JPH06159959A - Loop-shaped heat pipe - Google Patents

Loop-shaped heat pipe

Info

Publication number
JPH06159959A
JPH06159959A JP4336681A JP33668192A JPH06159959A JP H06159959 A JPH06159959 A JP H06159959A JP 4336681 A JP4336681 A JP 4336681A JP 33668192 A JP33668192 A JP 33668192A JP H06159959 A JPH06159959 A JP H06159959A
Authority
JP
Japan
Prior art keywords
pipe
liquid
evaporation
heat
heat source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4336681A
Other languages
Japanese (ja)
Other versions
JP2530582B2 (en
Inventor
Koichi Masuko
耕一 益子
Masao Shiraishi
正夫 白石
Koji Kobuchi
孝司 小渕
Masataka Mochizuki
正孝 望月
Fumiaki Aoyama
文明 青山
Yoshinori Kanai
美憲 金井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Fujikura Ltd filed Critical Agency of Industrial Science and Technology
Priority to JP4336681A priority Critical patent/JP2530582B2/en
Publication of JPH06159959A publication Critical patent/JPH06159959A/en
Application granted granted Critical
Publication of JP2530582B2 publication Critical patent/JP2530582B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To make the circulation flow rate of working fluid quickly correspond to fluctuations in heating capacity on a heat source side in an evaporator section in the case the heating capacities fluctuate in different states depending upon the location of the evaporator section. CONSTITUTION:Temperatures of an evaporation tube 20 in regions 10a, 10b and 10c of an evaporator section 10, where the heating capacities on a heat source H side fluctuate in different states to each other, are individually measured by temperature detectors 28. Flow control devices 27 mounted on small liquid feed pipes 41 are controlled by a controller 29 based on the temperature signals, so that the working liquid is circulated to the regions 10a, 10b and 10c through the small liquid feed pipes 41 at flow rates matched with the heating capacities on the heat source H side.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、蒸気流路と液流路と
が分離されたループ型ヒートパイプに関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a loop heat pipe in which a vapor passage and a liquid passage are separated.

【0002】[0002]

【従来の技術】図2は特定の熱源から熱を取り出し、こ
れを有効利用する例えば地熱利用装置のようなヒートパ
イプ式熱利用装置を示している。このヒートパイプ式熱
利用装置は熱源からの熱を所定位置まで取り出す大型の
ループ型ヒートパイプ1と、このヒートパイプ1により
取り出された熱を有効利用する熱回収装置2とから構成
されている。
2. Description of the Related Art FIG. 2 shows a heat pipe type heat utilization device such as a geothermal utilization device for extracting heat from a specific heat source and effectively utilizing the heat. This heat pipe type heat utilization device is composed of a large loop type heat pipe 1 for extracting heat from a heat source to a predetermined position, and a heat recovery device 2 for effectively utilizing the heat extracted by the heat pipe 1.

【0003】上記ヒートパイプ1は、その密閉管が、径
の大きい主として作動流体の蒸気Vが流れる蒸発管20
と、小径で液状作動流体Lが流れる給液管21等とから
構成されている。蒸発管20は、その下部側の傾斜部上
方が垂直に立ち上がった後、水平方向に屈曲され、さら
にその後下向きに屈曲されている。そして、下端が閉塞
された蒸発管20の傾斜部は、,地熱部等の熱源H中に
配設され、ここにヒートパイプ1の蒸発部10が形成さ
れているとともに、蒸発管20の上部側の拡径した下降
部に、このループ型ヒートパイプ1の凝縮部11が形成
されている。
The heat pipe 1 has an airtight pipe 20 having a large diameter, in which the vapor V of a working fluid having a large diameter flows.
And a liquid supply pipe 21 having a small diameter through which the liquid working fluid L flows. The evaporation pipe 20 is bent in the horizontal direction after the upper part of the lower inclined portion rises vertically, and is then bent downward. The inclined portion of the evaporation pipe 20 with the lower end closed is disposed in the heat source H such as the geothermal part, and the evaporation portion 10 of the heat pipe 1 is formed therein, and the upper side of the evaporation pipe 20 is formed. The condensing part 11 of the loop heat pipe 1 is formed in the descending part where the diameter is expanded.

【0004】また、給液管21は、その上端が蒸発管2
0の凝縮部11側端部に連結された状態で垂直に下降
し、その後屈曲されて水平に延びた後、下向きに傾斜し
た蒸発部10内に気密状態で差し込まれている。蒸発部
10内の給液管21はその下端が閉塞された状態で蒸発
部10の下端部近傍まで達しており、この蒸発部10内
の給液管21には、その長手方向に、蒸発管20の内面
に向かって液相の作動流体Lを噴出する複数の孔部から
なる給液部21aが形成されている。
The upper end of the liquid supply pipe 21 is the evaporation pipe 2
It is vertically descended in a state of being connected to the end portion of the condenser portion 11 on the side of 0, is bent and then extends horizontally, and then is inserted in an airtight state into the evaporating portion 10 inclined downward. The liquid supply pipe 21 in the evaporation part 10 reaches the vicinity of the lower end part of the evaporation part 10 in a state where the lower end thereof is closed. A liquid supply part 21 a including a plurality of holes for ejecting the liquid-phase working fluid L toward the inner surface of 20 is formed.

【0005】また、給液管21の垂直下降部側には、給
液管21内を流れる液相の作動流体Lの流量を蒸発部1
0における熱源Hの加熱量に合わせて増減させるヒート
パイプ1の液還流量制御装置12が取り付けられ、給液
管21の水平部には蒸発部10側に液相の作動流体Lを
送り込むヒートパイプ1の液還流ポンプ22が取り付け
られている。液還流量制御装置12は液相の作動流体L
を一時的に貯える貯溜タンク23と、この貯溜タンク2
3の液面レベルの上昇および下降を検知する液面移動検
知器24と、給液管21内を流れる液相の作動流体Lの
流量を調整する流量調整弁25と、液面移動検知器24
からの信号により流量調整弁25の弁開度を制御する液
面コントローラ26とから構成されている。なお、液還
流ポンプ22、貯溜タンク23、流量調整弁25はこの
ヒートパイプ1の密閉管の一部を構成している。
On the side of the vertically descending portion of the liquid supply pipe 21, the flow rate of the working fluid L in the liquid phase flowing in the liquid supply pipe 21 is set to the evaporation unit 1.
The liquid recirculation amount control device 12 of the heat pipe 1 for increasing / decreasing according to the heating amount of the heat source H at 0 is attached, and the horizontal part of the liquid supply pipe 21 sends the working fluid L in the liquid phase to the evaporation part 10 side. The liquid reflux pump 22 of No. 1 is attached. The liquid recirculation amount control device 12 is a working fluid L in a liquid phase.
Storage tank 23 for temporarily storing
3, a liquid level movement detector 24 for detecting rise and fall of the liquid level, a flow rate adjusting valve 25 for adjusting the flow rate of the working fluid L in the liquid phase flowing in the liquid supply pipe 21, and a liquid level movement detector 24.
And a liquid level controller 26 that controls the valve opening of the flow rate adjusting valve 25 by a signal from The liquid recirculation pump 22, the storage tank 23, and the flow rate adjusting valve 25 form a part of the closed pipe of the heat pipe 1.

