対し所定の発振信号を入力する発振回路と、前記各固
定電極に接続され、与えられた前記発振信号を前記各静
電容量にて微分して得られた各PWM信号を減算するこ
とにより加速度に応じた出力を得る手段とを備えた。
Further, as a detection device of a differential type semiconductor acceleration sensor, which is provided with at least two sets of movable electrodes and fixed electrodes, and which detects the generated acceleration from the difference in each capacitance generated between both electrodes, An oscillation circuit for inputting a predetermined oscillation signal to each of the electrically connected movable electrodes and an oscillation circuit connected to each of the fixed electrodes and obtained by differentiating the given oscillation signal by each of the capacitances. And means for obtaining an output according to the acceleration by subtracting each PWM signal.

【0013】また、他の検出装置としては、前記各固定
電極に接続され、対となる各電極間に対して交互に所定
の電圧を印加する手段と、電気的に接続された前記可動
電極に接続され、前記電圧を印加する手段により各静電
容量に蓄えられた電荷を、同時に差動増幅回路に入力す
る手段とを備え、前記差動増幅回路にて前記各静電容量
の差を電圧に変換することにより、加速度に応じた出力
電圧を得るようにしてもよい。
Further, as another detecting device, there is provided a means which is connected to each of the fixed electrodes and which alternately applies a predetermined voltage between the pair of electrodes, and the movable electrode which is electrically connected. And a means for simultaneously inputting charges accumulated in each capacitance by means for applying the voltage to the differential amplifier circuit, wherein the differential amplifier circuit calculates the difference between the capacitances as a voltage. The output voltage corresponding to the acceleration may be obtained by converting into

【0014】[0014]

【作用】可動電極が形成される半導体基板の所定位置に
p層とn層を設けたため、一方側(例えばp層)から電
気化学エッチングすると、n層に到達するまでp層のエ
ッチング部位が除去される。よって、例えば係るn層部
位で梁部を構成することにより、梁部の厚さが正確に制
御される。
Since the p layer and the n layer are provided at predetermined positions of the semiconductor substrate on which the movable electrode is formed, when the electrochemical etching is performed from one side (for example, the p layer), the etching portion of the p layer is removed until the n layer is reached. To be done. Therefore, the thickness of the beam portion can be accurately controlled by forming the beam portion with such an n-layer portion, for example.

【0015】そして、基準状態(なお、重力加速度が加
わり、重り部(可動電極)が所定量変位する場合には、
その変位後(重力加速度以外はかかっていない)の状
態)における、各静電容量が略等しくなるように設定さ
れている場合には、各静電容量の差分(センサ出力)の
直線性が良好となり、感度のよいセンサとなる。
Then, in the reference state (when gravitational acceleration is applied and the weight portion (movable electrode) is displaced by a predetermined amount,
If the capacitances are set to be approximately equal after the displacement (nothing other than gravitational acceleration), the linearity of the capacitance difference (sensor output) is good. And becomes a highly sensitive sensor.

【0016】また、本発明の検出装置を用いたなら、各
静電容量の差分を直流成分として取り出すことができ、
応答性のよい加速度の検出が行われる。
Further, if the detection device of the present invention is used, the difference in each capacitance can be taken out as a DC component,
Acceleration with high responsiveness is detected.

【0017】[0017]

【実施例】以下、本発明に係る半導体加速度センサなら
びにその検出装置の好適な実施例を添付図面を参照にし
て詳述する。図1は本発明に係る加速度センサの第1実
施例を示している。図示するように、基本的な構成、す
なわち、半導体板であるシリコン板10の上下両面側に
ガラス板11を配置し、このシリコン板10は、ロ字状
の枠体12に対し、複数の梁部13を介して重り部14
を片持ち支持状に連結した構成からなる。そして、その
重り部14の上下両面を第1,第2の可動電極15,1
6とし、両電極15,16に対向するガラス板11の表
面にアルミ蒸着等により第1,第2の固定電極17,1
8を形成する点は、従来と同様である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of a semiconductor acceleration sensor and its detecting device according to the present invention will be described in detail below with reference to the accompanying drawings. FIG. 1 shows a first embodiment of an acceleration sensor according to the present invention. As shown, a glass plate 11 is arranged on both upper and lower sides of a silicon plate 10 which is a semiconductor plate, and the silicon plate 10 has a plurality of beams with respect to a square frame 12. Weight part 14 through part 13
It is composed of a cantilevered support connected. Then, the upper and lower surfaces of the weight portion 14 are attached to the first and second movable electrodes 15, 1
6, and the first and second fixed electrodes 17, 1 are formed on the surface of the glass plate 11 facing both electrodes 15, 16 by aluminum vapor deposition or the like.
8 is the same as the conventional one.

