JPH06160032A - Fine particle measuring device - Google Patents

Fine particle measuring device

Info

Publication number
JPH06160032A
JPH06160032A JP33802792A JP33802792A JPH06160032A JP H06160032 A JPH06160032 A JP H06160032A JP 33802792 A JP33802792 A JP 33802792A JP 33802792 A JP33802792 A JP 33802792A JP H06160032 A JPH06160032 A JP H06160032A
Authority
JP
Japan
Prior art keywords
light
fine particles
filter
reaction chamber
detection system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33802792A
Other languages
Japanese (ja)
Inventor
Takuji Fukada
卓史 深田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP33802792A priority Critical patent/JPH06160032A/en
Publication of JPH06160032A publication Critical patent/JPH06160032A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To detect the behavior and generation source of fine particles low in density by arranging a detection system to the outside of a reaction chamber and providing a secondary electron amplifier amplifying the weak quantity of electricity obtained by a photoelectric conversion part receiving scattered light. CONSTITUTION:Laser beam is emitted into a reaction chamber from an irradiation system. A filter 9 permitting only scattered light due to the fine particles A present in an irradiation area to transmit is fitted in the window opened to the front wall surface of the reaction chamber. The beam transmitting through the filter 9 is condensed by a condensing lens 10 to be photoelectrically converted by a fiber plate 11. A concave surface is formed to the rear surface of the plate 11 and the photon condensed by the concave surface is amplified to about 10<6> times by a secondary electron amplifier 12. A fluorescent surface 13 emits light by the output of the amplifier 12 to form an image which is, in turn, photographed by a CCD camera 14. Since only the wavelength of laser beam is allowed to be incident on a detection system by the filter 9, this device can be adapted to a light emitting device wherein multi- wavelength light is present and particles A can be accurately measured from the min. one particle by the amplifier 12.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、微粒子の挙動及び発生
源を明確にするために微粒子の粒径又は数量を測定する
微粒子測定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a particle measuring device for measuring the particle size or the number of particles in order to clarify the behavior and the source of particles.

【0002】[0002]

【従来の技術】半導体プロセス装置の性能を表す指標の
1つとして、微粒子の発生数がある。半導体プロセス装
置においてIC等の半導体装置を加工する場合、微粒子
が存在するとコンタミネーションにより半導体装置の不
良率が上昇し好ましくない。また近年のICの微細化に
伴い、このコンタミネーションによる影響は益々大きく
なる傾向がある。そこで微粒子の粒径又は数量を測定
し、微粒子の挙動及び発生源を明確にすることが重要で
ある。
2. Description of the Related Art The number of generated fine particles is one of the indexes showing the performance of a semiconductor process device. When processing a semiconductor device such as an IC in a semiconductor process device, the presence of fine particles is not preferable because the defect rate of the semiconductor device increases due to contamination. Further, with the miniaturization of ICs in recent years, the influence of this contamination tends to increase more and more. Therefore, it is important to measure the particle size or quantity of the fine particles and clarify the behavior and the source of the fine particles.

【0003】従来からの微粒子の測定には光散乱法が用
いられており、この光散乱法は2つに大別される。1つ
はウエハを装置から取り出してウエハ上の微粒子を測定
する方法であり、もう1つはプロセス途中に装置内でそ
の場観察を行う方法である。前者はウエハ上に光を照射
してその散乱光の波高分析から微粒子の粒径を測定して
いるが、表面粗さと微粒子との区別が困難であること、
及びその場観察が行えないことが大きな問題である。
Conventionally, a light scattering method has been used for measuring fine particles, and the light scattering method is roughly classified into two. One is a method of taking out the wafer from the apparatus and measuring fine particles on the wafer, and the other is a method of performing in-situ observation in the apparatus during the process. The former measures the particle size of fine particles by irradiating light on the wafer and analyzing the wave height of the scattered light, but it is difficult to distinguish between surface roughness and fine particles,
Also, it is a big problem that in-situ observation cannot be performed.