【0006】ここで、ヒートパイプ1は真空脱気した密
閉管の内部にフロンやアルコールなどの目的温度範囲で
蒸発・凝縮する流体を作動流体として封入したものであ
り、蒸発部10における吸熱によって作動流体を蒸発さ
せ、この蒸気を蒸発管20を介して凝縮部11に移動さ
せて、これをこの凝縮部11にて凝縮・液化させること
により、その熱を外部に放出させるものである。そして
凝縮部11から蒸発部10への作動流体の液還流は、蒸
発管20とは別途設けられた給液管21を介して液還流
ポンプ22によってなされる。すなわち、このヒートパ
イプ1は作動流体の蒸気Vが流れる蒸発管20と液相の
作動流体Lが流れる給液管21とをおのおの有したルー
プ型ヒートパイプとなっている。なお、蒸発部10の下
部には液相の作動流体Lの液体溜り10aが形成され
る。
Here, the heat pipe 1 is a vacuum degassed closed tube in which a fluid such as CFC or alcohol that evaporates and condenses in a target temperature range is enclosed as a working fluid, and operates by absorbing heat in the evaporating section 10. By evaporating a fluid, moving this vapor to the condensing section 11 via the evaporating pipe 20, and condensing and liquefying this vapor in the condensing section 11, the heat is released to the outside. The liquid reflux of the working fluid from the condenser 11 to the evaporator 10 is performed by a liquid reflux pump 22 via a liquid supply pipe 21 provided separately from the evaporation pipe 20. That is, the heat pipe 1 is a loop type heat pipe having an evaporation pipe 20 through which a working fluid vapor V flows and a liquid supply pipe 21 through which a liquid-phase working fluid L flows. A liquid pool 10a of the working fluid L in the liquid phase is formed below the evaporation unit 10.

【0007】熱回収装置2は、ヒートパイプ1の凝縮部
11内に設けられ、ヒートパイプ1側の熱を熱媒に吸収
させる吸熱管30と、この熱媒の熱を利用して温水やス
チームを発生させる熱利用設備31と、吸熱管30と熱
利用設備31間を連結する連絡管32,33と、熱媒を
循環させる循環ポンプ34とから構成されている。
The heat recovery device 2 is provided in the condensing section 11 of the heat pipe 1 and absorbs heat on the heat pipe 1 side into the heat absorbing tube 30 and hot water or steam utilizing the heat of this heat medium. The heat utilization equipment 31 for generating heat, the connecting pipes 32 and 33 connecting the heat absorption pipe 30 and the heat utilization equipment 31, and the circulation pump 34 for circulating the heat medium.

【0008】つぎにこのヒートパイプ式熱利用装置の作
用を説明する。給液管21の給液部21aを介してヒー
トパイプ1の蒸発部10の蒸発管20内面に噴出された
液相の作動流体Lは、この蒸発管20の内面に沿って下
降するうちに熱源Hからの熱を吸収して蒸発する。そし
て、この作動流体の蒸気Vは蒸発管20内を上昇してヒ
ートパイプ1の凝縮部11に達し、この凝縮部11にて
吸熱管30内の熱媒に熱を放出して凝縮・液化する。そ
して、この液相の作動流体Lは液還流ポンプ22により
給液管21内を通って再び蒸発部10の方へ還流され
る。また、熱回収装置2の吸熱管30内の熱媒は、循環
ポンプ34により連絡管33を通って熱利用設備31に
移動され、この熱利用設備31側に熱を与えて冷却され
た後、連絡管32を通って再び給液管21内に送り込ま
れる。
Next, the operation of this heat pipe type heat utilization device will be described. The liquid-phase working fluid L jetted to the inner surface of the evaporation pipe 20 of the evaporation unit 10 of the heat pipe 1 via the liquid supply unit 21a of the liquid supply pipe 21 is a heat source while descending along the inner surface of the evaporation pipe 20. It absorbs the heat from H and evaporates. Then, the vapor V of the working fluid rises in the evaporation pipe 20 and reaches the condensing part 11 of the heat pipe 1, where the condensing part 11 releases heat to the heat medium in the endothermic pipe 30 to condense and liquefy. . Then, the liquid-phase working fluid L is returned by the liquid recirculation pump 22 to the evaporator 10 through the liquid supply pipe 21 again. Further, the heat medium in the endothermic tube 30 of the heat recovery device 2 is moved to the heat utilization equipment 31 by the circulation pump 34 through the communication pipe 33, and is given heat to the heat utilization equipment 31 side to be cooled, It is fed again into the liquid supply pipe 21 through the communication pipe 32.

