JPH06159273A - Vacuum pump - Google Patents

Vacuum pump

Info

Publication number
JPH06159273A
JPH06159273A JP33560692A JP33560692A JPH06159273A JP H06159273 A JPH06159273 A JP H06159273A JP 33560692 A JP33560692 A JP 33560692A JP 33560692 A JP33560692 A JP 33560692A JP H06159273 A JPH06159273 A JP H06159273A
Authority
JP
Japan
Prior art keywords
rotor
housing
intake
exhaust
rotors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33560692A
Other languages
Japanese (ja)
Inventor
Teru Sakazaki
輝 坂崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP33560692A priority Critical patent/JPH06159273A/en
Publication of JPH06159273A publication Critical patent/JPH06159273A/en
Pending legal-status Critical Current

Links

Landscapes

  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

PURPOSE:To prevent interference and to enhance the vacuum function by setting at least one of axial gaps between the outer surface of a rotor and the inner surface of a housing, which face an intake port and a discharge port, so that the outer side thereof is larger than the inner side of as viewed radially of the rotor. CONSTITUTION:When intake and discharge side rotors 2, 3 are rotated relative to each other in a housing 20, gas is sucked through an intake port 25, and is then discharged from the discharge port 26 after being compressed between the body parts 4, 5 of both rotors 2, 3 and the housing 20. In this case, the axial gap delta1, for example, between the outer surface 2g of the intake side rotor 2 which faces the intake port 25, and the inner surface 20g of the housing 20 which faces the outer surface 2g, is set so that the outside thereof is larger than the inside thereof as viewed radially of the intake side rotor 2. Accordingly, a height difference part 30 is formed on the inner surface 20g of the housing 20, and the height difference part 30 is located radially outer than that of the outer peripheral surface 4 of the body part 4 of the intake side rotor 2.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、本体部から径方向外方
に突出する歯部を有する一対のロータの回転により、両
ロータを覆うハウジングに吸入されるガスを圧縮して排
出する真空ポンプに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vacuum pump for compressing and discharging gas sucked into a housing covering both rotors by rotating a pair of rotors having tooth portions projecting radially outward from a main body. Regarding

【0002】[0002]

【従来の技術】吸気側ロータと、排気側ロータと、両ロ
ータを覆うハウジングとを備え、各ロータは、円周方向
に沿う外周面を有する本体部と、この本体部から径方向
外方に突出する歯部とを有し、そのハウジングに本体部
の円周方向に沿う外周面よりも径方向内方に位置する吸
気口と排気口とが形成され、両ロータの回転により吸気
口からハウジング内に吸入されるガスを圧縮して排気口
から排出する真空ポンプが従来より用いられている。
2. Description of the Related Art An intake side rotor, an exhaust side rotor, and a housing that covers both rotors are provided. Each rotor has a main body having an outer peripheral surface along the circumferential direction, and a radial direction outward from the main body. An intake port and an exhaust port, which have a protruding tooth portion and are located radially inward of the outer peripheral surface of the main body portion along the circumferential direction of the main body portion, are formed in the housing by the rotation of both rotors from the intake port. 2. Description of the Related Art A vacuum pump that compresses a gas sucked therein and discharges it from an exhaust port has been conventionally used.

【0003】このような真空ポンプの真空性能を向上す
るためには、ロータの外側面とハウジングの内側面との
間の軸方向隙間、両ロータの本体部の外周面間の隙間お
よび歯部とハウジングとの内外周間の隙間を小さくする
ことが必要である。
In order to improve the vacuum performance of such a vacuum pump, an axial gap between the outer surface of the rotor and the inner surface of the housing, a gap between the outer peripheral surfaces of the main bodies of both rotors, and a tooth portion. It is necessary to reduce the gap between the inside and the outside of the housing.

【0004】[0004]

【発明が解決しようとする課題】しかし、ガスの圧縮に
より発生する熱等によってハウジングやロータ軸が熱変
形する。また、部品の組み立て誤差や加工誤差が存在す
る。そのような熱変形や誤差によりロータ同志あるいは
ロータとハウジングとが干渉するのを防止するため、そ
れら隙間は必要とされる。また、誤差のために必要とさ
れる隙間は加工精度や組み立て精度を向上することで低
減できるが、加工コストや工数が増大する。また、熱変
形のために必要とされる隙間はなくすことができない。
However, the housing and the rotor shaft are thermally deformed by the heat generated by the compression of the gas. In addition, there are assembly errors and processing errors of parts. These gaps are required to prevent interference between the rotors or the rotor and the housing due to such thermal deformation or error. Further, the gap required for the error can be reduced by improving the processing accuracy and the assembly accuracy, but the processing cost and the man-hour increase. Also, the gap required for thermal deformation cannot be eliminated.