【0018】ここで本発明では、P型のシリコンを基本
として形成されるシリコン板10の中間の所定位置に例
えばドーピングにより、n層(拡散層)10aを形成し
ている。そして、このn層は、梁部13並びにそれに連
続する重り部14の上側を構成するようになっている。
In the present invention, the n layer (diffusion layer) 10a is formed by, for example, doping at a predetermined position in the middle of the silicon plate 10 formed based on P type silicon. And this n layer constitutes the upper side of the beam part 13 and the weight part 14 continuous to it.

【0019】そして係る構成のセンサ(シリコン板)を
製造するには、n層10aが形成された板状のシリコン
板に対して、下側からその所定部位を電気化学エッチン
グする。すると、P型シリコンは、n層10aに到達す
るまで除去される。よって、梁部13の厚さは、n層1
0aの厚さと等しくなり、しかも係る厚さの制御はn層
10aの拡散深さにより容易かつ精密に行えるので、製
造された各センサ間での性能(感度)のばらつきが可及
的に抑制できる。
To manufacture the sensor (silicon plate) having such a structure, a plate-shaped silicon plate on which the n layer 10a is formed is electrochemically etched from a predetermined portion from below. Then, the P-type silicon is removed until it reaches the n-layer 10a. Therefore, the thickness of the beam portion 13 is n layer 1
0a, and the thickness can be controlled easily and precisely by the diffusion depth of the n-layer 10a, so that variations in performance (sensitivity) among the manufactured sensors can be suppressed as much as possible. .

【0020】なお、本例では、下側から電気化学エッチ
ングを行ったため、第1の可動電極15の面積S1の方
が、第2の可動電極16の面積S2よりも大きくなり、
それにともない対応する各固定電極の面積も相違(対と
なる可動電極の面積と略一致)させているが、従来例と
して示した図10のように、上下対象の形状に適用して
ももちろんよい。さらには、上記のようにP型のシリコ
ンの所定部位にn拡散層を設けるのではなく、板状(略
同一平面形状からなる)のP型シリコンとN型シリコン
とを層状に積層配置するようにしても良い(係る場合に
は、枠体12にもその全周にわたってN型とP型のシリ
コンが位置する)。
In this example, since the electrochemical etching is performed from the lower side, the area S1 of the first movable electrode 15 becomes larger than the area S2 of the second movable electrode 16,
Along with this, the areas of the corresponding fixed electrodes are also made different (substantially the same as the areas of the pair of movable electrodes), but as shown in FIG. 10 shown as a conventional example, it is of course possible to apply the shapes to the upper and lower sides. . Further, instead of providing the n diffusion layer at a predetermined portion of P-type silicon as described above, a plate-like (having substantially the same plane shape) P-type silicon and N-type silicon are laminated and arranged in layers. (In such a case, the N-type silicon and the P-type silicon are also located over the entire circumference of the frame body 12).

【0021】さらに、本例では上記したごとく上側と下
側の電極の面積が異なるため、各対となる電極間の距離
d1,d2を等しくすると、加速度の変化に対する出力
の直線性が低下する。また、図2に示すように、縦方向
の加速度を検知するために、梁部12,重り部13が水
平状態になるよう配置すると、重り部13に重力加速度
が常時加わり、検知しようとする加速度が無い状態でも
図示するように重り部が下方に移動し、仮に図1に示す
状態でd1=d2と設定したとしても実際の使用状況下
ではd1>d2となる。
Further, in this example, since the areas of the upper and lower electrodes are different as described above, if the distances d1 and d2 between the electrodes forming each pair are made equal, the linearity of the output with respect to the change in acceleration is lowered. Further, as shown in FIG. 2, when the beam portion 12 and the weight portion 13 are arranged in a horizontal state in order to detect the acceleration in the vertical direction, gravitational acceleration is constantly applied to the weight portion 13, and the acceleration to be detected is detected. Even when there is no load, the weight portion moves downward as shown in the figure, and even if d1 = d2 is set in the state shown in FIG. 1, d1> d2 in the actual usage situation.

【0022】係る場合に直線性を良好にすべく、上記の
面積S1,S2並びに距離d1,d2の関係を、以下に
示すように設定する。すなわち、加速度(常時加わって
いるような重力加速度等は除く)がかかっていない基準
状態(対となる電極間の距離がそれぞれd1,d2とな
っている)から、所定の加速度がかかって重り部13が
下方にxだけ変位した場合の出力ΔCは、上記したごと
In this case, in order to improve the linearity, the relationship between the areas S1 and S2 and the distances d1 and d2 is set as shown below. That is, from the reference state (distance between paired electrodes is d1 and d2, respectively) where no acceleration (excluding gravitational acceleration that is always applied) is applied, a predetermined acceleration is applied and the weight portion is applied. The output ΔC when 13 is displaced downward by x is as described above.