【0009】つぎにヒートパイプ1の蒸発部10におい
て、熱源Hの加熱量が変動する場合について説明する。
熱源Hの加熱量が減少すれば、当初は蒸発部10におけ
る作動流体の蒸発量より給液管21を介した蒸発部10
への液還流量が多いため、蒸発部10下部の液体溜り1
0aに液相の作動流体Lが溜められ、貯溜タンク23の
液面レベルは下降するが、この液面レベルの下降は液面
移動検知器24により検知される。そして、この液面移
動検知器24からの検知信号に基づいて液面コントロー
ラ26により流量調整弁25が制御され、液相の作動流
体Lの流量は減少されて、蒸発部10への液還流量は熱
源Hの加熱量に対応するよう直ちに変更される。また、
熱源Hの加熱量が増加すれば、当初は、蒸発部10下部
の液体溜り10aに溜められた液相の作動流体Lが蒸発
し、蒸発部10における作動流体の蒸発量より給液管2
1を介した蒸発部への液還流量が少なくなるため、貯溜
タンク23の液面レベルは上昇するが、この液面レベル
の上昇は液面移動検知器24により検知される。そし
て、この液面移動検知器24からの検知信号に基づいて
液還流コントローラ26により流量調整弁25が制御さ
れ、液相の作動流体Lの流量が増加されて、蒸発部10
への液還流量は熱源Hの加熱量に対応するよう直ちに変
更される。
Next, a case where the heating amount of the heat source H in the evaporation section 10 of the heat pipe 1 varies will be described.
When the heating amount of the heat source H is reduced, the evaporation amount of the working fluid in the evaporation unit 10 is initially greater than the evaporation amount of the working fluid in the evaporation unit 10 via the liquid supply pipe 21.
Since there is a large amount of liquid reflux to the
The liquid-phase working fluid L is stored in 0a, and the liquid level of the storage tank 23 is lowered, but this drop of the liquid level is detected by the liquid level movement detector 24. Then, the liquid level controller 26 controls the flow rate adjusting valve 25 based on the detection signal from the liquid level movement detector 24, the flow rate of the working fluid L in the liquid phase is reduced, and the liquid recirculation amount to the evaporation unit 10 is reduced. Is immediately changed to correspond to the heating amount of the heat source H. Also,
When the heating amount of the heat source H increases, the working fluid L in the liquid phase initially stored in the liquid pool 10a below the evaporation unit 10 evaporates, and the liquid supply pipe 2 is supplied from the evaporation amount of the working fluid in the evaporation unit 10.
Since the amount of liquid recirculated to the evaporation unit via 1 decreases, the liquid level in the storage tank 23 rises, but this rise in liquid level is detected by the liquid level movement detector 24. Then, based on the detection signal from the liquid level movement detector 24, the flow rate adjusting valve 25 is controlled by the liquid recirculation controller 26, the flow rate of the working fluid L in the liquid phase is increased, and the evaporation unit 10 is increased.
The amount of liquid recirculated to is immediately changed to correspond to the amount of heat of the heat source H.

【0010】[0010]

【発明が解決しようとする課題】上記ヒートパイプ1に
おいては、蒸発部10の熱源Hの加熱量が全体的に変動
した場合は、液還流量制御装置12により熱源Hの加熱
量に見合った分だけ、給液管21を介して蒸発部10の
蒸発管20内面に迅速に液相の作動流体Lの液環流を行
なうことができ、熱源Hの加熱量に応じて熱源H側から
充分に熱を取り出すことができるが、熱源Hの加熱量が
蒸発部10の長手方向に沿って異なるように変動する場
合は、液還流量制御装置12では熱源Hの加熱量の変化
に対応させて、蒸発部10の蒸発管20内面に液環流を
することができず、熱源Hの加熱量に応じて熱源H側か
ら充分に熱を取り出すことができないという不都合があ
った。
In the above heat pipe 1, when the heating amount of the heat source H of the evaporator 10 fluctuates as a whole, the liquid reflux control device 12 adjusts the amount corresponding to the heating amount of the heat source H. Only, the liquid recirculation of the working fluid L in the liquid phase can be quickly performed on the inner surface of the evaporation pipe 20 of the evaporation unit 10 via the liquid supply pipe 21, and the heat source H side is sufficiently heated according to the heating amount of the heat source H. However, when the heating amount of the heat source H changes so as to be different along the longitudinal direction of the evaporation unit 10, the liquid recirculation amount control device 12 responds to the change of the heating amount of the heat source H by evaporating. A liquid recirculation cannot be performed on the inner surface of the evaporation pipe 20 of the portion 10, and there is a disadvantage that heat cannot be sufficiently extracted from the heat source H side according to the heating amount of the heat source H.

【0011】この発明は上記の事情に鑑みてなされたも
ので、蒸発部における熱源側の加熱量が蒸発部の位置に
よって異なった状態で変動する場合、この変動に対して
液環流量を迅速に対応させることができるループ型ヒー
トパイプを提供することを目的とする。
The present invention has been made in view of the above circumstances, and when the heating amount on the heat source side in the evaporating section fluctuates in a different state depending on the position of the evaporating section, the liquid ring flow rate can be promptly changed in response to this fluctuation. It is an object of the present invention to provide a loop heat pipe that can be adapted.

【0012】[0012]

【課題を解決するための手段】この発明は、上記の課題
を解決するために、蒸発管の下部に設けられた蒸発部の
この蒸発管内面側に、凝縮部から給液管を介して作動流
体の液還流がなされるループ型ヒートパイプにおいて、
前記給液管の前記蒸発部側を複数の小給液管に枝分れさ
せ、この各小給液管の前記蒸発部に対する給液部を、熱
源側の加熱量の変動状態が互いに異なるこの蒸発部の各
領域にそれぞれ配設し、かつ前記蒸発部の前記領域に蒸
発管の温度を検出する温度検知手段をそれぞれ設けると
ともに、前記各小給液管内を流れる作動流体の流量を調
整する流量調整手段を設け、さらに前記各温度検知手段
からの温度信号に基づいてこの温度検知手段に対応する
前記流量調整手段を制御する制御手段を設けたことを特
徴としている。
SUMMARY OF THE INVENTION In order to solve the above problems, the present invention operates from a condenser to a liquid supply pipe on the inner surface side of an evaporation portion of a lower portion of the evaporation pipe. In a loop type heat pipe in which liquid is recirculated,
The evaporation part side of the liquid supply pipe is branched into a plurality of small liquid supply pipes, and the liquid supply parts for the evaporation parts of the small liquid supply pipes are different from each other in the fluctuation state of the heating amount on the heat source side. A flow rate which is arranged in each area of the evaporation section, and which is provided with temperature detection means for detecting the temperature of the evaporation tube in the area of the evaporation section, and which adjusts the flow rate of the working fluid flowing in each of the small liquid supply tubes. It is characterized in that adjustment means is provided, and further control means is provided for controlling the flow rate adjustment means corresponding to the temperature detection means based on the temperature signals from the temperature detection means.

【0013】[0013]

【作用】蒸発部の蒸発管の温度は、蒸発部に対する熱源
側の加熱量の増大によって上昇し、熱源側の加熱量の減
少によって下降する。このため、蒸発部の蒸発管の温度
の上昇により作動流体の液環流量を増大させ、この温度
の降下により作動流体の液環流量を減少させれば、蒸発
部は熱源側の加熱量に合わせてこの熱源側から熱を充分
に吸収することができる。
The temperature of the evaporation tube of the evaporation section rises as the amount of heating on the heat source side with respect to the evaporation section increases, and decreases as the amount of heating on the heat source side decreases. Therefore, if the liquid flow rate of the working fluid is increased by increasing the temperature of the evaporation pipe in the evaporation section and the liquid flow rate of the working fluid is decreased by this decrease in temperature, the evaporation section is adjusted to the heating amount on the heat source side. The heat can be sufficiently absorbed from the lever heat source side.