【0005】特に、ロータの外側面とハウジングの内側
面との間の軸方向隙間を他の隙間よりも大きくする必要
があった。すなわち、ロータ軸の熱変形によりロータは
軸方向移動するが、ロータ自身の熱変形は小さいことか
ら、ロータの外側面の軸方向移動量は径方向内方側と外
方側とで略等しくなる。これに対し、ハウジングは外気
に接する外部側で熱変形が小さく内部側で熱変形が大き
いことから、均一に熱変形せずゆがみを生じる。そのた
め、ハウジングの内側面とロータの外側面との間の軸方
向隙間は温度変化に伴い変動し、その変動量はロータの
径方向内方側よりも径方向外方側の方が大きくなる。ま
た、ロータ軸に対するロータの組み立て誤差により、ロ
ータの外側面とハウジングの内側面とが相対的に傾く。
そのため、ハウジングの内側面とロータの外側面との間
の軸方向隙間は、ロータ軸に対するロータの組み立て誤
差に応じ変動し、その変動量はロータの径方向内方側よ
りも径方向外方側の方が大きくなる。
In particular, it has been necessary to make the axial clearance between the outer surface of the rotor and the inner surface of the housing larger than the other clearances. That is, the rotor axially moves due to the thermal deformation of the rotor shaft, but the thermal deformation of the rotor itself is small. Therefore, the axial movement amount of the outer surface of the rotor is substantially equal between the radially inner side and the outer side. . On the other hand, the housing has a small amount of thermal deformation on the outside that is in contact with the outside air and a large amount of thermal deformation on the inside, so that the housing does not undergo uniform thermal deformation and thus distortion. Therefore, the axial gap between the inner side surface of the housing and the outer side surface of the rotor varies with the temperature change, and the variation amount is larger on the radially outer side than on the radially inner side of the rotor. Further, due to an error in assembling the rotor with respect to the rotor shaft, the outer surface of the rotor and the inner surface of the housing are relatively inclined.
Therefore, the axial clearance between the inner surface of the housing and the outer surface of the rotor fluctuates depending on the assembly error of the rotor with respect to the rotor shaft, and the fluctuation amount is more radially outward than the radially inner side of the rotor. Is bigger.

【0006】すなわち、ロータの外側面とハウジングの
内側面との間の軸方向隙間は温度や組み立て誤差に応じ
変動し、その変動量はロータの径方向外端すなわち歯部
の先端において最大となる。そのため、ロータの外側面
とハウジングの内側面との間の軸方向隙間を、その最大
変動量よりも大きく設定し、それによりロータとハウジ
ングとの干渉を防止していた。
That is, the axial clearance between the outer surface of the rotor and the inner surface of the housing fluctuates according to temperature and assembly error, and the fluctuation amount becomes maximum at the radial outer end of the rotor, that is, the tip of the tooth portion. . Therefore, the axial gap between the outer surface of the rotor and the inner surface of the housing is set to be larger than the maximum fluctuation amount, thereby preventing interference between the rotor and the housing.

【0007】しかし、そのようなロータの外側面とハウ
ジングの内側面との間における大きな軸方向隙間は、真
空性能の向上を妨げる。特に、ポンプの小型軽量化のた
めにロータ軸の径やロータの厚さを小さくする場合、組
み立て誤差によりロータの外側面とハウジングの内側面
との相対的な傾きが大きくなり易いため、その軸方向隙
間が真空性能に与える影響が大きくなる。
However, such a large axial clearance between the outer surface of the rotor and the inner surface of the housing hinders improved vacuum performance. In particular, when reducing the diameter of the rotor shaft or the thickness of the rotor to reduce the size and weight of the pump, the relative inclination between the outer surface of the rotor and the inner surface of the housing tends to become large due to assembly errors. The influence of the directional gap on the vacuum performance increases.

【0008】本発明は、上記従来技術の問題を解決する
ことのできる真空ポンプを提供することを目的とする。
It is an object of the present invention to provide a vacuum pump which can solve the above problems of the prior art.

【0009】[0009]

【課題を解決するための手段】本件発明は、吸気側ロー
タと、排気側ロータと、両ロータを覆うハウジングとを
備え、各ロータは、円周方向に沿う外周面を有する本体
部と、この本体部から径方向外方に突出する歯部とを有
し、そのハウジングに本体部の円周方向に沿う外周面よ
りも径方向内方に位置する吸気口と排気口とが形成さ
れ、両ロータの回転により吸気口からハウジング内に吸
入されるガスを圧縮して排気口から排出する真空ポンプ
において、その吸気口と排気口の少なくとも一方に対向
するロータの外側面とハウジングの内側面との間の軸方
向隙間が、ロータの径方向外方側で径方向内方側よりも
大きく設定されるように、そのロータの外側面とハウジ
ングの内側面の少なくとも一方に段差が形成され、その
段差は本体部の円周方向に沿う外周面と径方向に関し同
一位置あるいは径方向外方に位置するものである。
SUMMARY OF THE INVENTION The present invention comprises an intake side rotor, an exhaust side rotor, and a housing that covers both rotors, and each rotor has a main body portion having an outer peripheral surface along the circumferential direction, and The housing has a tooth portion that projects radially outward from the main body portion, and the housing is provided with an intake port and an exhaust port that are located radially inward of the outer circumferential surface of the main body portion along the circumferential direction. In a vacuum pump that compresses the gas sucked into the housing from the intake port by the rotation of the rotor and discharges it from the exhaust port, the outer surface of the rotor facing at least one of the intake port and the exhaust port and the inner surface of the housing. A step is formed on at least one of the outer surface of the rotor and the inner surface of the housing so that the axial gap between them is set larger on the outer side in the radial direction than on the inner side in the radial direction. Is the circumference of the body It relates outer peripheral surface in the radial direction along the direction in which located in the same position or radially outward.

【0010】[0010]

【作用】ハウジングに形成される吸気口と排気口とは本
体部の円周方向に沿う外周面よりも径方向内方に位置す
るため、吸気口と排気口とに対向する軸方向隙間におい
て、真空性能に大きく影響するのは本体部よりも径方向
内方における部分であり、本体部よりも径方向外方にお
ける部分や、吸気口と排気口とは反対側の軸方向隙間は
真空性能にそれほど大きく影響を与えない。
Since the intake port and the exhaust port formed in the housing are located radially inward of the outer peripheral surface of the main body portion along the circumferential direction, the axial gap between the intake port and the exhaust port is The vacuum performance is greatly affected by the area radially inward of the body, and the area radially outward of the body and the axial gap on the opposite side of the intake and exhaust ports affect vacuum performance. Doesn't have much impact.