【0023】[0023]

【数2】 ΔC=εS1/(d1+x)−εS2/(d2−x) (3) である。## EQU00002 ## .DELTA.C = .epsilon.S1 / (d1 + x)-. Epsilon.S2 / (d2-x) (3).

【0024】したがって、この時のΔCの加速度に対す
る直線性が最も良くなる条件は、基準状態のとき、すな
わち、x=0の時のΔCが、図11に示した変移点Pに
なるようになればよく、具体的には上記式(3)の2次
導関数が0となることである。従って、2次導関数Δ
C″は、
Therefore, the condition that the linearity of ΔC with respect to the acceleration at this time is the best is that in the reference state, that is, ΔC when x = 0 becomes the transition point P shown in FIG. That is, specifically, the second derivative of the above equation (3) becomes zero. Therefore, the second derivative Δ
C ″ is

【0025】[0025]

【数3】 ΔC″=k(S1/(d1+x)3 −S2/(d2−x)3 ) (4) 但し、kは任意の定数である。ΔC ″ = k (S1 / (d1 + x) 3− S2 / (d2-x) 3 ) (4) Here, k is an arbitrary constant.

【0026】そして、x=0の時にΔC″=0が成り立
つための条件は、式(4)に各値を代入することによ
り、 d2=d1(S2/S1)1/3 (5) となる。
The condition for ΔC ″ = 0 to hold when x = 0 is d2 = d1 (S2 / S1) 1/3 (5) by substituting each value into the equation (4). .

【0027】したがって、上記の条件式(5)が成り立
つように、各値を設定する。すなわち、製造プロセス上
面積S1,S2が先に決定されるため、係る面積を式
(5)に代入してd1とd2の比を求める。そして、か
かる条件を満たすように、例えば図1に示す半導体板1
0の上面側10bをエッチング等により所定量だけ除去
することにより、直線性の最も良くなるセンサ構造を得
ることができる。なお、最適な構造を得るための調整
は、上記したものに限ることはなく、任意の箇所を除去
するなど種々の方式をとることができる。また、上記の
電極面積S1,S2は、実際には、有効面積、すなわ
ち、対となる電極の重合する面積(固定電極の面積が小
さい場合には、その固定電極の面積)である。
Therefore, each value is set so that the above conditional expression (5) is satisfied. That is, since the areas S1 and S2 are first determined in the manufacturing process, the area is substituted into the equation (5) to obtain the ratio of d1 and d2. The semiconductor plate 1 shown in FIG.
By removing a predetermined amount of the upper surface side 10b of 0 by etching or the like, it is possible to obtain a sensor structure having the best linearity. The adjustment for obtaining the optimum structure is not limited to the above, and various methods such as removing an arbitrary portion can be adopted. In addition, the above-mentioned electrode areas S1 and S2 are actually effective areas, that is, the area where the pair of electrodes overlap (when the area of the fixed electrode is small, the area of the fixed electrode).

【0028】さらに、上記の条件式(5)を満たすのが
最も直線性が良好になるが、正確にこの条件を満たさせ
る必要はなく、仕様(目標とする許容誤差範囲)等にあ
わせて、一定の範囲を持たせて設定するようにしても良
い。
Furthermore, the linearity is best satisfied if the above conditional expression (5) is satisfied, but it is not necessary to satisfy this condition exactly, and according to the specifications (target allowable error range) and the like, It may be set with a certain range.

【0029】なお、図2に示すような、重力加速度によ
る撓み量は、重り部14の重さ並びに梁部13の弾性係
数等から計算により水平位置からどの程度変位するかを
求め、実際に製造する際には、その変位量を考慮して、
上記の条件式により得られたd1,d2に足し込みなど
の調整をする必要がある。
As shown in FIG. 2, the amount of deflection due to gravitational acceleration is calculated from the weight of the weight portion 14 and the elastic coefficient of the beam portion 13 to find out how much it is displaced from the horizontal position, and is actually manufactured. When doing, consider the amount of displacement,
It is necessary to make adjustments such as addition to d1 and d2 obtained by the above conditional expressions.

【0030】図3は、本発明に係る検出装置の第1実施
例を示している。同図に示すように、上記した実施例に
おける加速度センサの2組の電極間で生じる静電容量C
1,C2と、2つの抵抗R1,R2とでブリッジ回路を
構成する。なお、2つの静電容量C1,C2の接続側
は、例えばシリコン板10に形成された第1,第2の可
動電極15,16に接続された配線を接続することによ
り構成され、その両可動電極15,16に発振回路20
の出力を印加するようにする。
FIG. 3 shows a first embodiment of the detection device according to the present invention. As shown in the figure, the capacitance C generated between the two sets of electrodes of the acceleration sensor in the above embodiment
1, C2 and two resistors R1 and R2 form a bridge circuit. The connection side of the two electrostatic capacitances C1 and C2 is configured by connecting the wirings connected to the first and second movable electrodes 15 and 16 formed on the silicon plate 10, for example, to the both movable sides. Oscillation circuit 20 on electrodes 15 and 16
The output of is applied.