【0014】したがって、熱源側の加熱量の変動状態が
互いに異なる蒸発部の各領域の蒸発管の温度を温度検知
手段によりそれぞれ検知し、この温度信号に基づいて各
小給液管に設けられた流量調整弁を制御手段により制御
することにより、前記各小給液管を介して蒸発部の熱源
側の加熱量の変動状態が互いに異なる前記領域に、熱源
側の加熱量に見合った量の作動流体の液環流を行なうこ
とができる。
Therefore, the temperature detecting means detects the temperature of the evaporation pipe in each region of the evaporation part in which the fluctuation state of the heating amount on the heat source side is different from each other, and the small liquid supply pipe is provided based on this temperature signal. By controlling the flow rate adjusting valve by the control means, the amount of heat corresponding to the amount of heat on the heat source side is actuated in the regions where the fluctuations in the amount of heat on the heat source side of the evaporator differ from each other via the small liquid supply pipes. A liquid recirculation of the fluid can be performed.

【0015】[0015]

【実施例】つぎにこの発明の実施例を図面を参照して説
明する。図1はヒートパイプ式熱利用装置を示してい
る。このヒートパイプ式熱利用装置はループ型ヒートパ
イプ1と熱回収装置2とから構成され、前述の図2に示
すものとその基本構成は同一であるが、ヒートパイプ1
が熱源Hの場所ごとの加熱量の変動に対処できるような
構成になっている点で、前述のものと異なっている。な
お、図1においても図2に示すヒートパイプ式熱利用装
置と同一または相当部分には同一符号を付し、その詳細
な説明を省略する。
Embodiments of the present invention will now be described with reference to the drawings. FIG. 1 shows a heat pipe type heat utilization device. This heat pipe type heat utilization device is composed of a loop type heat pipe 1 and a heat recovery device 2 and has the same basic configuration as that shown in FIG.
Is different from the above-described one in that it has a configuration capable of coping with the variation in the amount of heat of each heat source H. Note that, also in FIG. 1, the same or corresponding parts as those of the heat pipe type heat utilization device shown in FIG. 2 are denoted by the same reference numerals, and detailed description thereof will be omitted.

【0016】熱源Hはその加熱量の変動状態が互いに異
なる例えば第1領域H1、第2領域H2、第3領域H3
に分けられる。この場合の「加熱量の変動状態が互いに
異なる」とは、前記3領域の加熱量が独自に変動する場
合を言うが、この3領域の内1領域は加熱量が変動しな
い領域であってもよい。そして熱源Hのこの領域の数
(本実施例の場合3つ)だけ、ヒートパイプ1の給液管
21は、その垂直部の下部において小給液管41に枝分
れされ、この各小給液管41に液還流ポンプ220が設
けられている。そして各小給液管41,42,43の下
部側は、その下端が閉塞された状態で蒸発部10の蒸発
管20内に差し込まれ、その下端部側にそれぞれ熱源H
の各領域に対応した蒸発部10の蒸発管20の内面に液
相の作動流体Lを噴出する給液部41a,42a,43
aを有している。
The heat source H has different heating state variations, for example, a first region H1, a second region H2, and a third region H3.
It is divided into In this case, "the fluctuation state of the heating amount is different from each other" means that the heating amount of the three regions independently changes, but one of the three regions is a region where the heating amount does not change. Good. Then, the number of this region of the heat source H (three in the present embodiment), the liquid supply pipe 21 of the heat pipe 1 is branched to the small liquid supply pipe 41 at the lower part of the vertical portion, and each small supply is made. A liquid reflux pump 220 is provided in the liquid pipe 41. The lower side of each of the small liquid supply pipes 41, 42, 43 is inserted into the evaporation pipe 20 of the evaporation unit 10 in a state where the lower end thereof is closed, and the heat source H is provided at the lower end side thereof.
Liquid supply parts 41a, 42a, 43 for ejecting the liquid-phase working fluid L to the inner surface of the evaporation pipe 20 of the evaporation part 10 corresponding to each region of
a.

【0017】すなわち、第1小給液管41の給液部41
aは熱源Hの第1領域H1に対応する蒸発部10(以下
第1蒸発部10aという)の蒸発管20内面に向かって
作動流体Lを噴出するように設けられ、同様に、第2小
給液管42の給液部42aは熱源Hの第2領域H2に対
応する蒸発部10(以下第2蒸発部10bという)の蒸
発管20内面に向かって形成され、また第3小給液管4
3の給液部43aは熱源Hの第3領域H3に対応する蒸
発部10(以下第3蒸発部10cという)の蒸発管20
内面に向かって設けられている。
That is, the liquid supply section 41 of the first small liquid supply pipe 41.
a is provided so as to eject the working fluid L toward the inner surface of the evaporation pipe 20 of the evaporation unit 10 (hereinafter referred to as the first evaporation unit 10a) corresponding to the first region H1 of the heat source H, and similarly, the second small pay amount. The liquid supply part 42a of the liquid pipe 42 is formed toward the inner surface of the evaporation pipe 20 of the evaporation part 10 (hereinafter referred to as the second evaporation part 10b) corresponding to the second region H2 of the heat source H, and the third small liquid supply pipe 4 is formed.
The liquid supply part 43a of No. 3 is the evaporation pipe 20 of the evaporation part 10 (hereinafter referred to as the third evaporation part 10c) corresponding to the third region H3 of the heat source H.
It is provided toward the inner surface.

【0018】また、このヒートパイプ1には、熱源H側
の各領域の加熱量の変動に対応して、各小給液管41を
介した蒸発部10の前記各部への作動流体の液環流量を
制御する領域別液還流量制御装置13が設けられてい
る。
Further, in the heat pipe 1, a liquid ring of a working fluid to each part of the evaporation part 10 via each small liquid supply pipe 41 is provided in response to the fluctuation of the heating amount of each region on the heat source H side. A region-by-region liquid recirculation amount control device 13 for controlling the flow rate is provided.