【0004】後者は、例えば実開平4-18669号公報に開
示されているように、光源と検出部とを一体化したパー
ティクルセンサ部を排気系の途中に設置するものがあ
る。この装置においては、光源から排気系空間に光を照
射し、照射空間内に存在するパーティクル(微粒子)に
より散乱された散乱光を検出部において検出するもので
ある。このように光源と検出部とを一体化したものが商
品化されており、測定したい部分に設置することが可能
である。この装置では光源と検出部とが直近に配置さ
れ、微粒子からの散乱光を効率良く検出するよう配慮さ
れている。
In the latter, for example, as disclosed in Japanese Utility Model Laid-Open No. 18669/1992, a particle sensor unit in which a light source and a detection unit are integrated is installed in the middle of an exhaust system. In this device, light is emitted from the light source to the exhaust system space, and scattered light scattered by particles (fine particles) present in the irradiation space is detected by the detection unit. In this way, a light source and a detection unit integrated with each other have been commercialized, and it is possible to install them in a portion to be measured. In this device, the light source and the detection unit are arranged in the immediate vicinity so that the scattered light from the fine particles can be efficiently detected.

【0005】また近年ではガスプラズマを反応室へ導入
し、平行平板型の電極に高周波を印加して1電極上に載
置されたウエハへプラズマ処理を施すプラズマ装置にお
ける微粒子の測定の重要性が増しており、例えば“Gary
S.Selwyn,John E.Heidenreich,and Kurt L.Haller App
l.Phys.Lett.57(18),29 Oct 1990”には、レーザー光を
反応室へ導入し、電極に平行に走査して、微粒子からの
散乱光を高分解能ビデオカメラで観察する装置及びその
結果が報告されている。図7は、RFプラズマ装置でHe
−Ne又はArイオンレーザーを用いて微粒子を測定した結
果得られた画像を示す模式図である。
Further, in recent years, it is important to measure fine particles in a plasma device in which a gas plasma is introduced into a reaction chamber and a high frequency is applied to parallel plate type electrodes to perform plasma processing on a wafer placed on one electrode. Is increasing, for example “Gary
S.Selwyn, John E.Heidenreich, and Kurt L.Haller App
57 (18), 29 Oct 1990 ”, a device for introducing a laser beam into a reaction chamber, scanning the laser beam in parallel with an electrode, and observing scattered light from fine particles with a high-resolution video camera. The results have been reported.
FIG. 3 is a schematic diagram showing an image obtained as a result of measuring fine particles using a Ne or Ar ion laser.

【0006】[0006]

【発明が解決しようとする課題】実開平4-18669号公報
に開示されている光源と検出部とが一体化された装置で
は集光立体角をできるだけ大きくする目的で光源と検出
部とを直近に配置しているため、これらを離すことは不
可能であり、測定は特定の場所に限られ広い空間の測定
は困難である。またプロセス装置の反応室内を測定する
ために検出部を反応室内に設置した場合はプロセス条件
が本来の条件と異なり、実際のその場観察を行うことは
困難である。他方の装置は検出系を反応室外に設置し、
離れた場所から散乱光を検出するため、検出感度は低
く、微粒子密度が高いか又は粒径が数μm 以上の微粒子
でなければ検出は困難である。図7に示す結果が得られ
たのは、RFプラズマ装置では微粒子が電極近傍にトラ
ップされ、その密度が高かったからである。このときの
微粒子を 0.2μm と仮定すると1×107 個/cm-3程度と
想定される。
In the apparatus disclosed in Japanese Utility Model Publication No. 18669/1992, in which the light source and the detection unit are integrated, the light source and the detection unit are placed in the immediate vicinity for the purpose of increasing the light-collecting solid angle as much as possible. It is impossible to separate them because they are placed in the space, and the measurement is limited to a specific place, and it is difficult to measure a wide space. Further, when the detection unit is installed in the reaction chamber to measure the reaction chamber of the process apparatus, the process conditions are different from the original conditions, and it is difficult to perform actual in-situ observation. The other device has the detection system installed outside the reaction chamber,
Since scattered light is detected from a distant place, detection sensitivity is low, and detection is difficult unless the particle density is high or the particle size is several μm or more. The results shown in FIG. 7 were obtained because the RF plasma device trapped particles in the vicinity of the electrode and had a high density. If the fine particles at this time are assumed to be 0.2 μm, it is assumed to be about 1 × 10 7 particles / cm -3 .

【0007】本発明は、斯かる事情に鑑みてなされたも
のであり、照射系及び検出系をプロセス装置外に設置す
ることが可能な構成とし、散乱光を受けた光電変換部材
により得られる微弱な電気量を増幅する2次電子増倍器
を備えることにより、密度が低い微粒子の挙動及び発生
源を検出することが可能な微粒子測定装置を提供するこ
とを目的とする。
The present invention has been made in view of the above circumstances, and has a structure in which the irradiation system and the detection system can be installed outside the process apparatus, and the weakness obtained by the photoelectric conversion member that receives scattered light. It is an object of the present invention to provide a particle measuring device capable of detecting the behavior of fine particles having a low density and the generation source by providing a secondary electron multiplier that amplifies a large amount of electricity.