【0031】そして、この両電極15,16の接続構造
としては、例えば図4に示すように、重り部13の下面
側にアルミ蒸着19等を施することにより第2の可動電
極16を形成し、そのアルミ蒸着の端部19aをn層1
0aに接続することにより、両可動電極15,16が同
電位となり、配線引き出しが容易に行える。
As a connection structure of both electrodes 15 and 16, for example, as shown in FIG. 4, the second movable electrode 16 is formed by applying aluminum vapor deposition 19 or the like on the lower surface side of the weight portion 13. , The aluminum vapor-deposited end 19a is an n-layer 1
By connecting to 0a, both movable electrodes 15 and 16 have the same potential, and wiring can be easily drawn out.

【0032】さらに、両静電容量C1,C2の他端(こ
の例では固定電極17,18の配線)をシュミット回路
21a,21b並びに整流回路22a,22bを介して
差動増幅回路23に接続する。
Further, the other ends of the electrostatic capacitances C1 and C2 (wirings of the fixed electrodes 17 and 18 in this example) are connected to the differential amplifier circuit 23 via the Schmitt circuits 21a and 21b and the rectifier circuits 22a and 22b. .

【0033】次に、上記した実施例の動作原理につい
て、図5に示すタイミングチャートを用いて説明する。
まず、発振回路20から、周期Tの矩形波が出力され
(同図(A))、それを両静電容量C1,C2で微分す
る(同図(B))。そして、微分された信号をシュミッ
ト回路21a,21bに入力することにより、矩形波を
作る(同図(C))。そして、この矩形波のパルス幅t
は、時定数C1R1およびC2R2に比例する(PWM
信号)。
Next, the operating principle of the above-described embodiment will be described with reference to the timing chart shown in FIG.
First, the oscillating circuit 20 outputs a rectangular wave having a period T ((A) in the same figure), and differentiates it by the electrostatic capacitances C1 and C2 ((B) in the same figure). Then, by inputting the differentiated signals to the Schmitt circuits 21a and 21b, a rectangular wave is created ((C) in the figure). Then, the pulse width t of this rectangular wave
Is proportional to the time constants C1R1 and C2R2 (PWM
signal).

【0034】次いで、係る矩形波を整流回路22a,2
2bに入力し、そこにおいて、パルス幅tすなわち静電
容量C1,C2に応じた直流信号が得られる(同図
(D))。そしてこれら、両直流信号を差動増幅回路2
3に入力することにより、上記のΔCに比例した直流信
号がその回路23から出力されることになる。なお、図
示の例では、C1=C2のために各波形は同一形状とな
っているが、加速度が加わり静電容量が変化したなら、
各波形のデューティー比等が適宜変化する。
Then, the rectangular wave is rectified by the rectifier circuits 22a and 2a.
2b, and a DC signal corresponding to the pulse width t, that is, the electrostatic capacitances C1 and C2 is obtained there ((D) in the same figure). Then, these both DC signals are fed to the differential amplifier circuit 2
By inputting the signal to the circuit 3, a DC signal proportional to the above ΔC is output from the circuit 23. In the illustrated example, each waveform has the same shape because C1 = C2. However, if acceleration changes and the capacitance changes,
The duty ratio of each waveform changes appropriately.

【0035】係る構成にしたことにより、加速度の大き
さ(変化)に伴い両静電容量の差分(ΔC)を直流信号
の大小(変化)で見ることができ、応答性が良く、例え
ば、これをエアバックシステムに搭載した場合には、差
動増幅回路23の出力がある閾値を越えたときに、作動
信号を発する(例えばその回路の出力並びに前期の閾値
を比較に入力することにより簡単に構成できる)こと等
に応用できる。
With this configuration, the difference (ΔC) between the two capacitances can be seen as the magnitude (change) of the DC signal with the magnitude (change) of the acceleration, and the responsiveness is good. When mounted in an airbag system, an operation signal is issued when the output of the differential amplifier circuit 23 exceeds a certain threshold value (for example, by simply inputting the output of the circuit and the threshold value of the previous period to the comparison, Can be configured) and so on.

【0036】なお、本実施例の具体的な回路構成の一例
を図6に示す。この例では、基準状態で出力が2.5V
になるように調整されている。また、本実施例では、直
流信号を出力するようにしたが、例えば、後段の装置等
で直流信号が必要でない場合には、シュミット回路21
a,21bからのPWM信号を取り出すことにより、デ
ジタル的な処理が可能となる。
An example of a concrete circuit configuration of this embodiment is shown in FIG. In this example, the output is 2.5V in the standard state.
Has been adjusted to be. Further, in the present embodiment, the DC signal is output. However, for example, when the DC signal is not required in the subsequent device, the Schmitt circuit 21
By taking out the PWM signals from a and 21b, digital processing becomes possible.