【0011】よって、本体部の円周方向に沿う外周面と
径方向に関し同一位置あるいは径方向外方に形成される
段差により、吸気口と排気口の少なくとも一方に対向す
る軸方向隙間を、ロータの径方向外方側で径方向内方側
よりも大きく設定することで、温度や組み立て誤差に基
づくロータとハウジングとの干渉を防止し、かつ、真空
ポンプの性能を向上することができる。
Therefore, the axial gap facing at least one of the intake port and the exhaust port is formed by the step formed at the same position in the circumferential direction of the main body as the circumferential direction or at the same position in the radial direction or at the radial outside. By setting the outer side in the radial direction to be larger than the inner side in the radial direction, it is possible to prevent interference between the rotor and the housing due to temperature or an assembly error, and improve the performance of the vacuum pump.

【0012】[0012]

【実施例】以下、図面を参照して本発明の実施例を説明
する。
Embodiments of the present invention will be described below with reference to the drawings.

【0013】図2に示す4段式ドライ真空ポンプ1は、
4組の吸気側ロータ2と、4組の排気側ロータ3と、こ
れらロータ2、3を覆うハウジング20とを備えてい
る。
The four-stage dry vacuum pump 1 shown in FIG.
It includes four sets of intake side rotors 2, four sets of exhaust side rotors 3, and a housing 20 that covers these rotors 2 and 3.

【0014】各ロータ2、3は、図1、図3に示すよう
に、円周方向に沿う外周面4a、5aを有する本体部
4、5と、この本体部4、5から径方向外方に突出する
クロウ形の歯部6、7とを有し、その歯部6、7に隣接
する本体部4、5の一部は切欠部4b、5bとされてい
る。各吸気側ロータ2と各排気側ロータ3とに、それぞ
れ一本のロータ軸8、9が圧入されている。各ロータ軸
8、9の両端は、ベアリング10、11、12を介しハ
ウジング20により支持されている。各ロータ軸8、9
の一端に、互いに噛み合うギヤ13、14が取り付けら
れ、これらギヤ13、14を介して各ロータ軸8、9は
駆動装置(図示省略)により回転駆動される。
As shown in FIGS. 1 and 3, each of the rotors 2 and 3 has a body portion 4 and 5 having outer circumferential surfaces 4a and 5a along the circumferential direction, and radially outward from the body portions 4 and 5. Claw-shaped tooth portions 6 and 7 projecting in the direction of a tooth, and parts of the body portions 4 and 5 adjacent to the tooth portions 6 and 7 are cutout portions 4b and 5b. One rotor shaft 8, 9 is press-fitted into each intake side rotor 2 and each exhaust side rotor 3. Both ends of each rotor shaft 8, 9 are supported by a housing 20 via bearings 10, 11, 12. Each rotor shaft 8, 9
Gears 13 and 14 meshing with each other are attached to one end of the rotor shaft. The rotor shafts 8 and 9 are rotationally driven by a drive unit (not shown) via the gears 13 and 14.

【0015】そのハウジング20は、ロータ軸8、9の
一端を支持する図2において最右方の第1部材20a
と、この第1部材20aに隣接する第2部材20bと、
この第2部材20bに隣接する第3部材20cと、この
第3部材20cに隣接する第4部材20dと、この第4
部材20dに隣接する第5部材20eとを有し、各部材
20a、20b、20c、20d、20eはボルト21
により連結されている。その第2部材20bに、図中最
右方の吸排気ロータ2、3と右方から2番目の吸排気ロ
ータ2、3との仕切り壁20b′が形成され、その第3
部材20cに、図中右方から2番目の吸排気ロータ2、
3と右方から3番目の吸排気ロータ2、3との仕切り壁
20c′が形成され、その第4部材20dに、図中右方
から3番目の吸排気ロータ2、3と最左方の吸排気ロー
タ2、3との仕切り壁20d′が形成されている。ま
た、第1部材20aと第5部材20eとにロータ軸8、
9の軸端を覆うカバー22、23が取り付けられてい
る。
The housing 20 supports the one end of the rotor shafts 8 and 9 and the first member 20a on the rightmost side in FIG.
And a second member 20b adjacent to the first member 20a,
The third member 20c adjacent to the second member 20b, the fourth member 20d adjacent to the third member 20c, and the fourth member 20c
And a fifth member 20e adjacent to the member 20d, and each member 20a, 20b, 20c, 20d, 20e is a bolt 21.
Are connected by. In the second member 20b, a partition wall 20b 'is formed between the intake / exhaust rotors 2 and 3 on the rightmost side in the drawing and the intake / exhaust rotors 2 and 3 which are second from the right, and the third partition wall 20b' is formed.
The member 20c has a second intake / exhaust rotor 2 from the right in the drawing,
A partition wall 20c 'is formed between the third intake air exhaust rotor 2 and the third intake air exhaust rotor 2 from the right, and the fourth intake member 20d is provided on the fourth member 20d of the partition wall 20d. A partition wall 20d 'is formed between the intake and exhaust rotors 2 and 3. Further, the first member 20a and the fifth member 20e are connected to the rotor shaft 8,
Covers 22 and 23 for covering the shaft end of 9 are attached.