【0008】[0008]

【課題を解決するための手段】第1発明に係る微粒子測
定装置は、空間内の微粒子に光を照射し、該微粒子によ
る散乱光を検出して、微粒子の粒径又は数量を測定する
装置において、光ビームを照射する光源と、前記空間の
外部に設置され前記散乱光を検出する検出系とを備え、
該検出系は前記光ビームの周波数成分を選択的に透過さ
せるフィルタと、該フィルタを透過した光を集光するレ
ンズと、集光された光を受けて光電変換する光電変換部
材と、光電変換により得られた電気量を増幅する2次電
子増倍器と、該2次電子増倍器の出力により画像を形成
する画像形成部材と、形成された画像を撮像するカメラ
とから構成されていることを特徴とする。第2発明に係
る微粒子測定装置は、第1発明において、前記光ビーム
の照射方向に対し異なる角度で複数の前記検出系を配置
してあることを特徴とする。第3発明に係る微粒子測定
装置は、第1発明において、入射光,前記空間の壁によ
る反射光等の非散乱光を吸収する吸収体を前記空間内に
備えることを特徴とする。
A fine particle measuring apparatus according to a first aspect of the present invention is an apparatus for irradiating light to fine particles in a space, detecting scattered light by the fine particles, and measuring the particle size or the number of the fine particles. A light source for irradiating a light beam, and a detection system installed outside the space for detecting the scattered light,
The detection system includes a filter that selectively transmits the frequency component of the light beam, a lens that collects the light that has passed through the filter, a photoelectric conversion member that receives the collected light, and photoelectrically converts the collected light. The secondary electron multiplier that amplifies the amount of electricity obtained by the above, an image forming member that forms an image by the output of the secondary electron multiplier, and a camera that captures the formed image. It is characterized by A fine particle measuring apparatus according to a second aspect of the present invention is characterized in that, in the first aspect, a plurality of the detection systems are arranged at different angles with respect to the irradiation direction of the light beam. A fine particle measuring apparatus according to a third invention is characterized in that, in the first invention, an absorber that absorbs incident light and non-scattered light such as reflected light by a wall of the space is provided in the space.

【0009】[0009]

【作用】第1発明にあっては、検出系に2次電子増倍器
を備えるので、微粒子密度が低く、散乱光強度が低い場
合も検出が可能である。また光を選択的に透過させるフ
ィルタを備えるので、検出系へは光ビームの波長のみを
入射させることができ、多波長の光が存在する発光装置
においても適用可能である。散乱光をそのまま撮像する
のではなく、光電変換してその電気信号を使用するの
で、増幅,蛍光体によるイメージ画像形成等、信号処理
を簡単に行うことができる。
In the first aspect of the invention, since the detection system is provided with the secondary electron multiplier, it is possible to detect even when the particle density is low and the scattered light intensity is low. Further, since a filter for selectively transmitting light is provided, only the wavelength of the light beam can be made incident on the detection system, and the invention can be applied to a light emitting device in which light of multiple wavelengths exists. Since the scattered light is not directly imaged but photoelectrically converted and the electric signal is used, signal processing such as amplification and image formation by a phosphor can be easily performed.

【0010】第2発明にあっては、第1発明における効
果に加えて、複数の角度で測定することにより、散乱光
の角度依存性の情報を得ることができ、より詳しく正確
な測定結果が得られる。第3発明にあっては、第1発明
における効果に加えて、入射光,壁による反射光等の非
散乱光を吸収して微弱な散乱光を検出しやすい環境とす
ることができ、測定精度が上昇する。
According to the second invention, in addition to the effect of the first invention, by measuring at a plurality of angles, information on the angular dependence of scattered light can be obtained, and more detailed and accurate measurement results can be obtained. can get. In the third invention, in addition to the effect of the first invention, it is possible to create an environment in which it is easy to detect weak scattered light by absorbing non-scattered light such as incident light and light reflected by a wall, and thus the measurement accuracy can be improved. Rises.