【0037】なお、本発明に係る検出装置は、上記した
本発明に係る加速度センサの出力検出として適用できる
のはもちろんのこと、図10に示すものの他、従来の差
動型の各種の加速度センサに適用しても良い(以下、同
じ)。
The detection device according to the present invention can be applied not only to the output detection of the above-mentioned acceleration sensor according to the present invention but also to the conventional differential type acceleration sensor other than that shown in FIG. May be applied to (the same applies below).

【0038】図7は本発明に係る検出装置の第2実施例
を示している。同図に示すように、まず半導体加速度セ
ンサ15の第1,第2の固定電極17,18に対し、第
1,第2のアナログスイッチ30a,30bを介して直
流電圧(Vin)を印加するようにしている。さらに、電
気的に接続されて共通電極となる第1,第2の可動電極
15,16には、第3のアナログスイッチ31を介し
て、差動増幅器であるオペアンプ32の反転入力端子に
接続するようにしている。
FIG. 7 shows a second embodiment of the detecting device according to the present invention. As shown in the figure, first, a direct current voltage (Vin) is applied to the first and second fixed electrodes 17 and 18 of the semiconductor acceleration sensor 15 via the first and second analog switches 30a and 30b. I have to. Further, the first and second movable electrodes 15 and 16 which are electrically connected to each other and serve as a common electrode are connected to an inverting input terminal of an operational amplifier 32 which is a differential amplifier via a third analog switch 31. I am trying.

【0039】そして、第1,第2のアナログスイッチ3
0a,30bの動作タイミングφ1,φ2は、図8に示
すようになっており、第3のアナログスイッチ31の動
作タイミングは上記第2のアナログスイッチ30bのそ
れと一致させている。かかる構成とすることにより、ス
イッチトキャパシタ回路が構成され、その静電容量C
1,C2の差(ΔC)に対応した差動出力(電圧)とし
て検出することができる。
Then, the first and second analog switches 3
The operation timings φ1 and φ2 of 0a and 30b are as shown in FIG. 8, and the operation timing of the third analog switch 31 is the same as that of the second analog switch 30b. With such a configuration, a switched capacitor circuit is formed, and its capacitance C
It can be detected as a differential output (voltage) corresponding to the difference (ΔC) between 1 and C2.

【0040】図9は、本発明に係る検出装置の第3実施
例を示しており、その構成としては、上記した第2実施
例と略同様であるが、第1,第2の固定電極17,18
に印加する電圧V1,V2を異ならせている。なお、そ
の他の構成並びに作用は、上記した第2実施例と同様で
あるため、同一符合を付しその説明を省略する。
FIG. 9 shows a third embodiment of the detection device according to the present invention. The structure thereof is substantially the same as that of the second embodiment described above, but the first and second fixed electrodes 17 are provided. , 18
The voltages V1 and V2 applied to the are different. Since the other configurations and operations are similar to those of the second embodiment described above, the same reference numerals are given and the description thereof is omitted.

【0041】そして、それら各電圧V1,V2が印加さ
れた加速度センサ内の各静電容量C1,C2には、所定
の電荷Q1,Q2が蓄えられるが、その電荷Q1,Q2
はオペアンプ32を介して下記式に示すような出力電圧
Vout として出力される(なお、下記式(6)において
V1=V2とすれば、上記体2実施例における出力電圧
となる)。
Predetermined charges Q1 and Q2 are stored in the electrostatic capacitances C1 and C2 in the acceleration sensor to which the voltages V1 and V2 are applied, and the charges Q1 and Q2 are stored.
Is output as an output voltage Vout as shown in the following expression via the operational amplifier 32 (note that if V1 = V2 in the following expression (6), it becomes the output voltage in the body 2 embodiment).

【0042】[0042]

【数4】 Vout =α(Q1−Q2) =αε(S1*V1/(d1+x)+S2*V2/(d2−x)) (6) 但し、αは回路定数により決定される定数 そして、この時のVout の加速度に対する直線性が最も
良くなる条件は、上記したように基準状態(x=0)の
時に図11に示す変曲点Pに位置することであるため、
上記式(6)のx=0の時の2次導関数(Vout ″)が
0として解くと、
## EQU00004 ## Vout = .alpha. (Q1-Q2) =. Alpha..epsilon. (S1 * V1 / (d1 + x) + S2 * V2 / (d2-x)) (6) where .alpha. Is a constant determined by the circuit constant The condition that the linearity of Vout with respect to the acceleration is the best is that it is located at the inflection point P shown in FIG. 11 in the reference state (x = 0) as described above.
When the second derivative (Vout ″) of the above equation (6) when x = 0 is solved as 0,

【0043】[0043]

【数5】 Vout ″=k(S1*V1/(d1+x)3 −S2*V2/(d2−x)3 より、 V2=V1*(S1/S2)*(d2/d1) (7) である。From Vout ″ = k (S1 * V1 / (d1 + x) 3 −S2 * V2 / (d2-x) 3 V2 = V1 * (S1 / S2) * (d2 / d1) (7) .

