JPH06157988A - Ceramic powder for impregnation and method for impregnation - Google Patents

Ceramic powder for impregnation and method for impregnation

Info

Publication number
JPH06157988A
JPH06157988A JP4329998A JP32999892A JPH06157988A JP H06157988 A JPH06157988 A JP H06157988A JP 4329998 A JP4329998 A JP 4329998A JP 32999892 A JP32999892 A JP 32999892A JP H06157988 A JPH06157988 A JP H06157988A
Authority
JP
Japan
Prior art keywords
powder
polysilazane
molecular weight
impregnated
impregnating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4329998A
Other languages
Japanese (ja)
Inventor
Hiroki Hirai
宏樹 平井
Isao Kamioka
勇夫 上岡
Koichi Iwata
幸一 岩田
Kazuo Sawada
和夫 澤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP4329998A priority Critical patent/JPH06157988A/en
Publication of JPH06157988A publication Critical patent/JPH06157988A/en
Pending legal-status Critical Current

Links

Landscapes

  • Processes Of Treating Macromolecular Substances (AREA)
  • Paints Or Removers (AREA)

Abstract

PURPOSE:To obtain a ceramic powder, capable of impregnating an insulator under solventless conditions in a manner similar to that of epoxy resin powder, etc., and useful for applications such as impregnating and fixing of insulated wires, etc., by powdering a high-molecular weight polysilazane. CONSTITUTION:This ceramic powder is composed of powder (preferably having 10-150mum average particle diameter) of a polysilazane having a recurring unit of the formula (R1 and R2 are H, alkyl, alkenyl, etc.) and >=1500 number-average molecular weight (hereinafter referred to as a high-molecular weight polysilazane). The high-molecular weight polysilazane is preferably obtained by reacting a dihalosilane of the formula R1R2SiX (X is halogen) with ammonia and heating the resultant polysilazane having 700-800 number-average molecular weight at 150-300 deg.C in an inert gas for 1-30hr. Furthermore, the powder is impregnated into a material to be impregnated by heating the powder in the inert gas, applying the powder to a material to be impregnated and then infusibilizing the resultant material.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、含浸用セラミック粉体
及び含浸方法に関し、さらに詳しくは、ポリシラザン粉
体からなり、耐熱性に優れた皮膜を形成する含浸用セラ
ミック粉体とその含浸方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an impregnating ceramic powder and an impregnating method, and more particularly to an impregnating ceramic powder which is made of polysilazane powder and forms a film having excellent heat resistance, and an impregnating method thereof. .

【0002】[0002]

【従来の技術】絶縁体の中には、特殊な化学プラントや
加熱設備など、高温下に曝された場合でも安全性の要求
される設備に使用されるものがある。例えば、機器の配
線、巻線等に使用される絶縁電線は、非常な高温に曝さ
れた場合であっても、高度の耐熱性が要求されることが
ある。従来、このような用途に使用される耐熱絶縁電線
の絶縁皮膜には、ポリイミド樹脂、ポリアミドイミド樹
脂、フッ素系樹脂等の耐熱性樹脂が使用されている。
2. Description of the Related Art Some insulators are used in equipment such as special chemical plants and heating equipment that require safety even when exposed to high temperatures. For example, insulated wires used for device wiring, windings, etc. may be required to have a high degree of heat resistance even when exposed to extremely high temperatures. Conventionally, a heat-resistant resin such as a polyimide resin, a polyamide-imide resin, or a fluorine-based resin has been used for an insulating film of a heat-resistant insulated wire used for such an application.

【0003】しかし、このような耐熱性樹脂からなる有
機絶縁皮膜では、より高い耐熱性が要求される用途や高
温下におけるより高い信頼性の必要な用途においては、
耐熱性が不十分である。そこで、近年、シリコーン樹脂
や焼成によりセラミック化するポリカルボシラン、ポリ
チタノシランなどのプリセラミックポリマーを含む無機
絶縁皮膜を設けることが検討されている。ところで、こ
れらの絶縁皮膜を形成した絶縁体は、固定のために、絶
縁物を含浸させることが多い。例えば、各種モーターコ
イルやバラストコイル、ボビン巻コイルなどに樹脂を含
浸させて、巻線の固定や接着を行うことにより、電気絶
縁性、機械的強度、耐湿性などを向上させると共に、環
境条件からの保護、作業性の改善を図っている。
However, the organic insulating film made of such a heat resistant resin is used in applications requiring higher heat resistance and applications requiring higher reliability at high temperatures.
Insufficient heat resistance. Therefore, in recent years, it has been considered to provide an inorganic insulating film containing a pre-ceramic polymer such as silicone resin or polycarbosilane or polytitanosilane which is made into ceramic by firing. By the way, the insulators having these insulating films are often impregnated with an insulator for fixing. For example, various motor coils, ballast coils, bobbin winding coils, etc. are impregnated with resin to fix and bond windings, improving electrical insulation, mechanical strength, moisture resistance, etc. To protect the work and improve workability.