【0011】[0011]

【実施例】以下、本発明をその実施例を示す図面に基づ
き具体的に説明する。図1,図2は本発明に係る微粒子
測定装置を示す模式的断面図であり、図1はECR(電子サ
イクロトロン共鳴)-CVD 装置に適用した場合の照射系の
第1実施例を示し、図2は本発明装置の検出系を示す。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be specifically described below with reference to the drawings showing the embodiments. 1 and 2 are schematic cross-sectional views showing a fine particle measuring apparatus according to the present invention, and FIG. 1 shows a first embodiment of an irradiation system when applied to an ECR (electron cyclotron resonance) -CVD apparatus. 2 shows the detection system of the device of the present invention.

【0012】ECR-CVD装置は図1に示す如く、反応室1
の上方にプラズマ生成室2が連設されており、さらにそ
の上方にマイクロ波導入管3が取り付けられている。こ
の生成室2にはプラズマ化するガスを導入するためのガ
ス導入管4が配設されており、さらに周囲には励磁コイ
ル5が周設されている。また反応室1には生成室2に対
向してウエハWを設置するための試料台6が設けられて
いる。さらに反応室1の1側面(図1の右側面)にレー
ザー光を通過させるための入射窓(図示せず)を設けて
おく。生成室2では、励磁コイル5により磁界を発生さ
せ、マイクロ波導入管3よりマイクロ波を導入し、ガス
導入管4より導入されたガスをプラズマ化してガスプラ
ズマを生成する。そしてこのガスプラズマを反応室1へ
導入してウエハWの処理を行う。
As shown in FIG. 1, the ECR-CVD apparatus has a reaction chamber 1
A plasma generation chamber 2 is continuously provided above, and a microwave introduction tube 3 is attached above the plasma generation chamber 2. A gas introduction pipe 4 for introducing a gas to be turned into plasma is arranged in the generation chamber 2, and an exciting coil 5 is provided around the gas introduction pipe 4. Further, the reaction chamber 1 is provided with a sample table 6 facing the generation chamber 2 for mounting the wafer W thereon. Further, an entrance window (not shown) for passing a laser beam is provided on one side surface (right side surface in FIG. 1) of the reaction chamber 1. In the generation chamber 2, a magnetic field is generated by the exciting coil 5, microwaves are introduced through the microwave introduction pipe 3, and the gas introduced through the gas introduction pipe 4 is turned into plasma to generate gas plasma. Then, this gas plasma is introduced into the reaction chamber 1 to process the wafer W.

【0013】そして図1に示す如く、前記入射窓の近傍
に例えば 800Hzで上下に反射方向を変化させるように振
動するガルバノメータ7を設置し、図示しない光源より
照射されたレーザー光を反応室1内の右手側から左手側
へ入射する。また入射されたレーザー光が到達する反応
室1の1側面(図1の左側面)側には非散乱光を減衰さ
せるビームストッパ8を設置しておく。1個のガルバノ
メータ7を使用すると反応室1内に平面的な照射域が形
成でき、上述のように上下方向に振動させた場合は垂直
な照射平面が得られる。そしてこの照射域に存在する微
粒子の測定が可能であり、2個のガルバノメータ7を使
用すると立体空間の測定が可能である。
As shown in FIG. 1, a galvanometer 7 which vibrates so as to change the reflection direction up and down at 800 Hz, for example, is installed in the vicinity of the entrance window, and laser light emitted from a light source (not shown) is fed into the reaction chamber 1. Is incident from the right-hand side to the left-hand side. Further, a beam stopper 8 for attenuating the non-scattered light is provided on one side surface (left side surface in FIG. 1) of the reaction chamber 1 where the incident laser light reaches. When one galvanometer 7 is used, a planar irradiation area can be formed in the reaction chamber 1, and a vertical irradiation plane can be obtained when vibrating vertically as described above. Further, it is possible to measure fine particles existing in this irradiation area, and it is possible to measure a three-dimensional space by using two galvanometers 7.

【0014】次に図2に示す検出系について説明する。
この検出系は、図1において手前側の反応室1外部に設
置する。そして反応室1の正面壁面には、窓(図示せ
ず)が開口されており、この窓には前記照射域に存在す
る微粒子Aにより散乱された散乱光のみを透過させるた
めのフィルタ9を嵌め込んである。検出系はこのフィル
タ9と、フィルタ9を透過した光を集光する光学レンズ
10と、この集光された光を光電変換するファイバプレー
トからなり、光学レンズ10側は平面であり他面側は凹面
である光電面を備える光電変換部材11と、光電変換部材
11より放出され前記凹面により集束された光電子を最大
で106 倍に増幅することが可能な2次電子増倍器12と、
2次電子増倍器12の裏面に備えられ、2次電子増倍器12
の出力により発光して画像を形成する蛍光面13と、その
画像を撮像するCCDカメラ14とから構成されている。
なお前記窓はフィルタ9ではなく通常のガラスを嵌め込
み、別途フィルタ9を設ける構成としてもよい。
Next, the detection system shown in FIG. 2 will be described.
This detection system is installed outside the reaction chamber 1 on the front side in FIG. A window (not shown) is opened on the front wall surface of the reaction chamber 1, and a filter 9 for transmitting only the scattered light scattered by the fine particles A existing in the irradiation area is fitted into this window. It's complicated. The detection system is the filter 9 and an optical lens that collects the light that has passed through the filter 9.
10, a photoelectric conversion member 11 including a fiber plate for photoelectrically converting the collected light, the photoelectric conversion member 11 including a photoelectric surface having a flat surface on the optical lens 10 side and a concave surface on the other surface side, and a photoelectric conversion member.
A secondary electron multiplier 12 capable of amplifying the photoelectrons emitted from 11 and focused by the concave surface up to 10 6 times at maximum;
The secondary electron multiplier 12 is provided on the back surface of the secondary electron multiplier 12.
It is composed of a phosphor screen 13 which emits light by the output of 1 to form an image and a CCD camera 14 which captures the image.
Note that the window may be configured such that ordinary glass is fitted instead of the filter 9 and the filter 9 is separately provided.

【0015】図3はこのような検出系を複数設置した状
態を示す概略図である。水平面において光源Bから照射
されたレーザー光の照射角度を0°としたとき、この照
射方向に対する角度θを図3に示すように異ならせて20
〜 160°の範囲内に複数の検出系Cを設置し、複数の角
度から散乱光を検出することができる構成とする。照射
方向に対して直角に設置した場合(C2 )がθ=90°で
あり、この位置よりも出射側に設置した場合(C3 )が
θ<90°である。
FIG. 3 is a schematic view showing a state in which a plurality of such detection systems are installed. When the irradiation angle of the laser light emitted from the light source B on the horizontal plane is 0 °, the angle θ with respect to this irradiation direction is varied as shown in FIG.
A plurality of detection systems C are installed within a range of up to 160 ° so that scattered light can be detected from a plurality of angles. When it is installed at a right angle to the irradiation direction (C 2 ), θ = 90 °, and when it is installed on the emission side from this position (C 3 ), θ <90 °.

【0016】以上の如き構成の本発明装置を用いて実際
に微粒子の測定を行った。 ECRプラズマの条件は、O2
流量 100sccm,圧力1mTorr ,マイクロ波電力 500Wで
あり、使用したレーザーは 488nmのArイオンレーザーで
ある。図4は、この第1実施例におけるCCDカメラ14
による写真である。図4(a) は検出系の設置位置がθ=
20°の場合を示し、図4(b) はθ=90°の場合を示す。
図4より明らかな如くθ=20°の方がより多くの微粒子
が測定されており、少なくとも 0.3μm 以上の微粒子が
測定されていることが判った。これは本発明装置では M
ie散乱領域の散乱光を測定しているが、 Mie散乱領域で
は前方散乱光(θ<90°)の強度が後方散乱光(θ>90
°)の強度よりも非常に大きいことによる。従って高感
度測定を行うためにはθ≦45°の位置に設置することが
望ましい。光の波長が一定の場合、微粒子の粒径により
前方散乱光の強度と後方散乱光の強度とが夫々影響を受
けるため、θ≦45°とθ≧90°の位置とに検出器を配置
して同時に測定することにより、さらに精度良く測定す
ることができる。
Fine particles were actually measured using the apparatus of the present invention having the above-described structure. The condition of ECR plasma is O 2
The flow rate is 100 sccm, the pressure is 1 mTorr, the microwave power is 500 W, and the laser used is a 488 nm Ar ion laser. FIG. 4 shows the CCD camera 14 according to the first embodiment.
It is a photograph by. In Fig. 4 (a), the installation position of the detection system is θ =
The case of 20 ° is shown, and FIG. 4 (b) shows the case of θ = 90 °.
As is clear from FIG. 4, more fine particles were measured at θ = 20 °, and it was found that at least 0.3 μm or more fine particles were measured. This is
Although the scattered light in the ie scattering region is measured, the intensity of the forward scattered light (θ <90 °) in the Mie scattering region is the backward scattered light (θ> 90).
It is much larger than the intensity of °). Therefore, in order to perform high sensitivity measurement, it is desirable to install at the position of θ ≦ 45 °. When the wavelength of light is constant, the particle size of the particles affects the intensity of the forward scattered light and the intensity of the back scattered light, so the detectors are placed at the positions of θ ≦ 45 ° and θ ≧ 90 °. It is possible to measure with higher accuracy by simultaneously performing the measurement.

【0017】図5は ECR-CVD装置に適用した本発明装置
の照射系の第2実施例を示す模式的断面図である。この
第2実施例では図1と同様の ECR-CVD装置において、レ
ーザー光を照射するための光ファイバ15を反応室1内へ
導入している。また図1と同様、反応室1内には非散乱
光を減衰させるビームストッパ8を設置しておく。この
ように光ファイバ15を使用すると、その設置位置を自由
に選択することが可能であるため、本実施例ではガス導
入位置直近に光ファイバ15の出射端を設置している。こ
の光ファイバ15として充分微粒子を取り除いたものを用
いると、光ファイバ15から出射する光が非干渉性にな
り、立体的に拡がって出射する効果を利用することがで
き、立体空間照射が可能になる。
FIG. 5 is a schematic sectional view showing a second embodiment of the irradiation system of the apparatus of the present invention applied to the ECR-CVD apparatus. In this second embodiment, an optical fiber 15 for irradiating a laser beam is introduced into the reaction chamber 1 in the same ECR-CVD apparatus as in FIG. Further, as in FIG. 1, a beam stopper 8 for attenuating non-scattered light is installed in the reaction chamber 1. By using the optical fiber 15 in this way, the installation position can be freely selected, and therefore, in the present embodiment, the emission end of the optical fiber 15 is installed near the gas introduction position. If the optical fiber 15 with sufficient fine particles removed is used, the light emitted from the optical fiber 15 becomes incoherent, and it is possible to utilize the effect of expanding and emitting in three dimensions, enabling three-dimensional space irradiation. Become.

【0018】以上の如き構成の本発明装置を用いて実際
に微粒子の測定を行った。 ECRプラズマの条件は、第1
実施例と同様、O2 流量 100sccm,圧力1mTorr ,マイ
クロ波電力 500Wであり、使用したレーザーは 488nmの
Arイオンレーザーである。図6は、この第2実施例にお
けるCCDカメラ14による画像の写真である。
Fine particles were actually measured by using the apparatus of the present invention having the above-mentioned structure. ECR plasma condition is the first
As in the example, the O 2 flow rate was 100 sccm, the pressure was 1 mTorr, the microwave power was 500 W, and the laser used was 488 nm.
It is an Ar ion laser. FIG. 6 is a photograph of an image taken by the CCD camera 14 in the second embodiment.

【0019】微粒子によるレーザー光の散乱効率は同一
粒径の場合、波長の4乗に逆比例することが公知である
(Milton Kerker “The Scattering of Light ” ACADE
MICPRESS,1969)。従って微小な粒径の微粒子に対しては
より短波長のレーザー光を使用すれば散乱効率を上昇さ
せることができる。従来装置に用いられている半導体レ
ーザーの波長を 700nmとすると散乱効率は、同一粒径,
同パワー密度と仮定した場合、Arイオンレーザー(488n
m) で半導体レーザーの約4倍、KrFエキシマレーザー
(248nm) で約60倍、KrFエキシマレーザー(193nm) で約
170倍になる。また本発明装置においては、感度が高い
ために、例えばプラズマの発光等による光が存在すると
検出系は飽和する。この飽和を回避するために、即ち測
定に使用する光と波長が異なる光を検出系へ入射させな
いためにフィルタを備えている。このようにプラズマ発
光による光と測定に使用する光とを分けるには、プラズ
マ装置で使用されるプラズマの波長以外の波長を測定に
使用する必要がある。
It is known that the scattering efficiency of laser light by fine particles is inversely proportional to the fourth power of the wavelength when the particle size is the same (Milton Kerker "The Scattering of Light" ACADE).
MICPRESS, 1969). Therefore, for fine particles having a small particle diameter, the scattering efficiency can be increased by using a laser beam having a shorter wavelength. If the wavelength of the semiconductor laser used in the conventional device is 700 nm, the scattering efficiency is
Assuming the same power density, Ar ion laser (488n
m) about 4 times that of a semiconductor laser, KrF excimer laser
Approximately 60 times at (248nm), Approximately at KrF excimer laser (193nm)
170 times. Further, in the device of the present invention, since the sensitivity is high, the detection system is saturated in the presence of light due to, for example, plasma emission. In order to avoid this saturation, that is, to prevent light having a different wavelength from the light used for measurement from entering the detection system, a filter is provided. Thus, in order to separate the light emitted by plasma emission from the light used for measurement, it is necessary to use a wavelength other than the wavelength of plasma used in the plasma device for measurement.

【0020】なお本発明装置の適用は ECR-CVD装置等の
プラズマ装置に限るものではなく、あらゆる装置に適用
可能である。
The apparatus of the present invention is not limited to the plasma apparatus such as the ECR-CVD apparatus but can be applied to any apparatus.

【0021】[0021]

【発明の効果】以上のように本発明に係る微粒子測定装
置では、検出系に2次電子増倍器を備えるので、微粒子
を最低1個から正確に測定することができる。またレー
ザー光を空間的に照射することも容易であるので、微粒
子の挙動,発生源の測定を簡単に行える。さらに空間内
に検出系を設置しないので、その空間の条件をほとんど
変化させることはなく、正確にその場観察を行うことが
可能である等、本発明は優れた効果を奏する。
As described above, in the fine particle measuring apparatus according to the present invention, since the detection system is provided with the secondary electron multiplier, at least one fine particle can be accurately measured. Moreover, since it is easy to irradiate the laser beam spatially, it is possible to easily measure the behavior of the fine particles and the source. Further, since the detection system is not installed in the space, the conditions of the space are hardly changed, and the in-situ observation can be accurately performed. The present invention has excellent effects.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る微粒子測定装置の照射系の第1実
施例を示す模式的断面図である。
FIG. 1 is a schematic sectional view showing a first embodiment of an irradiation system of a particle measuring device according to the present invention.

【図2】本発明に係る微粒子測定装置の検出系を示す模
式的断面図である。
FIG. 2 is a schematic cross-sectional view showing a detection system of the particle measuring device according to the present invention.

【図3】本発明装置における複数の検出系の設置状態を
示す模式図である。
FIG. 3 is a schematic diagram showing an installation state of a plurality of detection systems in the device of the present invention.

【図4】本発明装置により得られた画像を示す写真であ
る。
FIG. 4 is a photograph showing an image obtained by the device of the present invention.

【図5】本発明に係る微粒子測定装置の照射系の第2実
施例を示す模式的断面図である。
FIG. 5 is a schematic sectional view showing a second embodiment of the irradiation system of the particle measuring device according to the present invention.

【図6】図5に示す本発明装置の照射系を用いて得られ
た画像を示す写真である。
6 is a photograph showing an image obtained by using the irradiation system of the device of the present invention shown in FIG.

【図7】従来のRFプラズマ装置により得られた画像を
示す模式図である。
FIG. 7 is a schematic diagram showing an image obtained by a conventional RF plasma device.

【符号の説明】[Explanation of symbols]

7 ガルバノメータ 8 ビームストッパ 9 フィルタ 10 光学レンズ 11 光電変換部材 12 2次電子増倍器 13 蛍光面 14 CCDカメラ 15 光ファイバ A 微粒子 B 光源 C 検出系 7 Galvanometer 8 Beam stopper 9 Filter 10 Optical lens 11 Photoelectric conversion member 12 Secondary electron multiplier 13 Fluorescent screen 14 CCD camera 15 Optical fiber A Fine particles B Light source C Detection system

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 空間内の微粒子に光を照射し、該微粒子
による散乱光を検出して、微粒子の粒径又は数量を測定
する装置において、光ビームを照射する光源と、前記空
間の外部に設置され前記散乱光を検出する検出系とを備
え、該検出系は前記光ビームの周波数成分を選択的に透
過させるフィルタと、該フィルタを透過した光を集光す
るレンズと、集光された光を受けて光電変換する光電変
換部材と、光電変換により得られた電気量を増幅する2
次電子増倍器と、該2次電子増倍器の出力により画像を
形成する画像形成部材と、形成された画像を撮像するカ
メラとから構成されていることを特徴とする微粒子測定
装置。
1. An apparatus for irradiating light to fine particles in a space, detecting scattered light by the fine particles, and measuring the particle size or number of the fine particles, the light source for irradiating a light beam, and the outside of the space. A detection system that is installed and detects the scattered light is provided, and the detection system includes a filter that selectively transmits the frequency component of the light beam, a lens that condenses the light that has passed through the filter, and a condenser. A photoelectric conversion member that receives light and performs photoelectric conversion, and amplifies the amount of electricity obtained by photoelectric conversion 2
A fine particle measuring device comprising a secondary electron multiplier, an image forming member that forms an image by the output of the secondary electron multiplier, and a camera that captures the formed image.
【請求項2】 前記光ビームの照射方向に対し異なる角
度で複数の前記検出系を配置してあることを特徴とする
請求項1記載の微粒子測定装置。
2. The particle measuring apparatus according to claim 1, wherein a plurality of the detection systems are arranged at different angles with respect to the irradiation direction of the light beam.
【請求項3】 入射光,前記空間の壁による反射光等の
非散乱光を吸収する吸収体を前記空間内に備えることを
特徴とする請求項1記載の微粒子測定装置。
3. The particle measuring apparatus according to claim 1, further comprising an absorber that absorbs incident light and non-scattered light such as reflected light from a wall of the space, in the space.
JP33802792A 1992-11-24 1992-11-24 Fine particle measuring device Pending JPH06160032A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33802792A JPH06160032A (en) 1992-11-24 1992-11-24 Fine particle measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33802792A JPH06160032A (en) 1992-11-24 1992-11-24 Fine particle measuring device

Publications (1)

Publication Number Publication Date
JPH06160032A true JPH06160032A (en) 1994-06-07

Family

ID=18314249

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33802792A Pending JPH06160032A (en) 1992-11-24 1992-11-24 Fine particle measuring device

Country Status (1)

Country Link
JP (1) JPH06160032A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011021915A (en) * 2009-07-13 2011-02-03 Nippon Steel Corp Grain size measurement system, method, and program for coal
JP2013215938A (en) * 2012-04-06 2013-10-24 Nakamura Kagakukogyo Co Ltd Method of measuring plastic flow rate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011021915A (en) * 2009-07-13 2011-02-03 Nippon Steel Corp Grain size measurement system, method, and program for coal
JP2013215938A (en) * 2012-04-06 2013-10-24 Nakamura Kagakukogyo Co Ltd Method of measuring plastic flow rate

Similar Documents

Publication Publication Date Title
JP3145486B2 (en) Imaging flow cytometer
US8878119B2 (en) Optical inspection method and optical inspection apparatus
JP2002250769A (en) High-speed gate sweep type three-dimensional laser radar device
TW201315990A (en) Solar metrology methods and apparatus
JP2007078702A (en) X-ray reflectometric apparatus
US20130313442A1 (en) Photoemission monitoring of euv mirror and mask surface contamination in actinic euv systems
KR20170109055A (en) Method and system for imaging photomask through pellicle
US5594246A (en) Method and apparatus for x-ray analyses
TWI584330B (en) Photomultiplier tube with extended dynamic range, inspection systems and their operation method
CN111239012B (en) Aerosol particle detection system and method
JPH06160032A (en) Fine particle measuring device
US20010010359A1 (en) Methods and apparatus for improving resolution and reducing noise in an image detector for an electron microscope
JP4413618B2 (en) Photoelectron microscope for inspecting wafers and reticles
JP3344129B2 (en) Laser measurement device for suspended particles
KR100389522B1 (en) Circuit Board Production Method and Its Apparatus
JP3603111B2 (en) Transmission X-ray beam monitoring method and monitoring apparatus
JPH1039038A (en) X-ray detector
Tremsin et al. High efficiency angular selective detection of thermal and cold neutrons
JPH0829320A (en) Method and device for decreasing stray light of laser in particulate sensor
JPH09210907A (en) Scanning fluorescent sensing device
JP2002098587A (en) High-sensitivity piroelectric infrared detecting method and device thereof
Liebscher et al. A fast phosphor imaging diagnostic for two-dimensional plasma fluctuation measurements
JP2005121528A (en) Two-dimensional image element, two-dimensional image detecting device and x-ray-analysis device using the same
JPH0326901B2 (en)
JP3265519B2 (en) Particle concentration evaluation method and apparatus