【0016】その第1〜第4部材20a、20b、20
c、20dに、吸気側ロータ2の本体部4の円周方向に
沿う外周面4aよりも径方向内方に位置する吸気口25
が形成され、その第2〜第5部材20b、20c、20
d、20eに、排気側ロータ3の本体部5の円周方向に
沿う外周面5aよりも径方向内方に位置する排気口26
が形成されている。その第1部材20aに形成された吸
気口25は、第1部材20aに形成された吸気導入路2
7に連通し、その第5部材20eに形成された排気口2
6は、第5部材20eに形成された排気排出路28に連
通する。また、第2部材20bに形成された吸気口25
と排気口26とは連通路(図示省略)を介し連通し、第
3部材20cに形成された吸気口25と排気口26とは
連通路(図示省略)を介し連通し、第4部材20dに形
成された吸気口25と排気口26とは連通路(図示省
略)を介し連通する。
The first to fourth members 20a, 20b, 20
c and 20d, the intake port 25 located radially inward of the outer peripheral surface 4a of the main body 4 of the intake side rotor 2 along the circumferential direction.
Are formed, and the second to fifth members 20b, 20c, 20 thereof are formed.
At d and 20e, the exhaust port 26 located radially inward of the outer peripheral surface 5a of the main body 5 of the exhaust side rotor 3 along the circumferential direction.
Are formed. The intake port 25 formed in the first member 20a is connected to the intake air intake passage 2 formed in the first member 20a.
7 and the exhaust port 2 formed in the fifth member 20e thereof
6 communicates with the exhaust gas discharge passage 28 formed in the fifth member 20e. In addition, the intake port 25 formed in the second member 20b
And the exhaust port 26 communicate with each other through a communication passage (not shown), and the intake port 25 and the exhaust port 26 formed in the third member 20c communicate with each other through a communication passage (not shown) and the fourth member 20d. The formed intake port 25 and exhaust port 26 communicate with each other through a communication passage (not shown).

【0017】これにより、吸気側ロータ2と排気側ロー
タ3とが回転することで、吸気導入路27から導入され
た気体は、まず、図2において最右方の吸気口25から
吸気側ロータ2の切欠部4bを介しハウジング20に導
入され、吸排気ロータ2、3の本体部4、5とハウジン
グ20の内外周間で圧縮され、排気側ロータ3の切欠部
5bを介し図中最右方の排気口26から排出される。次
に、その気体は図中右方から2番目に位置する吸気口2
5から吸気側ロータ2の切欠部4bを介しハウジング2
0に導入され、同様にして圧縮される。これが繰り返さ
れた後に、気体は図中最左方の排気口26から排気排出
路28を通って排出される。
As a result, as the intake side rotor 2 and the exhaust side rotor 3 rotate, the gas introduced from the intake introduction passage 27 is first introduced from the intake port 25 on the rightmost side in FIG. Is introduced into the housing 20 through the cutout portion 4b, and compressed between the main body portions 4 and 5 of the intake and exhaust rotors 2 and 3 and the inner and outer circumferences of the housing 20, and extends through the cutout portion 5b of the exhaust side rotor 3 to the far right in the figure. Is discharged from the exhaust port 26. Next, the gas is the second intake port 2 from the right in the figure.
5 through the notch 4b of the intake side rotor 2 to the housing 2
0, and compressed in the same way. After this is repeated, the gas is discharged from the leftmost exhaust port 26 in the figure through the exhaust discharge path 28.

【0018】図4の(1)に示すように、各吸気側ロー
タ2の吸気口25に対向する側の外側面2gと、その外
側面2gに対向するハウジング20の内側面20gとの
間の軸方向隙間δ1は、そのロータ2の径方向外方側で
径方向内方側よりも大きく設定されている。この設定の
ため、そのハウジング20の内側面20gに段差30が
形成され、この段差30は、その吸気側ロータ2の本体
部4の外周面4aよりも径方向外方に位置する。
As shown in (1) of FIG. 4, between the outer side surface 2g of each intake side rotor 2 facing the intake port 25 and the inner side surface 20g of the housing 20 facing the outer side surface 2g. The axial clearance δ1 is set larger on the radially outer side of the rotor 2 than on the radially inner side. Due to this setting, a step 30 is formed on the inner side surface 20g of the housing 20, and the step 30 is located radially outward of the outer peripheral surface 4a of the main body 4 of the intake side rotor 2.

【0019】また、各排気側ロータ3の排気口26に対
向する側の外側面3hと、その外側面3hに対向するハ
ウジング20の内側面20hとの間の軸方向隙間δ2
は、そのロータ3の径方向外方側で径方向内方側よりも
大きく設定されている。この設定のため、そのハウジン
グ20の内側面20hに段差31が形成され、この段差
31は、その排気側ロータ3の本体部5の外周面5aよ
りも径方向外方に位置する。
Further, the axial gap δ2 between the outer side surface 3h of each exhaust side rotor 3 facing the exhaust port 26 and the inner side surface 20h of the housing 20 facing the outer side surface 3h.
Is set larger on the radially outer side of the rotor 3 than on the radially inner side. Due to this setting, a step 31 is formed on the inner side surface 20h of the housing 20, and the step 31 is located radially outward of the outer peripheral surface 5a of the main body 5 of the exhaust side rotor 3.

【0020】上記真空ポンプ1を運転することによりハ
ウジング20の内部温度が上昇すると、各ロータ軸8、
9は熱変形により軸方向に伸長し、これにより各ロータ
2、3は軸方向移動する。上記実施例では、ハウジング
20の第5部材20eにおいてロータ軸8、9を支持す
るベアリング10、11を基準とし、各ロータ軸8、9
は図中右方に伸長する。この際、各ロータ2、3自身の
熱変形は小さいことから、各ロータ2、3の外側面2
g、2h、3g、3hの軸方向移動量は径方向内方側と
外方側とで略等しくなる。これに対し、ハウジング20
は外気に接する外部側で熱変形が小さく内部側で熱変形
が大きいことから、均一に熱変形せずゆがみを生じる。
そのため、ハウジング20の内側面20g、20hの熱
変形による軸方向移動量は、外部側で小さく内部側で大
きくなる。これにより、図4の(1)に示す温度上昇前
におけるハウジング20の内側面20g、20hと各ロ
ータ2、3の外側面2g、2h、3g、3hとの間の軸
方向隙間δ1、δ2、δ3、δ4は、温度上昇後は図4
の(2)に示すように変動し、その変動量は各ロータ
2、3の径方向外方側の方が径方向内方側よりも大きく
なる。また、ロータ軸8、9に対するロータ2、3の組
み立て誤差により、図5の(1)、(2)に示すように
ハウジング20の内側面20g、20hと各ロータ2、
3の外側面2g、2h、3g、3hとが相対的に傾く。
そのため、その軸方向隙間δ1、δ2、δ3、δ4は、
ロータ軸8、9に対するロータ2、3の組み立て誤差に
応じ変動し、その変動量は各ロータ2、3の径方向内方
側よりも外方側の方が大きくなる。これにより、その軸
方向隙間δ1、δ2、δ3、δ4は温度や組み立て誤差
に応じ変動し、その変動量はロータ2、3の径方向外端
すなわち歯部6、7の先端において最大となる。
When the internal temperature of the housing 20 rises by operating the vacuum pump 1, the rotor shafts 8,
9 is expanded in the axial direction by thermal deformation, whereby the rotors 2 and 3 move in the axial direction. In the above embodiment, the bearings 10 and 11 supporting the rotor shafts 8 and 9 in the fifth member 20e of the housing 20 are used as a reference, and the rotor shafts 8 and 9 are
Extends to the right in the figure. At this time, since the thermal deformation of each of the rotors 2 and 3 is small, the outer surface 2 of each of the rotors 2 and 3 is small.
The axial movement amounts of g, 2h, 3g, and 3h are substantially equal on the radially inner side and the outer side. On the other hand, the housing 20
Since the thermal deformation is small on the outer side in contact with the outside air and the thermal deformation is large on the inner side, it does not undergo uniform thermal deformation and causes distortion.
Therefore, the amount of axial movement of the inner side surfaces 20g and 20h of the housing 20 due to thermal deformation is small on the outer side and large on the inner side. As a result, the axial gaps δ1, δ2 between the inner side surfaces 20g, 20h of the housing 20 and the outer side surfaces 2g, 2h, 3g, 3h of the rotors 2, 3 before the temperature rise shown in (1) of FIG. δ3 and δ4 are as shown in FIG.
(2), the amount of fluctuation is greater on the radially outer side of each rotor 2, 3 than on the radially inner side. In addition, due to an assembly error of the rotors 2 and 3 with respect to the rotor shafts 8 and 9, as shown in (1) and (2) of FIG.
The outer side surfaces 2g, 2h, 3g, 3h of 3 relatively incline.
Therefore, the axial gaps δ1, δ2, δ3, δ4 are
It fluctuates according to the assembly error of the rotors 2 and 3 with respect to the rotor shafts 8 and 9, and the fluctuation amount is larger on the outer side than on the radially inner side of the rotors 2 and 3. As a result, the axial gaps δ1, δ2, δ3, δ4 fluctuate according to the temperature and the assembly error, and the fluctuation amount becomes maximum at the radial outer ends of the rotors 2, 3, that is, the tips of the tooth portions 6, 7.

【0021】そして、各吸気口25に対向する軸方向隙
間δ1は、前記段差30よりも径方向外方側では最大変
動量よりも大きく設定されている。また、その軸方向隙
間δ1は、その段差30よりも径方向内方側では最大変
動量よりも小さく、かつ、温度や誤差に基づく変動があ
っても吸気側ロータ2とハウジング20との干渉は生じ
ない大きさに設定されている。
The axial gap δ1 facing each intake port 25 is set to be larger than the maximum fluctuation amount on the radially outer side of the step 30. Further, the axial gap δ1 is smaller than the maximum variation on the radially inner side of the step 30, and even if there is variation due to temperature or error, the intake rotor 2 and the housing 20 do not interfere with each other. The size is set so that it will not occur.

【0022】また、各排気口26に対向する軸方向隙間
δ2は、前記段差31よりも径方向外方側では最大変動
量よりも大きく設定されている。また、その軸方向隙間
δ2は、その段差31よりも径方向内方側では最大変動
量よりも小さく、かつ、温度や誤差に基づく変動があっ
ても排気側ロータ3とハウジング20との干渉は生じな
い大きさに設定されている。
The axial gap δ2 facing each exhaust port 26 is set to be larger than the maximum fluctuation amount on the radially outer side of the step 31. Further, the axial clearance δ2 is smaller than the maximum variation on the radially inner side of the step 31, and even if there is variation due to temperature or error, the exhaust side rotor 3 and the housing 20 do not interfere with each other. The size is set so that it will not occur.

【0023】また、各吸気側ロータ2の吸気口25とは
反対側の外側面2hと、その外側面2hに対向するハウ
ジング20の内側面20hとの間の軸方向隙間δ3、お
よび、各排気側ロータ3の排気口26とは反対側の外側
面3gと、その外側面3gに対向するハウジング20の
内側面20gとの間の軸方向隙間δ4は、その最大変動
量よりも大きく設定されている。(なお、図面における
隙間は説明の便宜のため実際の隙間よりも大きく記載さ
れている。)
Further, the axial gap δ3 between the outer side surface 2h of each intake side rotor 2 opposite to the intake port 25 and the inner side surface 20h of the housing 20 facing the outer side surface 2h, and each exhaust gas. The axial gap δ4 between the outer side surface 3g of the side rotor 3 opposite to the exhaust port 26 and the inner side surface 20g of the housing 20 facing the outer side surface 3g is set to be larger than its maximum fluctuation amount. There is. (Note that the gaps in the drawings are larger than the actual gaps for convenience of description.)

【0024】上記構成によれば、ハウジング20に形成
される吸気口25と排気口26とは本体部4、5の円周
方向に沿う外周面4a、5aよりも径方向内方に位置す
るため、吸気口25と排気口26とに対向する間の軸方
向隙間δ1、δ2において、真空性能に大きく影響する
のは、本体部4、5の外周面4a、5aよりも径方向内
方における部分であって、本体部4、5の外周面4a、
5aよりも径方向外方における部分や、吸気口25と排
気口26とは反対側の軸方向隙間δ3、δ4は真空性能
にそれほど大きく影響しない。
According to the above construction, the intake port 25 and the exhaust port 26 formed in the housing 20 are located radially inward of the outer peripheral surfaces 4a, 5a of the body portions 4, 5 along the circumferential direction. In the axial gaps δ1 and δ2 between the intake port 25 and the exhaust port 26, the vacuum performance is greatly affected by the portions radially inward of the outer peripheral surfaces 4a and 5a of the body portions 4 and 5. And the outer peripheral surfaces 4a of the body portions 4 and 5,
A portion radially outward of 5a and the axial gaps δ3 and δ4 on the opposite side of the intake port 25 and the exhaust port 26 do not significantly affect the vacuum performance.

【0025】よって、本体部4、5の円周方向に沿う外
周面4a、5aよりも径方向外方に形成される段差3
0、31により、吸気口25と排気口26とに対向する
軸方向隙間δ1、δ2を、ロータ2、3の径方向外方側
で径方向内方側よりも大きく設定することで、温度や組
み立て誤差に基づくロータ2、3とハウジング20との
干渉を防止し、かつ、真空性能を向上することができ
る。また、ポンプ部品の加工や組み立ての精度を低く設
定できるのでコストを低減できる。
Therefore, the step 3 formed radially outward of the outer peripheral surfaces 4a, 5a of the body portions 4, 5 along the circumferential direction.
By setting the axial gaps δ1 and δ2 facing the intake port 25 and the exhaust port 26 by 0 and 31 to be larger on the radially outer side of the rotors 2 and 3 than on the radially inner side, It is possible to prevent interference between the rotors 2 and 3 and the housing 20 due to an assembly error and improve vacuum performance. Further, since the precision of processing and assembling the pump parts can be set low, the cost can be reduced.

【0026】なお、本発明は上記実施例に限定されな
い。例えば、上記実施例では吸気口25と排気口26と
に対向する軸方向隙間δ1、δ2の双方が、径方向外方
側で径方向内方側よりも大きく設定されたが、何れか一
方の軸方向隙間のみが径方向外方側で径方向内方側より
も大きく設定されてもよい。また、吸気口25と排気口
26とは反対側の軸方向隙間δ3、δ4が径方向外方側
で径方向内方側よりも大きく設定されてもよい。例えば
上記実施例の構造では、排気口26に対向する軸方向隙
間δ2が熱変形に基づき変動しても、排気側ロータ3と
ハウジング20とが干渉することはないので、ロータ軸
9に対するロータ3の組み立て精度と部品加工精度を向
上することができれば、吸気口25に対向する軸方向隙
間δ1のみを径方向外方側で径方向内方側よりも大きく
設定すれば足りる。また、上記実施例ではハウジング2
0に段差30、31を形成したが、図6に示すように、
ロータ2、3の外側面2g、2h、3g、3hに段差3
0′、31′を形成してもよく、あるいはハウジング2
0とロータ2、3の双方に形成してもよい。また、段差
30、31、30′、31′を本体部4、5の円周方向
に沿う外周面4a、5aと径方向に関し同一位置に形成
してもよい。
The present invention is not limited to the above embodiment. For example, in the above embodiment, both the axial gaps δ1 and δ2 facing the intake port 25 and the exhaust port 26 are set to be larger on the radially outer side than on the radially inner side, but either one of them is set. Only the axial gap may be set larger on the radially outer side than on the radially inner side. Further, the axial gaps δ3, δ4 on the opposite side of the intake port 25 and the exhaust port 26 may be set to be larger on the radially outer side than on the radially inner side. For example, in the structure of the above embodiment, the exhaust side rotor 3 and the housing 20 do not interfere with each other even if the axial gap δ2 facing the exhaust port 26 fluctuates due to thermal deformation. If the assembling accuracy and the component processing accuracy can be improved, it suffices to set only the axial gap δ1 facing the intake port 25 on the radially outer side to be larger than the radially inner side. Further, in the above embodiment, the housing 2
Although the steps 30 and 31 are formed at 0, as shown in FIG.
Steps 3 are formed on the outer surfaces 2g, 2h, 3g, 3h of the rotors 2, 3.
0 ', 31' may be formed or housing 2
0 and the rotors 2 and 3 may be formed. Further, the steps 30, 31, 30 ', 31' may be formed at the same position in the radial direction as the outer peripheral surfaces 4a, 5a of the body portions 4, 5 along the circumferential direction.

【0027】また、上記構造では排気側ロータ軸9の熱
による軸方向への伸長により、排気口26に対向する軸
方向隙間δ2そのものが大きくなり、これによっても真
空性能は低下する。そこで、図7に示すように、排気側
ロータ3の外側面3hに対向するハウジング20の一部
を、軸方向移動可能な可動部20aとし、その可動部2
0aの駆動用圧電素子40と、その軸方向隙間δ2の測
定センサ41と、その圧電素子40と測定センサ41と
に接続される制御装置42とを設け、その軸方向隙間δ
2の変化に応じ圧電素子40により可動部20aを軸方
向移動させることで、ロータ軸9の熱変形により軸方向
隙間δ2が拡大するのを防止してもよい。なお、他は上
記実施例と同様の構成とされ、同一部分は同一符号で示
す。あるいは、ロータ軸9に排気側ロータ3を軸方向変
位可能に取り付け、図8に示すように、排気側ロータ3
の両外側面3g、3hに螺旋溝50を形成し、そのロー
タ3の回転により軸方向隙間δ2、δ4において気体を
旋回させ、一方の軸方向隙間δ2における動圧と他方の
軸方向隙間δ4における動圧とのバランスによりロータ
3を軸方向移動させることで、ロータ軸9の熱変形によ
り軸方向隙間δ2が拡大するのを防止してもよい。ある
いは、ロータ軸9に排気側ロータ3を軸方向変位可能に
取り付け、排気側ロータ3の両外側面3g、3hに静圧
保持溝を形成し、その静圧保持溝にハウジング20の外
部から一定圧力のガスを導入して保持させ、一方の軸方
向隙間δ2における静圧と他方の軸方向隙間δ4におけ
る静圧とのバランスによりロータ3を軸方向移動させる
ことで、ロータ軸9の熱変形により軸方向隙間δ2が拡
大するのを防止してもよい。なお、静圧をバランスさせ
るためにハウジング20に導入するガスが真空性能に大
きな影響を及ぼすことがないように、その静圧保持溝を
設けるのは、図2において最左方と左方から2番目の排
気側ロータ3に止めるのが好ましい。
Further, in the above structure, the axial extension of the rotor shaft 9 on the exhaust side in the axial direction due to heat increases the axial gap δ2 itself facing the exhaust port 26, which also reduces the vacuum performance. Therefore, as shown in FIG. 7, a part of the housing 20 facing the outer surface 3h of the exhaust side rotor 3 is a movable portion 20a that is movable in the axial direction.
0a of the driving piezoelectric element 40, the measurement sensor 41 of the axial gap δ2 thereof, and the control device 42 connected to the piezoelectric element 40 and the measurement sensor 41 are provided.
By moving the movable portion 20a in the axial direction by the piezoelectric element 40 according to the change of 2, the expansion of the axial gap δ2 due to the thermal deformation of the rotor shaft 9 may be prevented. The rest of the configuration is the same as that of the above-described embodiment, and the same portions are denoted by the same reference numerals. Alternatively, the exhaust side rotor 3 is attached to the rotor shaft 9 so as to be displaceable in the axial direction, and as shown in FIG.
Spiral grooves 50 are formed on both outer side surfaces 3g and 3h of the rotor, and the rotation of the rotor 3 causes the gas to swirl in the axial gaps δ2 and δ4. By axially moving the rotor 3 in balance with the dynamic pressure, it is possible to prevent the axial gap δ2 from expanding due to thermal deformation of the rotor shaft 9. Alternatively, the exhaust side rotor 3 is attached to the rotor shaft 9 so as to be displaceable in the axial direction, static pressure holding grooves are formed on both outer side surfaces 3g, 3h of the exhaust side rotor 3, and the static pressure holding grooves are fixed from the outside of the housing 20. A gas having a pressure is introduced and held, and the rotor 3 is axially moved by the balance between the static pressure in the one axial gap δ2 and the static pressure in the other axial gap δ4, whereby the rotor shaft 9 is thermally deformed. The axial gap δ2 may be prevented from expanding. In order to prevent the gas introduced into the housing 20 for balancing the static pressure from having a great influence on the vacuum performance, the static pressure holding grooves are provided from the leftmost side and the leftmost side in FIG. It is preferable to stop at the second exhaust side rotor 3.

【0028】[0028]

【発明の効果】本発明の真空ポンプによれば、ロータの
外側面とハウジングの内側面との間において干渉防止の
ために必要とされる軸方向隙間を確保し、かつ、真空性
能を向上することができ、また、加工や組み立ての精度
を低く設定できるのでコストを低減できる。
According to the vacuum pump of the present invention, the axial gap required for preventing interference is secured between the outer surface of the rotor and the inner surface of the housing, and the vacuum performance is improved. Further, the processing and assembling accuracy can be set low, so that the cost can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例の真空ポンプの要部の側断面図FIG. 1 is a side sectional view of a main part of a vacuum pump according to an embodiment of the present invention.

【図2】本発明の実施例の真空ポンプの正断面図FIG. 2 is a front sectional view of a vacuum pump according to an embodiment of the present invention.

【図3】本発明の実施例の真空ポンプの構成説明用斜視
FIG. 3 is a perspective view for explaining the configuration of a vacuum pump according to an embodiment of the present invention.

【図4】(1)は本発明の実施例の真空ポンプの昇温前
の作用説明図、(2)は昇温後の作用説明図
FIG. 4 (1) is an explanatory view of the operation of the vacuum pump of the embodiment of the present invention before the temperature is raised, and (2) is an explanatory view of the operation after the temperature is raised.

【図5】(1)および(2)は本発明の実施例の真空ポ
ンプにおいて、ロータ軸に対するロータの取り付け誤差
の影響を示す図
5 (1) and (2) are views showing the influence of a rotor mounting error on a rotor shaft in a vacuum pump according to an embodiment of the present invention.

【図6】(1)は本発明の変形例のロータの側面図、
(2)は正面図
FIG. 6 (1) is a side view of a rotor of a modified example of the present invention,
(2) is a front view

【図7】本発明の変形例の真空ポンプの部分断面図FIG. 7 is a partial cross-sectional view of a vacuum pump of a modified example of the present invention.

【図8】本発明の変形例のロータの側面図FIG. 8 is a side view of a rotor of a modified example of the invention.

【符号の説明】[Explanation of symbols]

2 吸気側ロータ 2g 外側面 3 排気側ロータ 3h 外側面 4、5 本体部 4a、5a 外周面 6、7 歯部 20 ハウジング 20g、20h 内側面 25 吸気口 26 排気口 30、31 段差 δ1、δ2 軸方向隙間 2 Intake side rotor 2g Outer side surface 3 Exhaust side rotor 3h Outer side surface 4, 5 Main body section 4a, 5a Outer peripheral surface 6, 7 Tooth section 20 Housing 20g, 20h Inner side surface 25 Inlet port 26 Exhaust port 30, 31 Step δ1, δ2 Shaft Direction gap

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 吸気側ロータと、排気側ロータと、両ロ
ータを覆うハウジングとを備え、各ロータは、円周方向
に沿う外周面を有する本体部と、この本体部から径方向
外方に突出する歯部とを有し、そのハウジングに本体部
の円周方向に沿う外周面よりも径方向内方に位置する吸
気口と排気口とが形成され、両ロータの回転により吸気
口からハウジング内に吸入されるガスを圧縮して排気口
から排出する真空ポンプにおいて、その吸気口と排気口
の少なくとも一方に対向するロータの外側面とハウジン
グの内側面との間の軸方向隙間が、ロータの径方向外方
側で径方向内方側よりも大きく設定されるように、その
ロータの外側面とハウジングの内側面の少なくとも一方
に段差が形成され、その段差は本体部の円周方向に沿う
外周面と径方向に関し同一位置あるいは径方向外方に位
置する真空ポンプ。
1. An intake side rotor, an exhaust side rotor, and a housing that covers both rotors, each rotor having a main body having an outer peripheral surface along the circumferential direction, and a radial direction outward from the main body. An intake port and an exhaust port, which have a protruding tooth portion and are located radially inward of the outer peripheral surface of the main body portion along the circumferential direction of the main body portion, are formed in the housing by the rotation of both rotors from the intake port. In a vacuum pump that compresses the gas sucked into the interior thereof and discharges it from the exhaust opening, the axial gap between the outer surface of the rotor and the inner surface of the housing facing at least one of the intake opening and the exhaust opening is The outer surface of the rotor and the inner surface of the housing are stepped so that they are set larger on the outer side in the radial direction than on the inner side in the radial direction. Along the outer peripheral surface and the radial direction A vacuum pump located at the same position or radially outward.
JP33560692A 1992-11-19 1992-11-19 Vacuum pump Pending JPH06159273A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33560692A JPH06159273A (en) 1992-11-19 1992-11-19 Vacuum pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33560692A JPH06159273A (en) 1992-11-19 1992-11-19 Vacuum pump

Publications (1)

Publication Number Publication Date
JPH06159273A true JPH06159273A (en) 1994-06-07

Family

ID=18290467

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33560692A Pending JPH06159273A (en) 1992-11-19 1992-11-19 Vacuum pump

Country Status (1)

Country Link
JP (1) JPH06159273A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003502545A (en) * 1999-06-14 2003-01-21 ウェイ ショウーン Fluid machine having a gear and a pair of engagement gears formed by the gear
WO2007063341A1 (en) * 2005-12-02 2007-06-07 Edwards Limited Multi-stage roots vacuum pump
JP2014047653A (en) * 2012-08-30 2014-03-17 Ulvac Japan Ltd Vacuum pump

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003502545A (en) * 1999-06-14 2003-01-21 ウェイ ショウーン Fluid machine having a gear and a pair of engagement gears formed by the gear
JP4823455B2 (en) * 1999-06-14 2011-11-24 ウェイ ショウーン Fluid machine provided with a gear and a pair of engagement gears using the gear
WO2007063341A1 (en) * 2005-12-02 2007-06-07 Edwards Limited Multi-stage roots vacuum pump
JP2014047653A (en) * 2012-08-30 2014-03-17 Ulvac Japan Ltd Vacuum pump

Similar Documents

Publication Publication Date Title
US4722676A (en) Axial sealing mechanism for scroll type fluid displacement apparatus
JP2002106483A (en) Scroll type compressor and sealing method therefor
US4548555A (en) Scroll type fluid displacement apparatus with nonuniform scroll height
US4626179A (en) Axial thrust load mechanism for a scroll type fluid displacement apparatus
US6379134B2 (en) Scroll compressor having paired fixed and moveable scrolls
JP2971739B2 (en) Scroll type fluid machine
CA1282755C (en) Drive system for the orbiting scroll of a scroll type fluid compressor
US5545020A (en) Scroll type compressor with spiral seals
JPS622121B2 (en)
US8328545B2 (en) Scroll fluid machine with stabilized orbiting scroll
JPH06159273A (en) Vacuum pump
JPH01273890A (en) Scroll-type compressor
US6884047B1 (en) Compact scroll pump
JP2002022033A (en) Labyrinth seal and fluid machinery
KR950033099A (en) Scroll compressor
JPH09133086A (en) Scroll type compressor
EP1707814B1 (en) Scroll fluid machine with a silencer
JP4398539B2 (en) Scroll compressor
JP2003286979A (en) Helical blade compressor
US6382941B1 (en) Device and method to prevent misbuild and improper function of air conditioning scroll compressor due to misplaced or extra steel spherical balls
JPS6130158B2 (en)
JPH0797989A (en) Oil-free scroll fluid compressor
JPH03249391A (en) Turning rotor device
KR940006866B1 (en) Axial fluid compressor
JP2663934B2 (en) Scroll compressor