【0004】従来、これらの含浸用樹脂として、エポキ
シ樹脂粉体塗料を使用することが知られている。エポキ
シ樹脂粉体塗料は、被含浸物に付着させた後、加熱溶融
させて含浸・硬化させている。エポキシ樹脂粉体塗料
は、加熱溶融すると低粘度の液状となるため、良好な含
浸ができ、周囲への付着も少ない。しかも、溶剤を使用
しないため、作業性が良好で、無公害である。しかしな
がら、より高い耐熱性が要求される用途や高温下におけ
るより高い信頼性の必要な用途には、絶縁物を固定させ
る含浸物にも高度の耐熱性が要求されるようになってい
るが、有機樹脂からなる含浸物では、これらの要求に充
分に応えることができない。
Conventionally, it has been known to use an epoxy resin powder coating as the impregnating resin. The epoxy resin powder coating material is adhered to the material to be impregnated and then heated and melted to be impregnated and cured. Since the epoxy resin powder coating material becomes a low-viscosity liquid when it is heated and melted, it can be well impregnated and has little adhesion to the surroundings. Moreover, since no solvent is used, workability is good and there is no pollution. However, for applications requiring higher heat resistance and applications requiring higher reliability under high temperatures, a high degree of heat resistance is required for the impregnated material that fixes the insulator, An impregnated product made of an organic resin cannot sufficiently meet these requirements.

【0005】最近、ポリシラザン等のプレセラミックポ
リマーを用いた耐熱性塗料について各種の提案がなされ
ている(特開平1−203476号、特開昭63−23
4069号、特開昭63−250011号)。これらの
耐熱性塗料は、いずれも有機溶剤にプレセラミックポリ
マーと絶縁性無機充填剤を溶解または分散させたもので
あり、高度の耐熱性を有する皮膜を与えることができ
る。しかしながら、これらの耐熱性塗料を絶縁物の固定
のための含浸用として使用するには、被含浸物に含浸し
た後、有機溶剤を除去しなければならため、作業性が悪
く、エポキシ樹脂粉体塗料と同様の含浸方法を実施する
ことができない。また、ジクロロシランのアンモノリシ
スにより得られるポリシラザンは、数平均分子量が一般
に約800以下と小さく、該ポリシラザンを用いた塗料
を塗布し焼付けた皮膜の機械的特性は不十分であり、し
かも粉体化が困難である。
Recently, various proposals have been made for heat-resistant paints using a preceramic polymer such as polysilazane (Japanese Patent Laid-Open Nos. 1-203476 and 63-23.
4069, JP-A-63-250011). All of these heat resistant paints are prepared by dissolving or dispersing a preceramic polymer and an insulating inorganic filler in an organic solvent, and can provide a film having a high degree of heat resistance. However, in order to use these heat-resistant paints for impregnation for fixing an insulating material, it is necessary to remove the organic solvent after impregnating the material to be impregnated. Impregnation methods similar to paints cannot be carried out. The polysilazane obtained by ammonolysis of dichlorosilane generally has a small number average molecular weight of about 800 or less, and the coating obtained by applying a coating using the polysilazane has insufficient mechanical properties, and is powdered. Have difficulty.

【0006】[0006]

【発明が解決しようとする課題】本発明の目的は、ポリ
シラザンを粉体化することにより、エポキシ樹脂粉体な
どの含浸用有機粉体材料と同様に絶縁体に含浸させるこ
とができる含浸用セラミック粉体を提供することにあ
る。また、本発明の目的は、ポリシラザン粉体を用いて
被含浸物に含浸する方法を提供することにある。
DISCLOSURE OF THE INVENTION An object of the present invention is to impregnate an insulator by pulverizing polysilazane in the same manner as an impregnating organic powder material such as an epoxy resin powder. To provide powder. Another object of the present invention is to provide a method of impregnating an object to be impregnated with a polysilazane powder.

【0007】本発明者らは、前記従来技術の問題点を克
服するために鋭意研究した結果、ジクロロシランのアン
モノリシスにより得られるポリシラザンを不活性ガス中
で加熱することにより容易に数平均分子量1500以上
に高分子量化することができること、そして、得られた
高分子量ポリシラザンを粉砕して粉体化したものは、従
来の含浸用有機樹脂粉体と同様に、絶縁体などの被含浸
物に容易に含浸させ、かつ、不融化できることを見出し
た。本発明は、これらの知見に基づいて完成するに至っ
たものである。
As a result of intensive studies to overcome the above-mentioned problems of the prior art, the present inventors have found that polysilazane obtained by ammonolysis of dichlorosilane can be easily heated in an inert gas to have a number average molecular weight of 1,500 or more. It is possible to make the polymer have a high molecular weight, and the obtained high molecular weight polysilazane is pulverized into a powder, and like the conventional organic resin powder for impregnation, it can be easily applied to an impregnated object such as an insulator. It was found that they can be impregnated and infusibilized. The present invention has been completed based on these findings.