【0019】領域別液還流量制御装置13は、各小給液
管41の液還流ポンプ44の下流側に設けられた液相の
作動流体Lの流量調整手段としての流量調整弁27と、
第1、第2、第3蒸発部10a,10b,10cの各蒸
発管20の外面に設けられるこの蒸発管20の温度検知
手段としての温度検知器28と、第1蒸発部10aに設
けられた温度検知器28からの温度信号に基づき、第1
小給液管41a中の流量調整弁27を制御し、第2蒸発
部10bに設けられた温度検知器28からの温度信号に
基づき、第2小給液管21b中の流量調整弁27を制御
し、第3蒸発部10cに設けられた温度検知器28から
の温度信号に基づき、第3小給液管43中の流量調整弁
27を制御する制御手段としての液還流コントローラ2
9とから構成されている。なお、流量調整弁27および
前記液還流ポンプ44はヒートパイプの密閉管の一部を
構成する。
The region-by-region liquid recirculation amount control device 13 is provided with a flow rate adjusting valve 27 as a flow rate adjusting means for the liquid-phase working fluid L provided on the downstream side of the liquid recirculation pump 44 of each small liquid supply pipe 41.
A temperature detector 28 is provided on the outer surface of each evaporation pipe 20 of the first, second, and third evaporation units 10a, 10b, and 10c, and serves as a temperature detecting means for the evaporation pipe 20, and is provided in the first evaporation unit 10a. Based on the temperature signal from the temperature detector 28, the first
The flow rate adjusting valve 27 in the small liquid supply pipe 41a is controlled, and the flow rate adjusting valve 27 in the second small liquid supply pipe 21b is controlled based on the temperature signal from the temperature detector 28 provided in the second evaporation unit 10b. Then, the liquid recirculation controller 2 as the control means for controlling the flow rate adjusting valve 27 in the third small liquid supply pipe 43 based on the temperature signal from the temperature detector 28 provided in the third evaporator 10c.
It is composed of 9 and 9. The flow rate adjusting valve 27 and the liquid recirculation pump 44 form a part of the closed pipe of the heat pipe.

【0020】ここで、熱源Hの加熱量はこの熱源Hの温
度が上昇すると増加し、下降すると減少する。また、蒸
発部10の蒸発管の20外面温度は、その内面側に液相
の作動流体Lが無ければほぼ熱源Hの温度と同一となる
が、その内面側に液相の作動流体Lがあり、熱源H側か
ら熱を吸収すると熱源Hの温度より下降する。そして熱
源Hの温度が極端に上下しない限り、熱源Hからの加熱
量と液相の作動流体Lの蒸発による吸熱量とが等しい場
合には、蒸発部10の蒸発管20外面温度はほぼ一定温
度(以下基準温度と言う)となる。
Here, the heating amount of the heat source H increases when the temperature of the heat source H rises and decreases when the temperature of the heat source H falls. Further, the temperature of the outer surface of the evaporation pipe of the evaporator 10 is almost the same as the temperature of the heat source H if there is no liquid-phase working fluid L on the inner surface side, but there is the liquid-phase working fluid L on the inner surface side. When the heat is absorbed from the heat source H side, the temperature falls below the temperature of the heat source H. Unless the temperature of the heat source H rises and falls extremely, if the amount of heat from the heat source H and the amount of heat absorbed by the evaporation of the liquid-phase working fluid L are equal, the temperature of the outer surface of the evaporation pipe 20 of the evaporation unit 10 is substantially constant. (Hereinafter referred to as reference temperature).

【0021】したがって、例えば熱源Hの温度が上昇
し、蒸発部10の蒸発管20の外面温度が基準温度より
上昇した場合、これを前記基準温度まで下げて熱源Hか
らの加熱量に見合った吸熱量を得るには、蒸発管20内
面側へ供給される液相の作動流体Lの量を増大させ、熱
源H側からより多くの熱を吸収させるようにすればよ
い。また逆に、熱源Hの温度が下降し、蒸発部10の蒸
発管20の外面温度が基準温度より下降した場合、これ
を前記基準温度まで上げて熱源Hからの加熱量に見合っ
た吸熱量を得るには、蒸発管20内面側へ供給される液
相の作動流体Lの量を減少させ、蒸発部10に供給され
る過剰の液相の作動流体Lを無くせばよい。すなわち、
熱源Hの各領域においてそれぞれ温度が変動し加熱量が
異なってきた場合、蒸発部10の各部に対する液相の作
動流体Lの供給量を増減し、それぞれの蒸発管20の外
面温度が基準温度になるようにすればよい。
Therefore, for example, when the temperature of the heat source H rises and the outer surface temperature of the evaporation pipe 20 of the evaporation section 10 rises above the reference temperature, this is lowered to the reference temperature and the suction amount commensurate with the heating amount from the heat source H is lowered. In order to obtain the amount of heat, the amount of the liquid-phase working fluid L supplied to the inner surface side of the evaporation pipe 20 may be increased so that more heat is absorbed from the heat source H side. On the contrary, when the temperature of the heat source H decreases and the outer surface temperature of the evaporation pipe 20 of the evaporation unit 10 decreases below the reference temperature, the temperature is raised to the reference temperature to obtain the heat absorption amount corresponding to the heat amount from the heat source H. In order to obtain it, the amount of the liquid-phase working fluid L supplied to the inner surface side of the evaporation pipe 20 may be reduced to eliminate the excess liquid-phase working fluid L supplied to the evaporation unit 10. That is,
When the temperature fluctuates in each region of the heat source H and the heating amount becomes different, the supply amount of the working fluid L in the liquid phase to each part of the evaporation unit 10 is increased or decreased so that the outer surface temperature of each evaporation pipe 20 becomes the reference temperature. Should be

【0022】なお、このヒートパイプ式熱利用装置のヒ
ートパイプ1には液還流量制御装置12は設けられては
いないが、給液管21の下降部に貯溜タンク23と流量
調整弁25は設けられている。
The heat pipe 1 of this heat pipe type heat utilization device is not provided with the liquid recirculation amount control device 12, but the storage tank 23 and the flow rate adjusting valve 25 are provided at the descending portion of the liquid supply pipe 21. Has been.

【0023】つぎにこのヒートパイプ式熱利用装置の作
用をヒートパイプ1の領域別液還流量制御装置13との
関連で説明する。熱源Hの温度が一定でその加熱量に変
動がない場合は、流量調整弁27の開度は一定となり、
第1、第2、第3小給液管41,42,43の各給液部
41a,42a,43aを介して、蒸発部10の第1、
第2、第3蒸発部10a,10b,10cのそれぞれの
蒸発管20内面に一定量の液相の作動流体Lが噴出さ
れ、第1、第2、第3蒸発部10a,10b,10cの
それぞれの蒸発管20の外面温度は基準温度に保持され
る。そして、蒸発部10において熱源Hから熱を吸収し
て蒸発した作動流体は凝縮部11に移動し、ここで熱回
収装置2の熱媒側に熱を放出して凝縮・液化する。そし
て、この液相の作動流体Lは貯溜タンク23に一時的に
溜められ、その後全開とした流量調整弁25等を介して
各小給液管41,42,43の液還流ポンプ44に供給
されて、この液還流ポンプ44により加圧されて流量調
整弁27側に送り出される。
Next, the operation of this heat pipe type heat utilization device will be described in relation to the liquid recirculation amount control device 13 for each region of the heat pipe 1. When the temperature of the heat source H is constant and the amount of heating does not change, the opening degree of the flow rate adjusting valve 27 becomes constant,
The first, second, and third small liquid supply pipes 41, 42, and 43 of the evaporation unit 10 are connected via the liquid supply units 41a, 42a, and 43a.
A fixed amount of the working fluid L in a liquid phase is jetted to the inner surfaces of the respective evaporation pipes 20 of the second and third evaporation parts 10a, 10b, 10c, and the first, second, and third evaporation parts 10a, 10b, 10c are respectively discharged. The outer surface temperature of the evaporation pipe 20 is maintained at the reference temperature. Then, the working fluid that has absorbed and evaporated heat from the heat source H in the evaporation unit 10 moves to the condensation unit 11, where it releases heat to the heat medium side of the heat recovery device 2 to be condensed and liquefied. Then, the liquid-phase working fluid L is temporarily stored in the storage tank 23 and then supplied to the liquid recirculation pumps 44 of the small liquid supply pipes 41, 42, 43 through the fully opened flow rate adjusting valve 25 and the like. Then, it is pressurized by the liquid recirculation pump 44 and sent to the flow rate adjusting valve 27 side.

【0024】つぎに、例えば熱源Hの第1領域H1の温
度が上昇し、その第1蒸発部10aに対する加熱量が増
加すれば、この第1蒸発部10aの蒸発管20の外面温
度は基準温度より上昇するため、温度検知器28からの
信号に基づき液還流コントローラ29は第1小給液管4
1の流量調整弁27の弁開度を大きくする。このため、
第1小給液管41の給液部41aから噴出される液相の
作動流体Lの量が増大し、第1蒸発部10aにおける熱
源Hの第1領域H1からの吸熱量を増大させる。このこ
とにより、第1蒸発部10aの蒸発管20の外面温度は
下降し基準温度に近づいてくる。そして、この温度が基
準温度近傍に達すれば、液還流コントローラ29は第1
小給液管41の流量調整弁27の開度をその状態に保持
させる。
Next, for example, if the temperature of the first region H1 of the heat source H rises and the heating amount for the first evaporation portion 10a increases, the outer surface temperature of the evaporation pipe 20 of the first evaporation portion 10a becomes the reference temperature. Since the temperature further rises, the liquid recirculation controller 29 operates on the basis of the signal from the temperature detector 28 so that the first small liquid supply pipe 4
The valve opening of the flow control valve 27 of No. 1 is increased. For this reason,
The amount of the liquid-phase working fluid L ejected from the liquid supply part 41a of the first small liquid supply pipe 41 increases, and the amount of heat absorbed from the first region H1 of the heat source H in the first evaporation part 10a increases. As a result, the outer surface temperature of the evaporation pipe 20 of the first evaporation unit 10a decreases and approaches the reference temperature. When this temperature reaches the vicinity of the reference temperature, the liquid recirculation controller 29 determines the first
The opening degree of the flow rate adjusting valve 27 of the small liquid supply pipe 41 is maintained in that state.

【0025】また、例えば熱源Hの第3領域H3の温度
が下降し、その第3蒸発部10cに対する加熱量が減少
すれば、この第3蒸発部10cの蒸発管20の外面温度
は基準温度より下降するため、温度検知器28からの信
号に基づき、液還流コントローラ29は第3小給液管4
3の流量調整弁27の弁開度を小さくする。このため、
第3小給液管43の給液部43aから噴出される液相の
作動流体Lの量が減少し、第3蒸発部10aに供給され
る過剰な液相の作動流体Lの量が減少する。このことに
より、第3蒸発部10aの蒸発管20の外面温度は上昇
し、基準温度に近づてくる。そして、この温度が基準温
度近傍に達すれば、液還流コントローラ29は第3小給
液管43の流量調整弁27の弁開度をその状態に保持さ
せる。なお、この場合、過剰に供給された液相の作動流
体Lは蒸発部10下部の液体溜り40に溜められる。
If, for example, the temperature of the third region H3 of the heat source H falls and the heating amount for the third evaporating section 10c decreases, the outer surface temperature of the evaporating pipe 20 of the third evaporating section 10c becomes higher than the reference temperature. Since it descends, the liquid recirculation controller 29 causes the third small liquid supply pipe 4 based on the signal from the temperature detector 28.
The valve opening of the flow rate adjusting valve 27 of No. 3 is reduced. For this reason,
The amount of the liquid-phase working fluid L ejected from the liquid supply part 43a of the third small liquid supply pipe 43 decreases, and the amount of the excess liquid-phase working fluid L supplied to the third evaporation part 10a decreases. . As a result, the outer surface temperature of the evaporation pipe 20 of the third evaporation unit 10a rises and approaches the reference temperature. When this temperature reaches the vicinity of the reference temperature, the liquid recirculation controller 29 keeps the valve opening degree of the flow rate adjusting valve 27 of the third small liquid supply pipe 43 in that state. In this case, the excessively supplied liquid-phase working fluid L is stored in the liquid pool 40 below the evaporator 10.

【0026】一方、熱源Hの各領域の加熱量の変動に合
わせて、各小給液管41,42,43の流量調整弁27
の開度を迅速に増減させて、このヒートパイプ式熱利用
装置の運転を行っていても、液還流コントローラ29に
よる流量調整弁27の制御には時間を要するため、どう
しても蒸発部10下部の液体溜り40には液相の作動流
体Lが溜まりぎみとなり、貯溜タンク23の液面レベル
は下降してくる。このため、貯溜タンク23の液面レベ
ルが所定位置以下に下がれば領域別液還流量制御装置1
3によるコントロールを一旦中断し、流量調整弁27の
弁開度を保持した状態で、流量調整弁25を例えばマニ
ュアルで少しずつ閉じ貯溜タンク23の液面レベルを上
昇させる。そして貯溜タンク23の液面レベルが所定位
置まで上昇すれば、ふたたびこの流量調整弁25を全開
にし、領域別液還流量制御装置13によるコントロール
を開始する。
On the other hand, the flow rate adjusting valve 27 of each of the small liquid supply pipes 41, 42, 43 is adjusted in accordance with the variation of the heating amount in each area of the heat source H.
Even if the opening degree of the heat pipe type heat utilization device is operated rapidly, it takes time to control the flow rate adjusting valve 27 by the liquid recirculation controller 29. The working fluid L in the liquid phase is accumulated in the pool 40, and the liquid level of the storage tank 23 is lowered. For this reason, if the liquid level of the storage tank 23 falls below a predetermined position, the liquid recirculation amount control device for each area 1
The control by 3 is temporarily interrupted, and the flow rate adjusting valve 25 is closed gradually, for example, while the valve opening degree of the flow rate adjusting valve 27 is maintained, and the liquid level of the storage tank 23 is raised. Then, when the liquid level of the storage tank 23 rises to a predetermined position, the flow rate adjusting valve 25 is fully opened again, and control by the region-based liquid recirculation amount control device 13 is started.

【0027】以上のように熱源Hの各領域に対応させて
蒸発部10の蒸発管20外面の温度を測定し、この温度
によって熱源Hの加熱量の各領域変動を検知して、熱源
Hの各領域別にその加熱量に見合った分だけ蒸発部10
の各部に液相の作動流体Lを供給するようにしているた
め、蒸発部10の熱源H側の加熱量がその領域によって
独自に変動しても、この変動に合わせて蒸発部10に作
動流体の液環流ができ、このヒートパイプ1により熱源
H側の熱を最大限に吸収することができる。
As described above, the temperature of the outer surface of the evaporation pipe 20 of the evaporation unit 10 is measured corresponding to each area of the heat source H, and the variation of the heating amount of the heat source H in each area is detected by this temperature to detect the temperature of the heat source H. Evaporation unit 10 for each area corresponding to the heating amount
Since the liquid-phase working fluid L is supplied to each part of the above, even if the heating amount of the heat source H side of the evaporator 10 fluctuates independently depending on the region, the working fluid to the evaporator 10 is adjusted according to this fluctuation. The liquid recirculation is generated, and the heat on the heat source H side can be absorbed to the maximum by the heat pipe 1.

【0028】なお、液還流ポンプ44を例えば回転速度
の制御ができるポンプとして、この液還流ポンプ44に
流量調整手段としての機能を持たせ、液還流コントロー
ラ29によりこの液還流ポンプ44を制御するようにす
れば流量調整弁27は不要となる。すなわち、蒸発部1
0の蒸発管20外面の温度が上昇すれば、液還流ポンプ
44の回転速度を上げて蒸発部10に対する液相の作動
流体Lの供給量を増加し、温度が下降すれば、液還流ポ
ンプ44の回転速度を下げて蒸発部10に対する液相の
作動流体Lの供給量を減少すればよい。また、このヒー
トパイプ1の蒸発部10への作動流体の液環流が重力の
作用によって充分になされる場合は、液還流ポンプ44
は不要となる。さらに、流量調整弁27間の相互干渉を
防止できるならば、3台分の容量を有する液還流ポンプ
44を流量調整弁25の下流側に共通して1台設ければ
よい。
The liquid recirculation pump 44 is, for example, a pump capable of controlling the rotation speed, and the liquid recirculation pump 44 is provided with a function as a flow rate adjusting means so that the liquid recirculation controller 29 controls the liquid recirculation pump 44. If so, the flow rate adjusting valve 27 becomes unnecessary. That is, the evaporation unit 1
If the temperature of the outer surface of the evaporation tube 20 of 0 increases, the rotation speed of the liquid reflux pump 44 is increased to increase the supply amount of the working fluid L in the liquid phase to the evaporation unit 10. If the temperature decreases, the liquid reflux pump 44 It is sufficient to reduce the rotation speed of No. 2 to reduce the supply amount of the liquid-phase working fluid L to the evaporation unit 10. When the liquid circulation of the working fluid to the evaporator 10 of the heat pipe 1 is sufficiently performed by the action of gravity, the liquid reflux pump 44
Is unnecessary. Further, if mutual interference between the flow rate adjusting valves 27 can be prevented, one liquid recirculation pump 44 having a capacity of three units may be provided in common downstream of the flow rate adjusting valve 25.

【0029】なお、上記実施例においては、温度検知器
28をヒートパイプ1の外面に設けたが、この温度検知
器28をヒートパイプ1の内部に設けることもできる。
Although the temperature detector 28 is provided on the outer surface of the heat pipe 1 in the above embodiment, the temperature detector 28 may be provided inside the heat pipe 1.

【0030】[0030]

【発明の効果】以上の説明から明らかなようにこの発明
によれば、ヒートパイプの蒸発部における熱源側の加熱
量が蒸発部の位置によって異なるように変動しても、こ
の変動を温度検知器手段で検知し、制御手段により各小
給液管の流量調整手段を制御して、複数の小給液管を介
して蒸発部の熱源側の加熱量の変動状態が異なる領域に
それぞれ液環流をしているため、上記熱源側の加熱量の
変動に対して液環流量を迅速に対応させることができ、
加熱量に応じた熱量を取り出すことができる。
As is apparent from the above description, according to the present invention, even if the amount of heat on the heat source side in the evaporating part of the heat pipe fluctuates so as to vary depending on the position of the evaporating part, this fluctuation is detected by the temperature detector. The flow rate adjusting means of each small liquid supply pipe is controlled by the control means, and the liquid recirculation flow is respectively applied to the regions where the fluctuation state of the heating amount on the heat source side of the evaporation section is different via the plurality of small liquid supply pipes. Therefore, it is possible to quickly respond to the liquid ring flow rate with respect to the fluctuation of the heating amount on the heat source side,
The amount of heat corresponding to the amount of heating can be taken out.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一実施例を示すヒートパイプ式熱利
用装置の断面図である。
FIG. 1 is a sectional view of a heat pipe type heat utilization device showing an embodiment of the present invention.

【図2】従来のヒートパイプ式熱利用装置の断面図であ
る。
FIG. 2 is a cross-sectional view of a conventional heat pipe type heat utilization device.

【符号の説明】[Explanation of symbols]

1 ループ型ヒートパイプ 10 蒸発部 10a 第1蒸発部(加熱量の変動状態が異なる領域) 10b 第2蒸発部(加熱量の変動状態が異なる領域) 10c 第3蒸発部(加熱量の変動状態が異なる領域) 11 凝縮部 20 蒸発管 21 給液管 27 流量調整弁(流量調整手段) 28 温度検知器(温度検知手段) 29 液還流コントローラ(制御手段) 41 小給液管 41a 給液部 42 小給液管 42a 給液部 43 小給液管 43a 給液部 H 熱源 DESCRIPTION OF SYMBOLS 1 loop type heat pipe 10 evaporation part 10a 1st evaporation part (area where heating amount fluctuation state differs) 10b 2nd evaporation part (area where heating amount fluctuation state differs) 10c 3rd evaporation part (heating amount fluctuation state changes) 11) Condensing part 20 Evaporating pipe 21 Liquid supply pipe 27 Flow rate adjusting valve (flow rate adjusting means) 28 Temperature detector (temperature detecting means) 29 Liquid recirculation controller (control means) 41 Small liquid supply pipe 41a Liquid supply part 42 Small Liquid supply pipe 42a Liquid supply part 43 Small liquid supply pipe 43a Liquid supply part H Heat source

───────────────────────────────────────────────────── フロントページの続き (72)発明者 白石 正夫 茨城県つくば市並木一丁目2番地 工業技 術院機械技術研究所内 (72)発明者 小渕 孝司 東京都江東区木場一丁目5番1号 株式会 社フジクラ内 (72)発明者 望月 正孝 東京都江東区木場一丁目5番1号 株式会 社フジクラ内 (72)発明者 青山 文明 東京都江東区木場一丁目5番1号 株式会 社フジクラ内 (72)発明者 金井 美憲 東京都江東区木場一丁目5番1号 株式会 社フジクラ内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Masao Shiraishi 1-2-2 Namiki, Tsukuba-shi, Ibaraki Institute of Mechanical Engineering, Industrial Technology Institute (72) Inventor Takashi Obuchi 1-5-1 Kiba, Koto-ku, Tokyo Stocks Company Fujikura (72) Inventor Masataka Mochizuki 1-5-1, Kiba, Koto-ku, Tokyo Within Fujikura Co., Ltd. (72) Inventor Fumiaki Aoyama 1-5-1, Kiba, Koto-ku, Tokyo Within Fujikura Co., Ltd. (72) Inventor Yoshinori Kanai, 1-5-1 Kiba, Koto-ku, Tokyo, Fujikura Stock Company

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 蒸発管の下部に設けられた蒸発部のこの
蒸発管内面側に、凝縮部から給液管を介して作動流体の
液還流がなされるループ型ヒートパイプにおいて、 前記給液管の前記蒸発部側を複数の小給液管に枝分れさ
せ、この各小給液管の前記蒸発部に対する給液部を、熱
源側の加熱量の変動状態が互いに異なるこの蒸発部の各
領域にそれぞれ配設し、かつ前記蒸発部の前記領域に蒸
発管の温度を検出する温度検知手段をそれぞれ設けると
ともに、前記各小給液管内を流れる作動流体の流量を調
整する流量調整手段を設け、さらに前記各温度検知手段
からの温度信号に基づいてこの温度検知手段に対応する
前記流量調整手段を制御する制御手段を設けたことを特
徴とするループ型ヒートパイプ。
1. A loop-type heat pipe in which a working fluid is recirculated from a condenser to a liquid supply pipe through a liquid supply pipe on the inner surface of the evaporation pipe provided at a lower portion of the evaporation pipe. The evaporating section side of each of the evaporating sections is divided into a plurality of small liquid supply pipes, and the liquid supplying section for each evaporating section of each of the small liquid supply pipes is connected to each of the evaporating sections in which the fluctuation state of the heating amount on the heat source side is different from each other. Each of the regions is provided with a temperature detecting means for detecting the temperature of the evaporation pipe in the region of the evaporation portion, and a flow rate adjusting device for adjusting the flow rate of the working fluid flowing in each of the small liquid supply pipes is provided. A loop heat pipe, further comprising control means for controlling the flow rate adjusting means corresponding to the temperature detecting means based on a temperature signal from each of the temperature detecting means.
JP4336681A 1992-11-24 1992-11-24 Loop type heat pipe Expired - Lifetime JP2530582B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4336681A JP2530582B2 (en) 1992-11-24 1992-11-24 Loop type heat pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4336681A JP2530582B2 (en) 1992-11-24 1992-11-24 Loop type heat pipe

Publications (2)

Publication Number Publication Date
JPH06159959A true JPH06159959A (en) 1994-06-07
JP2530582B2 JP2530582B2 (en) 1996-09-04

Family

ID=18301705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4336681A Expired - Lifetime JP2530582B2 (en) 1992-11-24 1992-11-24 Loop type heat pipe

Country Status (1)

Country Link
JP (1) JP2530582B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014103099A (en) * 2012-11-21 2014-06-05 Hyundai Motor Company Co Ltd Compressed-air cooler of fuel cell system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014103099A (en) * 2012-11-21 2014-06-05 Hyundai Motor Company Co Ltd Compressed-air cooler of fuel cell system
US9859574B2 (en) 2012-11-21 2018-01-02 Hyundai Motor Company Compressed air cooling apparatus of fuel cell system

Also Published As

Publication number Publication date
JP2530582B2 (en) 1996-09-04

Similar Documents

Publication Publication Date Title
JP4027990B2 (en) Cooling system and separation device therefor
EP0086768B1 (en) Absorption heat pump system
JP3706595B2 (en) Heating roller
US4254630A (en) Heat reclaiming method and apparatus
EP0256123B1 (en) Fluid flow control system
KR100482892B1 (en) Absorption Cycle Rotary Heat Pump
JP2530582B2 (en) Loop type heat pipe
JPH06159958A (en) Loop-shaped heat pipe
US3177930A (en) Refrigeration system
JP6394896B2 (en) Steam generation system
JP4124195B2 (en) Heat pump type heating device
JP2732763B2 (en) Two-phase fluid loop heat removal device
JP3210773B2 (en) Double effect absorption refrigerator
JP3303498B2 (en) Top heat type heat pipe, cooling system and heating system
JP2006038400A (en) Ejector heat pump cycle
JP6337055B2 (en) Absorption heat pump
US3374642A (en) Refrigeration method and apparatus for cyclical requirements
JP7164010B2 (en) Cooling system
JP2508755Y2 (en) Absorption type heat pump
JP2016173196A (en) Absorption type refrigerating machine
JP3604869B2 (en) Operation control method of air conditioner
US2894382A (en) Evaporator control for absorption refrigeration systems
JP2019020026A (en) Absorption type refrigerator
JPH065146B2 (en) Absorption heat pump device
JPS6222058B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term