【0044】よって、上記式(7)の条件を満たすよう
な電圧V1,V2を設定することにより、加速度に対す
る直線性を最も良くすることができる。すなわち、たと
え差動型の加速度センサの電極面積,電極間の距離に差
異やばらつき等があっても、上記式(7)を満たす、或
いはそれに近い条件の電圧を与えるのみで、直線性の良
好な加速度センサ(検出装置)を構成することができ
る。
Therefore, by setting the voltages V1 and V2 that satisfy the condition of the above expression (7), the linearity with respect to the acceleration can be optimized. That is, even if there is a difference or variation in the electrode area of the differential type acceleration sensor or the distance between the electrodes, the linearity is good only by applying a voltage satisfying the above formula (7) or a condition close thereto. Acceleration sensor (detection device) can be configured.

【0045】[0045]

【発明の効果】以上のように、本発明に係る半導体加速
度センサでは、梁部が、他の重り部や枠体等とは異なる
材質(n層或いはp層)で構成されるため、電気化学エ
ッチングなどにより不要部分を除去することにより、梁
部を係るn層(p層)のみで構成することができる。す
なわち、その梁部の厚さは、n層(p層)の厚さとな
り、正確に所定厚さに形成することができる。よって、
特性(感度)のばらつきが少なくなる。そして、各電極
の面積や、電極間の距離を、基準状態で各静電容量が略
等しくなるように設定した場合には、加速度の変化に対
して直線性の良い出力特性が得られる。さらに本発明に
係る検出装置では、各静電容量の差分に対応する直流信
号として出力することが可能となり、検出が簡単で応答
性が良好となる。
As described above, in the semiconductor acceleration sensor according to the present invention, the beam portion is made of a material (n layer or p layer) different from that of other weight portions, frame bodies, etc. By removing the unnecessary portion by etching or the like, the beam portion can be configured only with the relevant n layer (p layer). That is, the thickness of the beam portion becomes the thickness of the n layer (p layer), and can be accurately formed to a predetermined thickness. Therefore,
Variations in characteristics (sensitivity) are reduced. When the area of each electrode and the distance between the electrodes are set so that the capacitances are substantially equal in the reference state, output characteristics with good linearity with respect to changes in acceleration can be obtained. Further, in the detection device according to the present invention, it is possible to output as a DC signal corresponding to the difference between the electrostatic capacities, so that the detection is simple and the response is good.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る半導体加速度センサの好適な一実
施例を示す断面図である。
FIG. 1 is a sectional view showing a preferred embodiment of a semiconductor acceleration sensor according to the present invention.

【図2】使用状況下の一例を示す図である。FIG. 2 is a diagram showing an example of a usage state.

【図3】本発明に係る検出装置の第1実施例を示す図で
ある。
FIG. 3 is a diagram showing a first embodiment of a detection device according to the present invention.

【図4】第1,第2の可動電極の接続の一例を示すブロ
ック図である。
FIG. 4 is a block diagram showing an example of connection of first and second movable electrodes.

【図5】図3に示す回路のタイミングチャート図であ
る。
5 is a timing chart of the circuit shown in FIG.

【図6】図3に示す回路の具体的な構成を示す回路図で
ある。
6 is a circuit diagram showing a specific configuration of the circuit shown in FIG.

【図7】本発明に係る検出装置の第2実施例を示す図で
ある。
FIG. 7 is a diagram showing a second embodiment of the detection device according to the present invention.

【図8】アナログスイッチの動作タイミングを示す図で
ある。
FIG. 8 is a diagram showing operation timings of analog switches.

【図9】本発明に係る検出装置の第3実施例を示す図で
ある。
FIG. 9 is a diagram showing a third embodiment of the detection device according to the present invention.

【図10】従来の半導体加速度センサの好適な一実施例
を示す断面図である。
FIG. 10 is a sectional view showing a preferred embodiment of a conventional semiconductor acceleration sensor.

【図11】加速度に対する静電容量並びにその差の特性
の一例をすめずである。
FIG. 11 is an endless example of characteristics of electrostatic capacitance with respect to acceleration and the difference thereof.