【0008】[0008]

【課題を解決するための手段】かくして、本発明によれ
ば、一般式〔I〕 (−SiR12−NH−) 〔I〕 〔式中、R1及びR2は、それぞれ独立に、水素原子、ア
ルキル基、アルケニル基、シクロアルキル基、アルキル
アミノ基、アリール基、またはアルキルシリル基から選
ばれる。〕で表される繰り返し単位を有し、数平均分子
量が1500以上のポリシラザンの粉体からなることを
特徴とする含浸用セラミック粉体が提供される。また、
本発明によれば、前記含浸用セラミック粉体を不活性ガ
ス中で加熱することにより被含浸物に付着させた後、不
融化することを特徴とするセラミック含浸方法が提供さ
れる。
According to the present invention, the general formula [I] (-SiR 1 R 2 -NH-) [I] [in the formula, R 1 and R 2 are each independently It is selected from a hydrogen atom, an alkyl group, an alkenyl group, a cycloalkyl group, an alkylamino group, an aryl group, or an alkylsilyl group. ] A ceramic powder for impregnation comprising a powder of polysilazane having a repeating unit represented by the following formula and having a number average molecular weight of 1500 or more is provided. Also,
According to the present invention, there is provided a method for impregnating ceramics, which comprises heating the impregnating ceramic powder in an inert gas to adhere it to an object to be impregnated and then making it infusible.

【0009】以下、本発明について詳述する。本発明で
使用する原料のポリシラザンは、一般式〔I〕 (−SiR12−NH−) 〔I〕 〔式中、R1及びR2は、それぞれ独立に、水素原子、ア
ルキル基、アルケニル基、シクロアルキル基、アルキル
アミノ基、アリール基、またはアルキルシリル基から選
ばれる。〕で表される繰り返し単位を有するポリマーで
ある。
The present invention will be described in detail below. The raw material polysilazane used in the present invention is represented by the general formula [I] (-SiR 1 R 2 -NH-) [I] [wherein, R 1 and R 2 are each independently a hydrogen atom, an alkyl group or an alkenyl group]. A group, a cycloalkyl group, an alkylamino group, an aryl group, or an alkylsilyl group. ] It is a polymer which has a repeating unit represented by these.

【0010】アルキル基としては、メチル、エチル、プ
ロピル、ブチル、ペンチル、ヘキシル、オクチル、デシ
ル等が挙げられる。アルケニル基としては、ビニル、ア
リル、ブレニル、ペンテニル、ヘキセニル、ブチニル、
オクテニル、デセニル等が挙げられる。アリール基とし
ては、フェニル、トリル、キシリル、ナフチル等が挙げ
られる。
Examples of the alkyl group include methyl, ethyl, propyl, butyl, pentyl, hexyl, octyl, decyl and the like. As the alkenyl group, vinyl, allyl, brylenyl, pentenyl, hexenyl, butynyl,
Examples include octenyl and decenyl. Examples of the aryl group include phenyl, tolyl, xylyl, naphthyl and the like.

【0011】このポリシラザンは、一般式R12SiX
2(R1及びR2は、前記と同じであり、Xは、ハロゲン
原子である。)で表されるジハロシランとアンモニアを
反応させること(即ち、アンモノリシス)により得るこ
とができる。ジハロシランと塩基とを反応させてジハロ
シランのアダクツを形成した後、アンモニアと反応させ
てもよい。このアンモノリシスは、一般に、ジクロロメ
タンなどの有機溶媒中、氷冷下にて行われるが、それに
より数平均分子量が通常700〜800程度のポリシラ
ザンが生成する。このポリシラザンは、比較的低分子量
であるため、粉体化が困難であったり、あるいは十分な
機械的強度を有する含浸物を得ることができない。本発
明では、ポリシラザンを高分子量化することにより、粉
体を作成しやすくすると共に、耐熱性と機械的特性をも
改善する。
This polysilazane has the general formula R 1 R 2 SiX
2 (R 1 and R 2 are the same as above, and X is a halogen atom) and can be obtained by reacting ammonia with dihalosilane (that is, ammonolysis). The dihalosilane may be reacted with ammonia after reacting the base with the base to form an adduct of the dihalosilane. This ammonolysis is generally carried out in an organic solvent such as dichloromethane under ice cooling, whereby polysilazane having a number average molecular weight of usually about 700 to 800 is produced. Since this polysilazane has a relatively low molecular weight, it is difficult to make it into a powder, or an impregnated product having sufficient mechanical strength cannot be obtained. In the present invention, the polysilazane is made to have a high molecular weight to facilitate the production of a powder and also to improve heat resistance and mechanical properties.

【0012】高分子量化の方法として、本発明では、原
料ポリシラザンを不活性ガス中で加熱する方法を採用す
る。ポリシラザンの酸化による架橋反応が生じると、こ
の段階で不融化するため、不活性ガス中で加熱する。加
熱温度は、通常100〜400℃、好ましくは150〜
300℃である。加熱時間は、通常30分以上であり、
長時間加熱するほど高分子量物を得ることができるが、
生産性の観点から好ましくは1〜30時間である。この
高分子量化処理により、ゲルパーミエーションクロマト
グラフィー(GPC)で測定した数平均分子量(ポリス
チレン換算)を原料ポリシラザンの約2倍以上とするこ
とができる。高分子量化したポリシラザンを含浸用粉体
として使用する場合には、高分子量化処理により、数平
均分子量が1500以上、好ましくは1600以上とす
ることが望ましい。
In the present invention, a method for heating the raw material polysilazane in an inert gas is adopted as a method for increasing the molecular weight. When a cross-linking reaction occurs due to the oxidation of polysilazane, the polysilazane becomes infusible at this stage. Therefore, heating is performed in an inert gas. The heating temperature is usually 100 to 400 ° C, preferably 150 to 400 ° C.
It is 300 ° C. The heating time is usually 30 minutes or more,
Higher molecular weight can be obtained by heating for a longer time,
From the viewpoint of productivity, it is preferably 1 to 30 hours. By this high molecular weight treatment, the number average molecular weight (in terms of polystyrene) measured by gel permeation chromatography (GPC) can be made about twice or more that of the raw material polysilazane. When polysilazane having a high molecular weight is used as the powder for impregnation, it is desirable that the number average molecular weight is 1500 or more, preferably 1600 or more by the high molecular weight treatment.

【0013】また、耐熱性及び被含浸物との密着性の観
点から、一般式〔I〕中、R1及びR2の少なくとも一つ
が水素原子であるポリシラザンが好ましい。さらに、高
分子量化と粉体化の行い易さの観点から、一般式〔I〕
が、R1及びR2の少なくとも一つが水素原子である繰り
返し単位と、両者が水素原子でない繰り返し単位とを含
むことが好ましい。
From the viewpoint of heat resistance and adhesion to the material to be impregnated, polysilazane in which at least one of R 1 and R 2 in the general formula [I] is a hydrogen atom is preferable. Further, from the viewpoint of high molecular weight and easy pulverization, the compound of the general formula [I]
Preferably contains a repeating unit in which at least one of R 1 and R 2 is a hydrogen atom, and a repeating unit in which both are not hydrogen atoms.

【0014】具体的には、一般式〔I〕で表される繰り
返し単位が、下記の一般式〔I−1〕 (−SiR12−NH−) 〔I−1〕 〔式中、R1及びR2は、それぞれ独立に、水素原子、ア
ルキル基、アルケニル基、シクロアルキル基、アルキル
アミノ基、アリール基、またはアルキルシリル基から選
ばれ、かつ、R1及びR2の少なくとも1つが水素原子で
ある。〕で表される繰り返し単位と、下記の一般式〔I
−2〕 (−SiR34−NH−) 〔I−2〕 〔式中、R3及びR4は、それぞれ独立に、アルキル基、
アルケニル基、シクロアルキル基、アルキルアミノ基、
アリール基、またはアルキルシリル基から選ばれる。〕
で表される繰り返し単位の両者を含有するポリシラザン
である。この共重合ポリシラザンは、ジハロシランとし
て、R12SiX2及びR34SiX2の混合物を使用す
ることにより得ることができる。
Specifically, the repeating unit represented by the general formula [I] is represented by the following general formula [I-1] (-SiR 1 R 2 -NH-) [I-1] [in the formula, R 1 and R 2 are each independently selected from a hydrogen atom, an alkyl group, an alkenyl group, a cycloalkyl group, an alkylamino group, an aryl group, or an alkylsilyl group, and at least one of R 1 and R 2 is hydrogen. Is an atom. ] The repeating unit represented by the following general formula [I
-2] (-SiR 3 R 4 -NH-) (I-2) wherein, R 3 and R 4 are each independently an alkyl group,
Alkenyl group, cycloalkyl group, alkylamino group,
It is selected from an aryl group or an alkylsilyl group. ]
It is a polysilazane containing both of the repeating units represented by. This copolymerized polysilazane can be obtained by using a mixture of R 1 R 2 SiX 2 and R 3 R 4 SiX 2 as the dihalosilane.

【0015】一般式〔I−1〕で表される繰り返し単位
は、分子中にSi−H結合を有しているため、熱分解時
のセラミック収率が高く、欠陥の少ない皮膜を形成する
のに寄与する。一方、一般式〔I−2〕で表される繰り
返し単位の導入により、ポリシラザンが不活性ガス雰囲
気中で熱可塑性を強く帯びるようになる。これらの繰り
返し単位の好ましい割合は、繰り返し単位〔I−1〕が
90〜40モル%で、繰り返し単位〔I−2〕が10〜
60モル%である。
Since the repeating unit represented by the general formula [I-1] has a Si--H bond in the molecule, it has a high ceramic yield upon thermal decomposition and forms a film with few defects. Contribute to. On the other hand, by introducing the repeating unit represented by the general formula [I-2], polysilazane becomes strongly thermoplastic in an inert gas atmosphere. The preferable ratio of these repeating units is 90 to 40 mol% of the repeating unit [I-1] and 10 to 10 of the repeating unit [I-2].
It is 60 mol%.

【0016】高分子量化した前述のポリシラザンを不活
性ガス中でボールミル等の粉砕装置を用いて粉砕するこ
とにより、ポリシラザン粉体を作成することができる。
粒径を揃えたい時には、風力分級機や篩い等を用いて分
級してもよい。ポリシラザン粉体の平均粒径は、所望に
より適宜選択することができ、特に限定されないが、通
常5〜300μm、好ましくは10〜150μm程度で
ある。
Polysilazane powder can be prepared by pulverizing the above-mentioned polysilazane having a high molecular weight in an inert gas using a pulverizing device such as a ball mill.
When it is desired to make the particle diameters uniform, the classification may be performed using a wind classifier or a sieve. The average particle size of the polysilazane powder can be appropriately selected as desired and is not particularly limited, but is usually 5 to 300 μm, preferably 10 to 150 μm or so.

【0017】本発明のポリシラザン粉体からなる含浸用
セラミック粉体は、不活性ガス中で絶縁体などの被含浸
物に付着した後、加熱することで溶融させて広がらせ
る。次いで、溶融した含浸粉体を不融化させて、被含浸
物を固定化する。不融化方法としては、大気中で加熱す
ることにより行うことが容易である。不融化条件として
は、通常100〜1100℃、好ましくは200〜50
0℃で、数分から数時間加熱する。また、より速く不融
化させるには、水蒸気を接触させる方法がある。被含浸
物は、特に限定されないが、例えば、絶縁電線などの絶
縁体を挙げることができる。
The ceramic powder for impregnation comprising the polysilazane powder of the present invention is adhered to an impregnated object such as an insulator in an inert gas and then heated to be melted and spread. Next, the molten impregnated powder is infusibilized to fix the impregnated object. As the infusibilizing method, it is easy to carry out by heating in the atmosphere. The infusibilizing condition is usually 100 to 1100 ° C, preferably 200 to 50.
Heat at 0 ° C. for minutes to hours. Further, there is a method of contacting with water vapor to make infusibilization faster. The material to be impregnated is not particularly limited, but examples thereof include an insulator such as an insulated wire.

【0018】[0018]

【実施例】以下に、合成例及び実施例を挙げて、本発明
についてさらに具体的に説明するが、本発明は、これら
の実施例のみに限定されるものではない。
EXAMPLES The present invention will be described more specifically below with reference to synthetic examples and examples, but the present invention is not limited to these examples.

【0019】[合成例1]反応容器を乾燥窒素ガスで置
換した後、蒸留ジクロロメタン800gを入れて0℃以
下に冷却し、メチルジクロロシラン(CH3HSiC
2)80gを投入した。30分撹拌をした後、NH3
200ml/分で2.5時間投入し、アンモノリシスさ
せた。NH4Clの析出で溶液は白色のペースト状とな
った。ろ過を行い、ろ液を取り出し真空乾燥することに
より、高粘性液体を得た。IRスペクトルの各ピークの
帰属によりポリシラザンの生成を確認した。また、GP
Cにより分子量を測定したところ、数平均分子量(M
n)700で、重量平均分子量(Mw)1000であっ
た。
[Synthesis Example 1] After the reaction vessel was replaced with dry nitrogen gas, 800 g of distilled dichloromethane was added, and the mixture was cooled to 0 ° C. or lower to obtain methyldichlorosilane (CH 3 HSiC).
l 2 ) 80 g was added. After stirring for 30 minutes, NH 3 was added at 200 ml / min for 2.5 hours to carry out ammonolysis. The solution became a white paste by precipitation of NH 4 Cl. Filtration was performed, and the filtrate was taken out and vacuum dried to obtain a highly viscous liquid. The generation of polysilazane was confirmed by the attribution of each peak in the IR spectrum. Also, GP
When the molecular weight was measured by C, the number average molecular weight (M
n) 700 and weight average molecular weight (Mw) 1000.

【0020】得られたポリシラザン25gを、乾燥窒素
をフローさせた反応容器中に投入した。次に、残留する
溶剤を除去し、樹脂のみにした後、窒素雰囲気下で、2
00℃、2時間加熱した。加熱終了後、固形物を得た。
この固形物は、キシレンに容易に溶解した。GPCによ
り得られた固形物の分子量を測定したところ、数平均分
子量(Mn)1600で、重量平均分子量(Mw)11
200であった。かくして、高分子量化ポリシラザン
(P1)を作成した。
25 g of the obtained polysilazane was put into a reaction vessel in which dry nitrogen was flown. Next, the residual solvent is removed to leave only the resin, and then under a nitrogen atmosphere, 2
It heated at 00 degreeC for 2 hours. After heating was completed, a solid product was obtained.
This solid dissolved easily in xylene. When the molecular weight of the solid obtained by GPC was measured, the number average molecular weight (Mn) was 1600 and the weight average molecular weight (Mw) was 11
It was 200. Thus, high molecular weight polysilazane (P1) was prepared.

【0021】[合成例2]反応容器を乾燥窒素ガスで置
換した後、蒸留ジクロロメタン800gを入れて0℃以
下に冷却し、メチルジクロロシラン(CH3HSiC
2)80gとジフェニルジクロロシラン(Ph2SiC
2)20gを添加した。30分撹拌をした後、NH3
200ml/分で3時間投入し、アンモノリシスさせ
た。NH4Clの析出で溶液は白色のペースト状となっ
た。ろ過を行い、ろ液を取り出し真空乾燥することによ
り、高粘性液体を得た。IRスペクトルの各ピークの帰
属により共重合ポリシラザンの生成を確認した。また、
GPCにより分子量を測定したところ、数平均分子量
(Mn)800で、重量平均分子量(Mw)1200で
あった。
[Synthesis Example 2] After the reaction vessel was replaced with dry nitrogen gas, 800 g of distilled dichloromethane was added, and the mixture was cooled to 0 ° C. or lower to obtain methyldichlorosilane (CH 3 HSiC).
l 2 ) 80 g and diphenyldichlorosilane (Ph 2 SiC
l 2 ) 20 g was added. After stirring for 30 minutes, NH 3 was added at 200 ml / min for 3 hours to carry out ammonolysis. The solution became a white paste by precipitation of NH 4 Cl. Filtration was performed, and the filtrate was taken out and vacuum dried to obtain a highly viscous liquid. Formation of the copolymerized polysilazane was confirmed by the attribution of each peak in the IR spectrum. Also,
When the molecular weight was measured by GPC, the number average molecular weight (Mn) was 800 and the weight average molecular weight (Mw) was 1200.

【0022】得られたポリシラザン25gを、乾燥窒素
をフローさせた反応容器中に投入した。次に、残留する
溶剤を除去し、樹脂のみにした後、窒素雰囲気下で、2
50℃、20時間加熱した。加熱終了後、固形物を得
た。この固形物は、キシレンに容易に溶解した。GPC
により得られた固形物の分子量を測定したところ、数平
均分子量(Mn)2100で、重量平均分子量(Mw)
22300であった。かくして、高分子量化ポリシラザ
ン(P2)を作成した。
25 g of the obtained polysilazane was put into a reaction vessel in which dry nitrogen was flown. Next, the residual solvent is removed to leave only the resin, and then under a nitrogen atmosphere, 2
It heated at 50 degreeC for 20 hours. After heating was completed, a solid product was obtained. This solid dissolved easily in xylene. GPC
When the molecular weight of the solid obtained by was measured, the number average molecular weight (Mn) was 2100 and the weight average molecular weight (Mw) was
It was 22,300. Thus, high molecular weight polysilazane (P2) was prepared.

【0023】[実施例1]合成例1で得られた高分子量
化ポリシラザン(P1)を不活性ガスでパージされたボ
ールミルで3時間粉砕して、ポリシラザン粉体を得た。
得られた粉体の平均粒径は20μmであった。被含浸物
として、セラミックスの被覆を施した絶縁電線を3本用
意し、平行に並べた。次に、ポリシラザン粉体をふりか
け、不活性ガス中で150℃に加熱して粉体を溶解さ
せ、絶縁電線にしみ込ませた。次いで、大気中で300
℃で10分間加熱することにより、しみ込ませたポリシ
ラザンを不融化させた。含浸材の耐熱性を評価するため
に、500℃で2時間放置して、被含浸物の状態を観察
したところ、3本の絶縁電線は、含浸材により固定され
ていた。
Example 1 The high molecular weight polysilazane (P1) obtained in Synthesis Example 1 was pulverized for 3 hours with a ball mill purged with an inert gas to obtain a polysilazane powder.
The average particle size of the obtained powder was 20 μm. As an impregnated object, three insulated electric wires coated with ceramics were prepared and arranged in parallel. Next, the polysilazane powder was sprinkled, heated at 150 ° C. in an inert gas to dissolve the powder, and the insulating wire was impregnated with the powder. Then 300 in the atmosphere
The impregnated polysilazane was infusibilized by heating at 0 ° C. for 10 minutes. In order to evaluate the heat resistance of the impregnated material, it was left at 500 ° C. for 2 hours and the state of the impregnated material was observed. As a result, three insulated wires were fixed by the impregnated material.

【0024】[実施例2]合成例2で得られた高分子量
化ポリシラザン(P2)を不活性ガスでパージされたボ
ールミルで2時間粉砕して、ポリシラザン粉体を得た。
得られた粉体の平均粒径は15μmであった。被含浸物
として、セラミックスの被覆を施した絶縁電線を3本用
意し、平行に並べた。次に、ポリシラザン粉体をふりか
け、不活性ガス中で120℃に加熱して粉体を溶解さ
せ、絶縁電線にしみ込ませた。次いで、大気中で300
℃で15分間加熱することにより、しみ込ませたポリシ
ラザンを不融化させた。含浸材の耐熱性を評価するため
に、500℃で2時間放置して、被含浸物の状態を観察
したところ、3本の絶縁電線は、含浸材により固定され
ていた。
Example 2 The high molecular weight polysilazane (P2) obtained in Synthesis Example 2 was ground for 2 hours with a ball mill purged with an inert gas to obtain a polysilazane powder.
The average particle size of the obtained powder was 15 μm. As an impregnated object, three insulated electric wires coated with ceramics were prepared and arranged in parallel. Next, the polysilazane powder was sprinkled, heated at 120 ° C. in an inert gas to melt the powder, and soaked into the insulated wire. Then 300 in the atmosphere
The impregnated polysilazane was infusibilized by heating at 15 ° C. for 15 minutes. In order to evaluate the heat resistance of the impregnated material, it was left at 500 ° C. for 2 hours and the state of the impregnated material was observed. As a result, three insulated wires were fixed by the impregnated material.

【0025】[実施例3]実施例2と同様にして、セラ
ミックの被覆を施した絶縁電線3本に、ポリシラザン粉
体をふりかけ、不活性ガス中で120℃に加熱し、粉体
を溶解させ絶縁電線にしみ込ませた。次に、水蒸気を1
0分間吹き付けることにより、ポリシラザンを不融化さ
せた。含浸材の耐熱性を評価するために、500℃で2
時間放置して、被含浸物の状態を観察したところ、3本
の絶縁電線は、含浸材により固定されていた。
[Embodiment 3] As in Embodiment 2, polysilazane powder is sprinkled on three insulated wires covered with a ceramic and heated to 120 ° C. in an inert gas to dissolve the powder. I dipped it into an insulated wire. Next, add 1
The polysilazane was made infusible by spraying for 0 minutes. In order to evaluate the heat resistance of the impregnated material, 2 at 500 ° C
When left standing for a period of time and observing the state of the material to be impregnated, the three insulated wires were fixed by the impregnating material.

【0026】[0026]

【発明の効果】本発明によれば、高分子量ポリシラザン
を粉体化することにより、エポキシ樹脂粉体などの含浸
用有機粉体材料と同様に、無溶剤で絶縁体に含浸させる
ことができる含浸用セラミック粉体が提供される。ま
た、本発明によれば、ポリシラザン粉体を用いて被含浸
物に含浸する方法が提供される。本発明の含浸用セラミ
ック粉体は、例えば、絶縁電線の含浸固定などの用途に
好適である。
According to the present invention, by impregnating a high molecular weight polysilazane into a powder, it is possible to impregnate an insulator with a solvent, similarly to an organic powder material for impregnation such as an epoxy resin powder. A ceramic powder for use is provided. Further, according to the present invention, there is provided a method of impregnating an object to be impregnated with a polysilazane powder. The impregnating ceramic powder of the present invention is suitable for applications such as impregnating and fixing an insulated wire.

フロントページの続き (72)発明者 澤田 和夫 大阪府大阪市此花区島屋一丁目1番3号 住友電気工業株式会社大阪製作所内Continued Front Page (72) Inventor Kazuo Sawada 1-3-3 Shimaya, Konohana-ku, Osaka City, Osaka Prefecture Sumitomo Electric Industries, Ltd. Osaka Works

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 一般式〔I〕 (−SiR12−NH−) 〔I〕 〔式中、R1及びR2は、それぞれ独立に、水素原子、ア
ルキル基、アルケニル基、シクロアルキル基、アルキル
アミノ基、アリール基、またはアルキルシリル基から選
ばれる。〕で表される繰り返し単位を有し、数平均分子
量が1500以上のポリシラザンの粉体からなることを
特徴とする含浸用セラミック粉体。
1. A compound represented by the general formula [I] (—SiR 1 R 2 —NH—) [I] [wherein R 1 and R 2 are each independently a hydrogen atom, an alkyl group, an alkenyl group or a cycloalkyl group. , An alkylamino group, an aryl group, or an alkylsilyl group. ] A ceramic powder for impregnation, comprising a polysilazane powder having a repeating unit represented by: and a number average molecular weight of 1500 or more.
【請求項2】 請求項1記載の含浸用セラミック粉体を
不活性ガス中で加熱することにより被含浸物に付着させ
た後、不融化することを特徴とするセラミック含浸方
法。
2. A ceramic impregnation method comprising heating the impregnating ceramic powder according to claim 1 in an inert gas to adhere it to an object to be impregnated and then making it infusibilized.
【請求項3】 含浸用セラミック粉体を被含浸物に付着
させた後、大気中での加熱、水蒸気との接触、あるいは
これら両者の併用により、不融化する請求項2記載のセ
ラミック含浸方法。
3. The ceramic impregnation method according to claim 2, wherein the impregnating ceramic powder is adhered to the material to be impregnated and then infusibilized by heating in the atmosphere, contact with steam, or a combination of both.
JP4329998A 1992-11-16 1992-11-16 Ceramic powder for impregnation and method for impregnation Pending JPH06157988A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4329998A JPH06157988A (en) 1992-11-16 1992-11-16 Ceramic powder for impregnation and method for impregnation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4329998A JPH06157988A (en) 1992-11-16 1992-11-16 Ceramic powder for impregnation and method for impregnation

Publications (1)

Publication Number Publication Date
JPH06157988A true JPH06157988A (en) 1994-06-07

Family

ID=18227630

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4329998A Pending JPH06157988A (en) 1992-11-16 1992-11-16 Ceramic powder for impregnation and method for impregnation

Country Status (1)

Country Link
JP (1) JPH06157988A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013046887A (en) * 2011-08-29 2013-03-07 Nippon Telegr & Teleph Corp <Ntt> Coating method
KR20220045616A (en) 2020-10-06 2022-04-13 주식회사 엘지에너지솔루션 Battery module with abnormal detecting function, and Abnormal detecting method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013046887A (en) * 2011-08-29 2013-03-07 Nippon Telegr & Teleph Corp <Ntt> Coating method
KR20220045616A (en) 2020-10-06 2022-04-13 주식회사 엘지에너지솔루션 Battery module with abnormal detecting function, and Abnormal detecting method

Similar Documents

Publication Publication Date Title
JPH01138107A (en) Modified polysilazane, its production and use thereof
JPH06157988A (en) Ceramic powder for impregnation and method for impregnation
JP4589471B2 (en) Polyimide precursor solution and production method thereof, coating film obtained therefrom and production method thereof
US3598785A (en) Polysiloxane amides
CN110317340A (en) Be electrically insulated material, be electrically insulated coating and the electric wire and be polyesterimide by talan two of being electrically insulated
JPH06136130A (en) Method for increasing molecular weight of polysilazane, high-molecular-weight polysilazane, and heat-resistant insulated wire coated with the same and baked
JPS6320271B2 (en)
JP2560680B2 (en) Heat-resistant insulated wire and method of manufacturing the same, and method of manufacturing heat-resistant insulating material
JPH06136131A (en) Method for synthesizing polysilazane excellent in film strength, and heat-resistant insulated wire coated with the same and baked
JPH08231727A (en) Copolymer containing silicon and its production
JPH06136323A (en) Polysilazane coating material excellent in film strength
JP2607104B2 (en) Silicon-containing polyimide cured product and method for producing the same
CN115850340B (en) Eugenol-based silicon-containing flame retardant, and preparation method and application thereof
JPS639326B2 (en)
JPH06128530A (en) Heat-resistant insulated wire
US2821517A (en) Polyesteramide-siloxane resin and insulated product prepared therefrom
KR970006900B1 (en) Imido group-containing silicon oligomers and cured product thereof and their preparation
JPH09188765A (en) Silicon-containing copolymer and its production
JP2014502001A (en) Coating composition for metal conductor
JPH06128531A (en) Heat-resistant insulated wire
JP2601490B2 (en) Silicone cured product containing imide group and method for producing the same
KR20010018933A (en) Process for producing polyamideimide varnish for coating enamel wire by using Blocked -Isocyanate method and catalyst
JPH04147518A (en) Heat-proof insulated electric wire and manufacture thereof
JP4260967B2 (en) Polyimide precursor solution and production method thereof, coating film obtained therefrom and production method thereof
JPS5850658B2 (en) Method for producing borosiloxane polymers that can be used as electrical insulation paints

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees