JPH06160418A - Acceleration sensor - Google Patents

Acceleration sensor

Info

Publication number
JPH06160418A
JPH06160418A JP32855392A JP32855392A JPH06160418A JP H06160418 A JPH06160418 A JP H06160418A JP 32855392 A JP32855392 A JP 32855392A JP 32855392 A JP32855392 A JP 32855392A JP H06160418 A JPH06160418 A JP H06160418A
Authority
JP
Japan
Prior art keywords
acceleration
weight
springs
acceleration sensor
coil spring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32855392A
Other languages
Japanese (ja)
Inventor
Shinichi Kawanishi
慎一 川西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP32855392A priority Critical patent/JPH06160418A/en
Publication of JPH06160418A publication Critical patent/JPH06160418A/en
Pending legal-status Critical Current

Links

Landscapes

  • Pressure Sensors (AREA)

Abstract

PURPOSE:To provide an acceleration sensor which can highly accurately detect not only constant acceleration, but also acceleration within a frequency range from a low frequency to a high frequency, with a less number of parts at a low cost. CONSTITUTION:A weight 1 formed of a large-diameter column body 1A and small-diameter sections 1a and 1b protruded from both sides of the body 1A is supported with coil springs 2a and 2b press-contacted with both sides of the body 1A and the sections 1a and 1b are loosely inserted into the springs 1a and 1b. The springs 2a and 2b are connected in series with an AC power source 8. When the weight 1 is accelerated, the weight 1 and springs 2a and 2b are displaced and a reactance change occurs between the springs 2a and 2b. The change is fetched from the voltage VOUT across both ends of the spring 2a as an acceleration detecting signal. Since the springs 2a and 2b are constituted not only as an acceleration detecting section, but also as the supporting bodies of the weight 1, the number of parts used in this acceleration sensor and, therefore, the cost of the sensor can be reduced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、おもりを利用した加速
度センサに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an acceleration sensor using a weight.

【0002】[0002]

【従来の技術】図3と図4には、おもりを利用した従来
の加速度センサが示されている。図3は圧電体3を用い
た圧電型加速度センサであり、図4はひずみゲージ4を
用いたひずみゲージ型加速度センサ方式のものである。
図3の(a)は、ケース5のベース6部と一体形成され
ているはり7を中軸として、この左右に圧電体3a,3
bが固定され、さらにこの外側におもり1a,1bが固
定されているもので、図の左右方向に加速度が生じる
と、はり7の左右に配設されているおもり1a,1bの
移動によりはり7が撓み、その応力が圧電体3a,3b
に作用して圧電体3a,3bが変形(歪み)し、その変
形量に応じた電圧が加速度の検出信号として取り出せ
る。
2. Description of the Related Art FIGS. 3 and 4 show a conventional acceleration sensor using a weight. 3 shows a piezoelectric type acceleration sensor using the piezoelectric body 3, and FIG. 4 shows a strain gauge type acceleration sensor system using the strain gauge 4.
In FIG. 3A, the beam 7 integrally formed with the base 6 portion of the case 5 is used as the center axis, and the piezoelectric bodies 3a, 3
b is fixed, and the weights 1a and 1b are fixed to the outside of the beam. When acceleration occurs in the left-right direction in the drawing, the weights 1a and 1b arranged on the left and right of the beam 7 are moved to move the beam 7b. Is bent, and the stress is applied to the piezoelectric bodies 3a and 3b.
And the piezoelectric bodies 3a and 3b are deformed (distorted), and a voltage corresponding to the amount of deformation can be extracted as an acceleration detection signal.

【0003】図3の(b)は、ケース5のベース6部に
おもり1が圧電体3を介して一体形成されているもの
で、図の上下方向に加速度が生じると、おもり1の上下
移動により前記と同様に圧電体3が伸縮変形し、この変
形量に応じた電圧が加速度の検出信号として取り出せ
る。
In FIG. 3B, the weight 1 is integrally formed on the base 6 portion of the case 5 via the piezoelectric body 3, and when acceleration occurs in the vertical direction of the figure, the weight 1 moves up and down. As a result, the piezoelectric body 3 expands and contracts in the same manner as described above, and a voltage corresponding to this deformation amount can be taken out as an acceleration detection signal.

【0004】図4のものは、左右方向に加速度が生じる
とおもり1が左右に移動し、はり7の撓みによってひず
みゲージ4a,4bに歪みが生じ、この歪み量に応じた
電圧を加速度の検出信号として取り出す。
In FIG. 4, when acceleration is generated in the left-right direction, the weight 1 moves left and right, and the strain gauges 4a and 4b are distorted by the deflection of the beam 7, and a voltage corresponding to this distortion amount is used to detect the acceleration. Take out as a signal.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、図3の
ような圧電型加速度センサの場合には、一定加速度の場
合やそれに近い超低周波数での加速度変化の場合には、
圧電体3の変形量にほとんど時間的な変化が生じないた
め加速度を検出できないことになる。また、圧電体3の
変形量によって生じた電流をインピーダンス変換して電
圧として取り出すために高価なチャージアンプを必要と
するので、加速度センサが高コストとなる問題があっ
た。さらにこの場合には、信号処理に際してのヒステリ
シスが大きく、再現性が悪いので検出精度が劣るという
問題もあった。
However, in the case of the piezoelectric type acceleration sensor as shown in FIG. 3, in the case of a constant acceleration or in the case of an acceleration change at an extremely low frequency close to it,
Since the amount of deformation of the piezoelectric body 3 hardly changes with time, acceleration cannot be detected. In addition, since an expensive charge amplifier is required to convert the current generated by the deformation amount of the piezoelectric body 3 into a voltage and extract it as a voltage, there is a problem that the cost of the acceleration sensor becomes high. Further, in this case, there is a problem that the detection accuracy is poor because the hysteresis during signal processing is large and the reproducibility is poor.

【0006】さらに、図4のひずみゲージ型加速度セン
サの場合には、小型、軽量であり、かつ、一定加速度か
ら大加速度まで検出できるが、検出電圧が小さいため増
幅回路を必要とし、低価格化が難しいという問題があっ
た。さらに、ひずみゲージ4は温度変化の影響を受け易
いという欠点があった。
Further, in the case of the strain gauge type acceleration sensor of FIG. 4, it is small and lightweight and can detect from a constant acceleration to a large acceleration, but since the detection voltage is small, an amplifier circuit is required and the cost is reduced. There was a problem that it was difficult. Further, the strain gauge 4 has a drawback that it is easily affected by temperature changes.

【0007】さらに、図3および図4の場合では、チャ
ージアンプや増幅回路を必要として部品点数が多くなる
上に、おもり1の中心位置を高精度に決める必要があ
り、製造コストが高価となり、一層加速度センサを高コ
ストなものにした。
Further, in the case of FIGS. 3 and 4, a charge amplifier and an amplifier circuit are required to increase the number of parts, and moreover, the center position of the weight 1 needs to be determined with high accuracy, resulting in high manufacturing cost. The acceleration sensor has been made more expensive.

【0008】本発明は、上記従来の課題を解決するため
になされたものであり、その目的は、定加速度はもちろ
ん、低周波から高周波数域の加速度を高精度に検出で
き、かつ、部品点数を少なくして低コスト化が図れる加
速度センサを提供することにある。
The present invention has been made to solve the above-mentioned conventional problems, and its object is to detect not only constant acceleration but also acceleration in a low frequency range to a high frequency range with high accuracy and the number of parts. The object is to provide an acceleration sensor that can reduce the cost and reduce the cost.

【0009】[0009]

【課題を解決するための手段】本発明は上記目的を達成
するために、次のように構成されている。すなわち、本
発明の加速度センサは、加速度によって変位するおもり
と、このおもりを両側から保持するコイルばねと、前記
おもりの変位に伴うコイルばねのリアクタンスの変化を
加速度信号として検出する検出手段とを備えたことを特
徴としている。
In order to achieve the above object, the present invention is constructed as follows. That is, the acceleration sensor of the present invention includes a weight that is displaced by acceleration, a coil spring that holds the weight from both sides, and a detection unit that detects a change in reactance of the coil spring due to the displacement of the weight as an acceleration signal. It is characterized by that.

【0010】[0010]

【作用】加速度によっておもりが変位すると、このおも
りを保持するコイルばねの一方側は圧縮し他方側は伸び
るので、各コイルばねのリアクタンスが変化し、このリ
アクタンスの変化量を検出手段により加速度信号として
取り出す。
When the weight is displaced by acceleration, one side of the coil spring holding the weight is compressed and the other side is expanded, so that the reactance of each coil spring changes, and the change amount of this reactance is converted into an acceleration signal by the detecting means. Take it out.

【0011】[0011]

【実施例】以下、本発明の実施例を図面に基づいて説明
する。図1には本発明に係る加速度センサの一実施例が
示され、図2にはその等価回路図が示されている。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows an embodiment of an acceleration sensor according to the present invention, and FIG. 2 shows an equivalent circuit diagram thereof.

【0012】これらの図において、磁性体からなるおも
り1は、大径の柱体1Aの両側から小径の小径部1a,
1bを突出形成した形状をしており、筐体9内にて、お
もり1は柱体1Aの両側よりコイルばね2a,2bによ
り圧接保持されている。コイルばね2a,2bは電気的
に同持性のものを使用している。おもり1が図の矢印で
示した加速度方向に移動すると、おもり1の小径部1
a,1b部分がコイルばね2a,2b内を遊挿状態で移
動するよう、小径部1a,1bの径はコイルばね2a,
2bの内径に比べて十分小さく形成されている。
In these drawings, a weight 1 made of a magnetic material is provided with a small diameter portion 1a having a small diameter from both sides of a large diameter column 1A.
The weight 1 is formed in a protruding shape, and the weight 1 is held in pressure contact with the coil springs 2a and 2b from both sides of the column 1A in the housing 9. The coil springs 2a and 2b are electrically compatible. When the weight 1 moves in the acceleration direction indicated by the arrow in the figure, the small diameter portion 1 of the weight 1
The diameters of the small diameter portions 1a and 1b are such that the a and 1b portions move in the coil springs 2a and 2b in a loosely inserted state.
It is formed sufficiently smaller than the inner diameter of 2b.

【0013】各コイルばね2a,2bはリード線10を介
して直列に接続されており、この直列接続したものは交
流電源8側に接続されている。コイルばね2aの両端側
からは両端電圧を取り出す端子11,12が形成され、この
端子11,12から加速度センサの出力電圧VOUT が取り出
されるよう、交流電源8と端子11,12とを含む回路によ
り検出手段13が構成されている。
The coil springs 2a and 2b are connected in series via a lead wire 10, and those connected in series are connected to the AC power source 8 side. Circuits including an AC power supply 8 and terminals 11 and 12 are formed so that terminals 11 and 12 for extracting the voltage across both ends of the coil spring 2a are formed, and the output voltage V OUT of the acceleration sensor is extracted from these terminals 11 and 12. The detecting means 13 is configured by the above.

【0014】本実施例は上記のように構成されており、
加速度によりおもり1が、例えば図の上方向に移動する
とコイルばね2bは圧縮され、小径部1b部分がコイル
ばね2bの内部に入り込み、小径部1bを巻回するコイ
ルの巻き数が多くなる。一方、コイルばね2aは伸ばさ
れるので、小径部1aを巻回するコイルの巻き数は少な
くなる。したがって、コイルばね2bのインダクタンス
b は減少し、コイルばね2aのインダクタンスLa
増加する。このコイルばね2a,2bの変位によるイン
ダクタンスLa ,Lb の変化は加速度に比例したものと
なる。
This embodiment is constructed as described above,
When the weight 1 moves upward in the drawing due to acceleration, for example, the coil spring 2b is compressed, the small diameter portion 1b portion enters the inside of the coil spring 2b, and the number of windings of the coil around the small diameter portion 1b increases. On the other hand, since the coil spring 2a is stretched, the number of turns of the coil winding the small diameter portion 1a is reduced. Therefore, the inductance L b of the coil spring 2b decreases and the inductance L a of the coil spring 2a increases. The changes in the inductances L a and L b due to the displacement of the coil springs 2 a and 2 b are proportional to the acceleration.

【0015】コイルばね2a,2bのそれぞれのリアク
タンスXa ,Xb は、交流電源8の周波数をfとすれ
ば、
The coil spring 2a, each of the reactance X a of 2b, X b, if the frequency of the AC power source 8 is f,

【0016】Xa =zπf・La X a = zπf · L a

【0017】Xb =2πf・Lb X b = 2πf · L b

【0018】で表されるので、交流電源8電圧の実効値
をVINとすれば出力電圧VOUT は、
Since the effective value of the voltage of the AC power supply 8 is V IN , the output voltage V OUT is

【0019】VOUT =VIN・Xa /(Xa +Xb )=V
IN・La /(La +Lb
V OUT = V IN · X a / (X a + X b ) = V
IN・ L a / (L a + L b )

【0020】となり、コイルばね2a,2bの変位量が
リアクタンスに変換され、加速度信号として取り出され
ることとなる。
Thus, the displacement amount of the coil springs 2a and 2b is converted into reactance, which is taken out as an acceleration signal.

【0021】加速度が一定の場合には、コイルばね2の
変位は一定に保たれるので、コイルばね2a,2bのイ
ンダクタンスLa ,Lb は変化せず、加速度センサから
一定電圧が出力される。
When the acceleration is constant, the displacement of the coil spring 2 is kept constant, so that the inductances L a and L b of the coil springs 2a and 2b do not change and a constant voltage is output from the acceleration sensor. .

【0022】以上のように、本実施例によれば、コイル
ばね2はおもり1を支持する構造体として機能し、か
つ、加速度によって変化するインダクタンスを生じさせ
る加速度検出部としても機能している。したがって、部
品点数が少ないので部品コストが削減され、製造が容易
になり、低コストの加速度センサを提供できる。
As described above, according to this embodiment, the coil spring 2 functions as a structure for supporting the weight 1 and also as an acceleration detecting section for generating an inductance that changes with acceleration. Therefore, since the number of parts is small, the parts cost is reduced, manufacturing is facilitated, and a low-cost acceleration sensor can be provided.

【0023】さらに、加速度が一定の場合にもコイルば
ね2は変位状態を維持するので、常に一定のインダクタ
ンスLa ,Lb を生ずるため、加速度センサは一定電圧
OU T を出力し検出できることとなる。したがって、定
加速度はもちろん、低周波から高周波数域の加速度検出
が可能となる。
Furthermore, since the coil spring 2 also when the acceleration is constant to maintain the displacement state, because it is always caused constant inductance L a, a L b, the acceleration sensor and to be able to detect and output a constant voltage V OU T Become. Therefore, it is possible to detect not only constant acceleration but also acceleration in a low frequency range to a high frequency range.

【0024】さらに、加速度センサの出力電圧V
OUT は、コイルばね2a,2bの各インダクタンス
a ,Lb の差を利用して取り出されるので、検出誤差
の原因となる各コイルばね2a,2bの電気的特性は打
ち消しあうので高精度な加速度センサとなる。また、温
度の変化があっても、同様に、コイルばね2a,2bの
膨張等による物理的特性も打ち消し合うので、ひずみゲ
ージ型加速度センサのような問題を生じることなく、高
精度で安定な加速度センサを提供できることとなる。
Further, the output voltage V of the acceleration sensor
Since OUT is taken out by utilizing the difference between the inductances L a and L b of the coil springs 2a and 2b, the electrical characteristics of the coil springs 2a and 2b, which cause the detection error, cancel each other out, resulting in a highly accurate acceleration. Become a sensor. Further, even if there is a change in temperature, the physical characteristics due to the expansion of the coil springs 2a and 2b also cancel each other out, so there is no problem with the strain gauge type acceleration sensor, and highly accurate and stable acceleration is achieved. A sensor can be provided.

【0025】さらに、従来のように、おもり1の位置決
めを高精度に行う必要はないので一段と製造が容易とな
り、一層加速度センサの低コスト化を図ることができ
る。
Further, unlike the conventional case, since it is not necessary to position the weight 1 with high accuracy, the manufacturing is further facilitated and the cost of the acceleration sensor can be further reduced.

【0026】なお、本発明は上記実施例に限定されるこ
とはなく、様々な実施の態様を採り得る。例えば、上記
実施例では、おもり1を磁性体にて形成したが、アルミ
ニウムや銅等の非磁性体でもよい。この場合も、加速度
によっておもり1が移動するとコイルばね2a,2bに
伸縮が起こり、コイルばね2a,2bのリアクタンスの
変化が生じるので、これを検出することによって加速度
が同様に検出できる。
The present invention is not limited to the above-mentioned embodiments, and various embodiments can be adopted. For example, although the weight 1 is made of a magnetic material in the above embodiment, it may be made of a non-magnetic material such as aluminum or copper. Also in this case, when the weight 1 moves due to the acceleration, the coil springs 2a and 2b expand and contract, and the reactance of the coil springs 2a and 2b changes. Therefore, by detecting this, the acceleration can be similarly detected.

【0027】また、加速度センサの出力電圧VOUT をコ
イルばね2aの両端電圧から取り出したが、コイルばね
2bの両端電圧から取り出してもよい。また、コイルば
ね2aとコイルばね2bの各両端電圧の差を演算して、
その差を加速度信号として取り出してもよい。
Although the output voltage V OUT of the acceleration sensor is taken from the voltage across the coil spring 2a, it may be taken from the voltage across the coil spring 2b. Also, the difference between the voltage across each of the coil spring 2a and the coil spring 2b is calculated,
You may extract the difference as an acceleration signal.

【0028】さらに、コイルばね2のばね定数やおもり
1の大きさを変えることにより、任意の感度の加速度セ
ンサを提供できる。
Further, by changing the spring constant of the coil spring 2 and the size of the weight 1, it is possible to provide an acceleration sensor of arbitrary sensitivity.

【0029】さらに、コイルばね2a,2bは電気的に
同持性のものを使用したが、必ずしも同持性のものでな
くともよい。
Further, although the coil springs 2a and 2b are electrically compatible, they are not necessarily the same.

【0030】[0030]

【発明の効果】本発明は、コイルばねでおもりを両側か
ら支持する構造体として用いるとともに、加速度による
コイルばねに生じたインダクタンスの変化を加速度検出
に用いるので加速度センサを構成する部品が少なくて済
み、加速度センサを低コストに提供できる。
According to the present invention, since the weight is supported by the coil spring from both sides and the change in the inductance generated in the coil spring due to the acceleration is used for the acceleration detection, the number of parts constituting the acceleration sensor can be reduced. The acceleration sensor can be provided at low cost.

【0031】また、加速度の検出は2つのコイルばねに
生じたインダクタンスの差を用いて行われるので、検出
誤差の原因となる各コイルばねの電気的特性や温度によ
る物理的特性が打ち消し合うので高精度で安定した加速
度センサとなる。
Further, since the acceleration is detected by using the difference between the inductances generated in the two coil springs, the electrical characteristics of the coil springs causing the detection error and the physical characteristics due to the temperature cancel each other out. Accurate and stable acceleration sensor.

【0032】さらに、おもりの位置決め精度は必要とし
ないので製造が安易となり、低コスト化を一層図ること
ができる。
Furthermore, since the positioning accuracy of the weight is not required, the manufacturing becomes easy and the cost can be further reduced.

【0033】さらに、加速度が一定の場合にもコイルば
ねは一定の変位量を保ち続けるので、定加速度はもちろ
ん、低周波から高周波数域の検出が可能となる。
Further, since the coil spring keeps a constant displacement amount even when the acceleration is constant, it is possible to detect not only the constant acceleration but also the low frequency region to the high frequency region.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る加速度センサの一実施例を示す構
成図である。
FIG. 1 is a configuration diagram showing an embodiment of an acceleration sensor according to the present invention.

【図2】同実施例の等価回路図である。FIG. 2 is an equivalent circuit diagram of the embodiment.

【図3】圧電体を用いた従来の加速度センサを示す構成
図である。
FIG. 3 is a configuration diagram showing a conventional acceleration sensor using a piezoelectric body.

【図4】ひずみゲージを用いた従来の加速度センサを示
す構成図である。
FIG. 4 is a configuration diagram showing a conventional acceleration sensor using a strain gauge.

【符号の説明】[Explanation of symbols]

1 おもり 2a,2b コイルばね 13 検出手段 1 Weights 2a, 2b Coil spring 13 Detection means

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 加速度によって変位するおもりと、この
おもりを両側から保持するコイルばねと、前記おもりの
変位に伴うコイルばねのリアクタンスの変化を加速度信
号として検出する検出手段とを備えた加速度センサ。
1. An acceleration sensor comprising a weight that is displaced by acceleration, a coil spring that holds the weight from both sides, and a detection unit that detects a change in reactance of the coil spring due to the displacement of the weight as an acceleration signal.
JP32855392A 1992-11-13 1992-11-13 Acceleration sensor Pending JPH06160418A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32855392A JPH06160418A (en) 1992-11-13 1992-11-13 Acceleration sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32855392A JPH06160418A (en) 1992-11-13 1992-11-13 Acceleration sensor

Publications (1)

Publication Number Publication Date
JPH06160418A true JPH06160418A (en) 1994-06-07

Family

ID=18211568

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32855392A Pending JPH06160418A (en) 1992-11-13 1992-11-13 Acceleration sensor

Country Status (1)

Country Link
JP (1) JPH06160418A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003043063A (en) * 2001-08-01 2003-02-13 Nagano Fujitsu Component Kk Acceleration detector

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003043063A (en) * 2001-08-01 2003-02-13 Nagano Fujitsu Component Kk Acceleration detector

Similar Documents

Publication Publication Date Title
US20050270013A1 (en) MEMS based current sensor using magnetic-to-mechanical conversion and reference components
US5085079A (en) Accelerometer with mounting/coupling structure for an electronics assembly
US4361045A (en) Vibration sensor
US5763783A (en) Acceleration sensor
US20130202122A1 (en) Loudspeaker Driver With Sensing Coils For Sensing The Position And Velocity Of a Voice-Coil
JPH0238912B2 (en)
US5194805A (en) Inductance-type displacement sensor for eliminating inaccuracies due to external magnetic fields
US4128010A (en) Temperature compensated permanent magnet/moving coil accelerometer
US4338823A (en) Vibration sensor
US7705583B2 (en) Micro-electromechanical system (MEMS) based current and magnetic field sensor
US3456508A (en) Vibrating diaphragm pressure sensor apparatus
US3323372A (en) Linear servo-accelerometer
US4186324A (en) Linear accelerometer with piezoelectric suspension
WO1991019985A1 (en) Preload system for accelerometer
JPH06160418A (en) Acceleration sensor
US3783693A (en) Absolute pressure transducer
US5856772A (en) Low stress magnet interface
JP2861694B2 (en) Servo type vibration sensor
JPH04175531A (en) Displacement sensor for air suspension
EP4009004A1 (en) Eddy current sensor device for measuring a linear displacement
JPH08248060A (en) Semiconductor acceleration detector
JP4069789B2 (en) Pressure sensor
JP2000292295A (en) Inner pressure sensor for enclosed container
JPH07128116A (en) Load cell
CN113324465B (en) Absolute displacement sensor and design method thereof