【符号の説明】[Explanation of symbols]

10 シリコン板(半導体板) 10a n層 11 ガラス板(基板) 12 枠体 13 梁部 14 重り部 15 第1の可動電極 16 第2の可動電極 17 第1の固定電極 18 第2の固定電極 20 発振回路 21a,21b シュミット回路(加速度に応じた出力
を得る手段) 22a,22b 整流回路(加速度に応じた出力を得る
手段) 23 差動増幅回路(加速度に応じた出力を得る手段) 30a,30b 第1,第2のアナログスイッチ(交互
に所定の電圧を印加する手段) 31 第3のアナログスイッチ(差動増幅回路に入力す
る手段) 32 オペアンプ(差動増幅回路)
DESCRIPTION OF SYMBOLS 10 Silicon plate (semiconductor plate) 10a n layer 11 Glass plate (substrate) 12 Frame body 13 Beam part 14 Weight part 15 1st movable electrode 16 2nd movable electrode 17 1st fixed electrode 18 2nd fixed electrode 20 Oscillation circuit 21a, 21b Schmitt circuit (means for obtaining output according to acceleration) 22a, 22b Rectifier circuit (means for obtaining output according to acceleration) 23 Differential amplifier circuit (means for obtaining output according to acceleration) 30a, 30b First and second analog switches (means for alternately applying a predetermined voltage) 31 Third analog switches (means for inputting to a differential amplifier circuit) 32 Operational amplifier (differential amplifier circuit)

───────────────────────────────────────────────────── フロントページの続き (72)発明者 森田 善之 京都府京都市右京区花園土堂町10番地 オ ムロン株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yoshiyuki Morita, 10 Odoroncho, Hanazono Tadodo-cho, Ukyo-ku, Kyoto City, Kyoto Prefecture

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 枠体に対して梁部を介して一体に接続さ
れ、加速度に応じて変位する重り部の両面に可動電極が
形成された半導体板と、 前記両可動電極にそれぞれ所定の間隙をおいて対向させ
た固定電極を備え、前記半導体板を挟持するように配置
されたガラス板等の基板とを備え、 前記変位にともない、それぞれ対となる前記可動電極と
前記固定電極との間で生じる静電容量の差から加速度を
検出する半導体加速度センサであって、 前記半導体板が、所定位置に配置されたn層とp層を備
え、前記重り部を変位可能に支持する前記梁部の表面の
延長部位に前記両層の境界面を位置させてなる半導体加
速度センサ。
1. A semiconductor plate in which movable electrodes are formed on both surfaces of a weight portion that is integrally connected to a frame body through a beam portion and that is displaced in accordance with acceleration; and a predetermined gap between the movable electrodes. And a substrate such as a glass plate arranged so as to sandwich the semiconductor plate, between the movable electrode and the fixed electrode that are paired with the displacement. Is a semiconductor acceleration sensor that detects acceleration from the difference in electrostatic capacitance that occurs in the semiconductor plate, wherein the semiconductor plate includes an n-layer and a p-layer disposed at predetermined positions, and the beam portion that displaceably supports the weight portion. A semiconductor acceleration sensor in which a boundary surface between the two layers is located at an extension portion of the surface of the.
【請求項2】 前記重り部の一方の面に形成された前記
可動電極とそれと対向する前記固定電極との距離とその
電極面積、ならびに前記重り部の他方の面に形成された
前記可動電極とそれと対向する前記固定電極との距離と
その電極面積とが、 加速度がかかっていない基準状態で、対となる前記電極
間で生じる両静電容量が、略等しくなるように調整され
てなる請求項1に記載の半導体加速度センサ。
2. The distance between the movable electrode formed on one surface of the weight portion and the fixed electrode facing the movable electrode and its electrode area, and the movable electrode formed on the other surface of the weight portion. The distance between the fixed electrode and the fixed electrode and the area of the fixed electrode are adjusted so that both capacitances generated between the paired electrodes are substantially equal in a reference state where no acceleration is applied. 1. The semiconductor acceleration sensor according to 1.
【請求項3】 少なくとも2組の可動電極と固定電極と
を備え、両電極間に生じる各静電容量の差から、加速度
を検出する差動型の半導体加速度センサの検出装置であ
って、 電気的に接続された前記各可動電極に対し所定の発振信
号を入力する発振回路と、 前記各固定電極に接続され、与えられた前記発振信号を
前記各静電容量にて微分して得られた各PWM信号を減
算することにより加速度に応じた出力を得る手段とを備
えた半導体加速度センサ用検出装置。
3. A differential type semiconductor acceleration sensor detecting device, comprising at least two sets of movable electrodes and fixed electrodes, for detecting acceleration from a difference between electrostatic capacitances generated between the electrodes. An oscillation circuit for inputting a predetermined oscillation signal to each of the movable electrodes that are electrically connected, and an oscillation circuit that is connected to each of the fixed electrodes and is provided by differentiating the given oscillation signal by each of the capacitances. A detection device for a semiconductor acceleration sensor, comprising: means for obtaining an output according to acceleration by subtracting each PWM signal.
【請求項4】 少なくとも2組の可動電極と固定電極と
を備え、両電極間に生じる各静電容量の差から、加速度
を検出する差動型の半導体加速度センサの検出装置であ
って、 前記各固定電極に接続され、対となる各電極間に対して
交互に所定の電圧を印加する手段と、 電気的に接続された前記可動電極に接続され、前記電圧
を印加する手段によって各静電容量に蓄えられた電荷を
同時に差動増幅回路に入力する手段とを備え、 前記差動増幅回路にて前記各静電容量の差を電圧に変換
することにより、加速度に応じた出力電圧を得るように
した半導体加速度センサ用検出装置。
4. A detection device of a differential type semiconductor acceleration sensor, comprising at least two sets of movable electrodes and fixed electrodes, and detecting acceleration from a difference in electrostatic capacitances generated between the electrodes, Means connected to each fixed electrode and alternately applying a predetermined voltage between each pair of electrodes, and means electrically connected to the movable electrode to apply each voltage to each electrostatic electrode. A means for simultaneously inputting the charges accumulated in the capacitance to the differential amplifier circuit is provided, and the differential amplifier circuit converts the difference between the capacitances into a voltage to obtain an output voltage according to the acceleration. Detection device for semiconductor acceleration sensor.
JP33217292A 1992-11-19 1992-11-19 Semiconductor acceleration sensor Expired - Fee Related JP3289069B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33217292A JP3289069B2 (en) 1992-11-19 1992-11-19 Semiconductor acceleration sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33217292A JP3289069B2 (en) 1992-11-19 1992-11-19 Semiconductor acceleration sensor

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2001038403A Division JP3341214B2 (en) 2001-02-15 2001-02-15 Detection device for semiconductor acceleration sensor

Publications (2)

Publication Number Publication Date
JPH06160419A true JPH06160419A (en) 1994-06-07
JP3289069B2 JP3289069B2 (en) 2002-06-04

Family

ID=18251968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33217292A Expired - Fee Related JP3289069B2 (en) 1992-11-19 1992-11-19 Semiconductor acceleration sensor

Country Status (1)

Country Link
JP (1) JP3289069B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6848310B2 (en) 2002-07-26 2005-02-01 Denso Corporation Capacitive dynamic quantity sensor, method for manufacturing capacitive dynamic quantity sensor, and detector including capacitive dynamic quantity sensor
WO2013187018A1 (en) * 2012-06-13 2013-12-19 株式会社デンソー Capacitance type physical quantity sensor
JP2015114237A (en) * 2013-12-12 2015-06-22 三菱電機株式会社 Acceleration sensor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6848310B2 (en) 2002-07-26 2005-02-01 Denso Corporation Capacitive dynamic quantity sensor, method for manufacturing capacitive dynamic quantity sensor, and detector including capacitive dynamic quantity sensor
WO2013187018A1 (en) * 2012-06-13 2013-12-19 株式会社デンソー Capacitance type physical quantity sensor
JP2014016341A (en) * 2012-06-13 2014-01-30 Denso Corp Capacitance type physical quantity sensor
US9964562B2 (en) 2012-06-13 2018-05-08 Denso Corporation Capacitance type physical quantity sensor
JP2015114237A (en) * 2013-12-12 2015-06-22 三菱電機株式会社 Acceleration sensor

Also Published As

Publication number Publication date
JP3289069B2 (en) 2002-06-04

Similar Documents

Publication Publication Date Title
US6990864B2 (en) Semiconductor dynamic quantity sensor
US6997054B2 (en) Capacitance-type inertial detecting device
KR100513346B1 (en) A capacitance accelerometer having a compensation elctrode
US5095750A (en) Accelerometer with pulse width modulation
EP2336788B1 (en) Inertial sensor
EP2781924B1 (en) Capacitance detection circuit
JP4000936B2 (en) Detection apparatus having a capacitive mechanical quantity sensor
JPH07191055A (en) Capacitive acceleration sensor
JPH04299267A (en) Capacity type acceleration sensor
EP0745858B1 (en) Acceleration sensor
US20050076714A1 (en) Semiconductor dynamic sensor having variable capacitor formed on laminated substrate
KR100514064B1 (en) Capacitive dynamic quantity sensor
US9823266B2 (en) Capacitive physical quantity sensor
US5747991A (en) Capacitance type acceleration sensor
JPH06160419A (en) Semiconductor acceleration sensor and its detecting device
JP3341214B2 (en) Detection device for semiconductor acceleration sensor
IL262462A (en) Closed loop accelerometer
JPH03293565A (en) Pwm electrostatic servo type accelerometer
JP2006177895A (en) Electrostatic capacity/voltage converting arrangement and mechanical quantity sensor
JPH0666658A (en) Capacitive pressure sensor
JPH06180325A (en) Acceleration sensor
US20240302404A1 (en) Acceleration sensor
JPH07325107A (en) Acceleration detector
JP3124710B2 (en) Signal processing circuit for sensors using change in capacitance
JPH0627134A (en) Acceleration sensor

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20010424

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020205

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090322

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees