JPH06157726A - Molded article of polyphenylene and its production - Google Patents

Molded article of polyphenylene and its production

Info

Publication number
JPH06157726A
JPH06157726A JP31022292A JP31022292A JPH06157726A JP H06157726 A JPH06157726 A JP H06157726A JP 31022292 A JP31022292 A JP 31022292A JP 31022292 A JP31022292 A JP 31022292A JP H06157726 A JPH06157726 A JP H06157726A
Authority
JP
Japan
Prior art keywords
polyphenylene
molecular weight
structural unit
molded product
elastic modulus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31022292A
Other languages
Japanese (ja)
Inventor
Masatoshi Kimura
昌敏 木村
Tomohiko Tokunaga
知彦 徳永
Osamu Kidai
修 木代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP31022292A priority Critical patent/JPH06157726A/en
Publication of JPH06157726A publication Critical patent/JPH06157726A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/31Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain
    • C08G2261/312Non-condensed aromatic systems, e.g. benzene

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

PURPOSE:To obtain a molded article having low anisotropy, high elastic modulus, light weight and excellent recyclability and useful as a substitute for inorganic materials such as metal and ceramics by injection-molding a polyphenylene composed of a specific constituent unit. CONSTITUTION:This molded article is produced by the injection molding of a polyphenylene composed mainly of a constituent unit of the formula [R is univalent hydrocarbon group obtained by linking one to three 6-10C aromatic groups (which may be substituted with halogen, etc.) through one or more bonds selected from direct bond, O, CO, COO, OCO, CONH, N=N, CH=N and S; X is direct bond, O, etc.; (m) is 1-4]. The injection molding is carried out at the resin temperature of 250-400 deg.C.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、極めて高弾性率であり
ながら異方性も少なく、軽量性、リサイクル性に優れる
ポリフェニレン化合物を用いた生産性の良好な射出成形
法により得られる成形体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a molded article obtained by an injection molding method using a polyphenylene compound which has an extremely high elastic modulus, little anisotropy, and is excellent in lightweight and recyclability. .

【0002】[0002]

【従来の技術】有機ポリマー類は一般に、金属、セラミ
ック等無機材料に比べ、軽量で成形性も良く生産性に優
れるので多くの分野でそれら無機材料を代替してきた。
一方、有機ポリマーの欠点としては、それら無機材料に
比較して弾性率が低いことにある。そのため構造材料を
はじめとして、剛性が重要である各種エンジニアリング
材料には使用することが困難であった。従って、弾性率
の改良のために種々のポリマーが設計され、また合成さ
れてきた。
2. Description of the Related Art Generally, organic polymers are lighter in weight, have better moldability and are excellent in productivity as compared with inorganic materials such as metals and ceramics, and thus have replaced these inorganic materials in many fields.
On the other hand, a drawback of organic polymers is that they have a lower elastic modulus than those inorganic materials. Therefore, it was difficult to use it for various engineering materials such as structural materials where rigidity is important. Therefore, various polymers have been designed and synthesized for improved modulus.

【0003】弾性率を向上させるためには、高分子主鎖
の一次構造の直線性をなるべく上げ、また主鎖の伸びや
回転等の動きがなるべく起こらないように、分子間力を
高める等の設計をすることにより達成され得ることは知
られていた。
In order to improve the elastic modulus, the linearity of the primary structure of the polymer main chain should be increased as much as possible, and the intermolecular force should be increased so that the main chain should not be extended or rotated. It was known that this can be achieved by designing.

【0004】[0004]

【発明が解決しようとする課題】しかし、弾性率の向上
と溶融成形性は二立背反的事象であり、実際現在までに
知られているポリマー類で高弾性率を持ちながら生産性
の良い溶融成形法である射出成形法で成形できるもの
は、唯一液晶ポリマーとして知られる溶融液晶性ポリエ
ステル類程度のものであり、他の高弾性率ポリマーと言
われるものは、生産性の劣る溶液成形ができればまだ良
い方であり、不溶、不融で任意の形状には容易に成形で
きないものが普通であった。
However, the improvement of the elastic modulus and the melt moldability are two contradictory events, and in fact, the polymers known to date have a high elastic modulus and a high productivity. What can be molded by the injection molding method, which is a molding method, is only about the liquid crystalline polyesters known as liquid crystal polymers, and other high elastic modulus polymers can be used if solution molding with poor productivity can be performed. It was still a good one, and it was usually insoluble or infusible and could not be easily molded into an arbitrary shape.

【0005】また溶融成形性の液晶ポリマー類は、一般
に射出成形が可能であるが、その液晶性のために、ある
一方向には弾性率が高いが例えばその方向と垂直方向に
は著しく弾性率が低くなるという非常に異方性の強い性
質を現し、構造材料として考えた場合、使用しにくい面
があった。他方、高弾性率ポリマーとしては、ポリフェ
ニレン類の開発も行なわれてきた。例えば無置換のポリ
−p−フェニレンは、高弾性率になることが期待される
が不溶、不融で、成形性の劣るものであった。そのた
め、WO89/07617号や特開平2−45521の
ように、ポリ−p−フェニレンのフェニレン基に側鎖を
導入して溶解性を向上させる試みは行われてきたが、溶
液成形では生産性に劣り工業的な実用性に乏しかった。
Liquid crystal polymers having melt moldability can generally be injection-molded, but due to their liquid crystallinity, they have a high elastic modulus in a certain direction, but a remarkably elastic modulus in a direction perpendicular to that direction. It has a very anisotropic property that the value becomes low, and when considered as a structural material, it was difficult to use. On the other hand, polyphenylenes have been developed as a high elastic modulus polymer. For example, unsubstituted poly-p-phenylene was expected to have a high elastic modulus, but was insoluble and infusible, and had poor moldability. Therefore, as in WO 89/07617 and JP-A-2-45521, attempts have been made to improve the solubility by introducing a side chain into the phenylene group of poly-p-phenylene, but in solution molding the productivity is improved. It was inferior in industrial utility.

【0006】また、特開平3−182544号のよう
に、溶融成形性を付与するためにポリフェニレンを他の
溶融成形性のポリマーと混合して使用することが行われ
ているが、複数のポリマーを最適に混合しなければ良好
な物性が発現できない上、弾性率の低いポリマーとの混
合では、本質的に高弾性率の材料は得られなかった。
Further, as disclosed in JP-A-3-182544, polyphenylene is used by mixing it with another melt-moldable polymer in order to impart melt-moldability, but a plurality of polymers are used. Good properties cannot be expressed without optimal mixing, and when mixed with a polymer having a low elastic modulus, a material having an essentially high elastic modulus could not be obtained.

【0007】[0007]

【課題を解決するための手段】本発明者らは生産性の優
れる射出成形法により、高弾性率でありながら異方性も
少ない成形体を得ることにより、軽量性、リサイクル性
にも優れた材料を開発すべく、主鎖構造が剛直であるよ
うなポリマーを種々合成、評価してきた結果、驚くべき
事に特定構造のポリフェニレンが、従来からの常識を破
り、高弾性率でありながらいわゆる液晶ポリマーとは異
なり弾性率の方向依存性が少ない成形体を、しかも生産
性に優れる射出成形法で得ることができることを見出し
本発明に到達した。すなわち、本発明の要旨は、主とし
て下記一般式で示される構成単位(A)からなるポリフ
ェニレンを射出成形して得られる成形体
[Means for Solving the Problems] The inventors of the present invention obtained a molded product having a high elastic modulus and a small anisotropy by an injection molding method which is excellent in productivity, and thus was excellent in lightness and recyclability. As a result of synthesizing and evaluating various polymers with a rigid main chain structure in order to develop materials, surprisingly, polyphenylene with a specific structure breaks the conventional wisdom and has a so-called liquid crystal with a high elastic modulus. The present invention has been accomplished, and it was found that a molded product, unlike a polymer, in which the elastic modulus has little directional dependence, can be obtained by an injection molding method having excellent productivity. That is, the gist of the present invention is a molded product obtained by injection-molding a polyphenylene mainly composed of the structural unit (A) represented by the following general formula.

【0008】[0008]

【化4】 [Chemical 4]

【0009】(式中Rは、ハロゲン原子、アルキル基又
はアルコキシ基で置換されていてもよい炭素数6〜10
の芳香族基1〜3個を直接結合、−O−,−CO−,−
COO−,−OCO−,−CONH−,−N=N−,−
CH=N−及び−S−のうちから選ばれる少くとも1つ
の結合により連結してなる1価の炭化水素基を表わす。
(In the formula, R has 6 to 10 carbon atoms which may be substituted with a halogen atom, an alkyl group or an alkoxy group.
1 to 3 aromatic groups are directly bonded, -O-, -CO-,-
COO-, -OCO-, -CONH-, -N = N-,-
It represents a monovalent hydrocarbon group which is linked by at least one bond selected from CH = N- and -S-.

【0010】Xは、直接結合、−O−,−CO−,−C
OO−,−OCO−,−CONH−,−N=N−,−C
H=N−及び−S−のうちから選ばれる少くとも1つの
結合を表わす。mは1〜4の整数を表わす。)に存す
る。以下、本発明を詳細に説明する。本発明のポリフェ
ニレンは、主として下記一般式で示される構成単位
(A)からなることを特徴とする。
X is a direct bond, --O--, --CO--, --C.
OO-, -OCO-, -CONH-, -N = N-, -C
Represents at least one bond selected from H = N- and -S-. m represents an integer of 1 to 4. ). Hereinafter, the present invention will be described in detail. The polyphenylene of the present invention is mainly characterized by comprising a structural unit (A) represented by the following general formula.

【0011】[0011]

【化5】 [Chemical 5]

【0012】(式中Rは、ハロゲン原子、アルキル基又
はアルコキシ基で置換されていてもよい炭素数6〜10
の芳香族基1〜3個を直接結合、−O−,−CO−,−
COO−,−OCO−,−CONH−,−N=N−,−
CH=N−及び−S−のうちから選ばれる少くとも1つ
の結合により連結してなる1価の炭化水素基を表わす。
(In the formula, R represents 6 to 10 carbon atoms which may be substituted with a halogen atom, an alkyl group or an alkoxy group.
1 to 3 aromatic groups are directly bonded, -O-, -CO-,-
COO-, -OCO-, -CONH-, -N = N-,-
It represents a monovalent hydrocarbon group which is linked by at least one bond selected from CH = N- and -S-.

【0013】Xは、直接結合、−O−,−CO−,−C
OO−,−OCO−,−CONH−,−N=N−,−C
H=N−及び−S−のうちから選ばれる少くとも1つの
結合を表わす。mは1〜4の整数を表わす。) 主鎖のフェニレン基に置換する−X−R基としては、目
的やモノマーの入手のしやすさに応じて選ぶことができ
るが、好ましくは、
X is a direct bond, --O--, --CO--, --C.
OO-, -OCO-, -CONH-, -N = N-, -C
Represents at least one bond selected from H = N- and -S-. m represents an integer of 1 to 4. ) The -X-R group substituting the phenylene group of the main chain can be selected depending on the purpose and the availability of the monomer, but is preferably

【0014】[0014]

【化6】 [Chemical 6]

【0015】である。また、Rに含まれる芳香族基の数
は1〜3個である。芳香族基の数を増やして全体の長さ
が長くなるほど、また芳香族基の水素を他の置換基で置
換して行くほど溶融成形性は良くなるが、弾性率は低く
なる傾向になる。側鎖の構造を変えて溶融成形性を上げ
るためには、一部の置換基の長さを、芳香族基の連鎖数
を4より長くすることによって伸ばし、ブロックコポリ
マー的にした方が良い場合もあり、さらに側鎖に長鎖脂
肪族を導入して溶融成形性を上げることも可能である
が、耐熱性の点では不利であり、またモノマーの合成が
難しくなる。
[0015] The number of aromatic groups contained in R is 1 to 3. The melt moldability improves as the number of aromatic groups increases and the overall length increases, and as the hydrogen of the aromatic group is replaced with another substituent, the elastic modulus tends to decrease. In order to improve the melt moldability by changing the structure of the side chain, it is better to extend the length of some substituents by making the number of chains of aromatic groups longer than 4 to make it a block copolymer. It is also possible to introduce a long-chain aliphatic into the side chain to improve the melt moldability, but it is disadvantageous in terms of heat resistance and the synthesis of the monomer becomes difficult.

【0016】本発明のポリフェニレンの重合度(n)
は、30以上が好ましく、さらに好ましくは平均で50
から200である。主鎖のフェニル基同志は弾性率をな
るべく上げるためには実質的に100%パラ結合だけで
出来ていることが好ましいが、目的により必ずしも最高
の弾性率が必要なければ、一部メタ結合やオルト結合が
含まれていても良い。この場合、弾性率は全てがパラ結
合の場合に比べて低くなるが、逆に伸びやタフネスが向
上する。高弾性率を確保するためには、パラ結合以外の
構成単位の割合を30モル%以下にすることが好ましい
が、その割合は材料全体の物性のバランスを考え決めれ
ばよい。
Polymerization degree (n) of the polyphenylene of the present invention
Is preferably 30 or more, more preferably 50 on average.
To 200. In order to increase the elastic modulus as much as possible, it is preferable that the phenyl groups in the main chain are essentially composed of only 100% para bonds, but if the highest elastic modulus is not required for some purposes, some meta bonds or orthos may be used. A bond may be included. In this case, the elastic modulus is lower than that in the case where all are para-bonds, but conversely, elongation and toughness are improved. In order to secure a high elastic modulus, it is preferable that the proportion of the constituent units other than the para bond is 30 mol% or less, but the proportion may be determined in consideration of the balance of the physical properties of the entire material.

【0017】置換基−X−Rは全てが同一のものである
必要はなく、また一置換と多置換が混ざっていてもよ
い。本発明においては、構成単位(A)は、好ましく
は、全構成単位中少なくとも70モル%含まれている。
他の構成単位としては、無置換のフェニレン基からなる
構成単位が挙げられるが、その割合は全体の30モル%
未満であることが好ましい。無置換の割合が多すぎると
融点が高くなり、ついには本発明の目的である射出成形
が不可能となってしまうからである。
The substituents -X-R need not all be the same, and mono- and poly-substitutions may be mixed. In the present invention, the structural unit (A) is preferably contained in at least 70 mol% in all structural units.
Examples of the other structural unit include a structural unit composed of an unsubstituted phenylene group, but the proportion thereof is 30 mol% of the whole.
It is preferably less than. This is because if the non-substitution ratio is too high, the melting point becomes high, and finally the injection molding which is the object of the present invention becomes impossible.

【0018】本発明のポリフェニレンの合成法としては
いろいろな方法が知られているが、特公昭59−523
または、特開昭61−233014等に開示されている
方法、すなわち、芳香族ジハロゲン化合物をニッケルや
パラジウム等の遷移金属触媒下に非プロトン性溶媒中、
適当な配位子、助触媒、還元剤を存在させて反応させる
ことにより容易に得ることが出来る。
Various methods are known for synthesizing the polyphenylene of the present invention, and Japanese Patent Publication No. 59-523.
Alternatively, the method disclosed in JP-A-61-233014, that is, an aromatic dihalogen compound in an aprotic solvent under a transition metal catalyst such as nickel or palladium,
It can be easily obtained by reacting in the presence of an appropriate ligand, co-catalyst and reducing agent.

【0019】本発明においては、上記ポリフェニレンの
うちでも、特に分子量分布{重量平均分子量(Mw)と
数平均分子量(Mn)の比(Mw/Mn)}が4以下の
ものを射出成形することにより、意外にも成形性が向上
し、かつ物性の良好な成形体が得られる。本発明のポリ
フェニレンの分子量分布は、通常のGPC法により測定
でき、通常はポリスチレンを基準に求められる。重量平
均分子量(Mw)と数平均分子量(Mn)との比は、分
子量分布がなければ1となるが、一般に本発明の様な重
縮合系のポリマーでは相当広くなる。一方、溶融粘度と
分子量分布の関係を考えた場合、従来からの弾性率の低
いコイル状ポリマーでは、同じ様な分子量であればその
分子量分布を広くするほど、低分子部分の寄与が大きく
なり溶融粘度は低下する傾向にあった。従って、分子量
分布が広い方が射出成形性に優れていた。
In the present invention, among the above polyphenylenes, particularly those having a molecular weight distribution {ratio of weight average molecular weight (Mw) to number average molecular weight (Mn) (Mw / Mn)} of 4 or less are injection-molded. Surprisingly, a molded product having improved moldability and good physical properties can be obtained. The molecular weight distribution of the polyphenylene of the present invention can be measured by a usual GPC method, and is usually obtained based on polystyrene. The ratio of the weight average molecular weight (Mw) to the number average molecular weight (Mn) is 1 if there is no molecular weight distribution, but it is generally considerably wide in the polycondensation type polymer such as the present invention. On the other hand, considering the relationship between the melt viscosity and the molecular weight distribution, in the conventional coiled polymer with a low elastic modulus, the wider the molecular weight distribution is, the larger the contribution of the low molecular weight portion becomes, as long as the molecular weight distribution is similar. The viscosity tended to decrease. Therefore, the wider the molecular weight distribution, the better the injection moldability.

【0020】ところが驚くべき事には、本発明で用いら
れる剛直なポリマーであるポリフェニレンでは、従来か
らの知見とは逆に、分子量分布が狭いほど溶融粘度が低
下される傾向が見出された。本発明の場合、その分子量
分布が4以下であることが好ましく、さらに好ましくは
3以下であることがよい。分子量分布が4を越えても溶
融成形性はあるが、同様の分子量で成形性は低下する事
になり、逆に同じ溶融粘度にした場合、分子量分布が4
以下であればそれだけ分子量の大きいポリマーを使用で
きるので、同じ成形性でも得られる成形体の物性は向上
する。
Surprisingly, however, in the case of the rigid polymer polyphenylene used in the present invention, contrary to the conventional knowledge, it was found that the narrower the molecular weight distribution, the lower the melt viscosity. In the case of the present invention, the molecular weight distribution is preferably 4 or less, more preferably 3 or less. Even if the molecular weight distribution exceeds 4, the melt moldability is exhibited, but the moldability decreases with the same molecular weight. Conversely, when the melt viscosity is the same, the molecular weight distribution is 4
If the following is the case, a polymer having such a large molecular weight can be used, so that the physical properties of the obtained molded product are improved even with the same moldability.

【0021】分子量分布の制御については、特に制限は
ないが、好ましくは、重合中の撹拌を充分に行いモノマ
ーが均一に反応するようにすること、及びモノマーや使
用する触媒等の純度を向上させ、また温度を厳密にコン
トロールすることにより架橋反応が起こらないようにし
て、分子量分布の狭いポリマーを得ることが出来る。本
願のポリフェニレンの溶融粘度は、せん断速度=100
0/秒において、250℃〜400℃の温度範囲のいず
れかの温度で、1000〜50000ポイズの範囲であ
ることが好ましい。さらに好ましくは、3000〜20
000ポイズの範囲にあることである。50000ポイ
ズより溶融粘度が高ければ射出成形することは困難であ
り、1000ポイズより溶融粘度が低ければ射出成形は
容易となるが、物性の低下が著しくなる。すなわち、分
子量を下げることにより溶融粘度は下げられるが、必然
的に機械的な物性の低下が引き起こされる。一方、本願
のポリフェニレンの分子設計と成形条件の組合せによ
り、該ポリフェニレンに例えばせん断液晶性を付与する
ことは不可能ではなく、その場合には物性の低下を伴わ
ずに、1000ポイズ以下の溶融粘度でより容易に射出
成形できる。しかし、本願のポリフェニレンに液晶性を
付与することは、得られる成形体が異方性を持ち易くな
るので、等方的に高弾性率の成形体を得たい場合には必
ずしも好ましくない。
There are no particular restrictions on the control of the molecular weight distribution, but it is preferable to sufficiently stir during the polymerization so that the monomers react uniformly and to improve the purity of the monomers and the catalyst used. Further, by strictly controlling the temperature, a crosslinking reaction does not occur and a polymer having a narrow molecular weight distribution can be obtained. The melt viscosity of the polyphenylene of the present application has a shear rate of 100.
At 0 / sec, it is preferably in the range of 1000 to 50000 poise at any temperature in the range of 250 to 400 ° C. More preferably, 3000-20
It is in the range of 000 poise. If the melt viscosity is higher than 50,000 poise, injection molding is difficult. If the melt viscosity is lower than 1,000 poise, injection molding is easy, but the physical properties are significantly deteriorated. That is, although the melt viscosity is lowered by lowering the molecular weight, mechanical properties are inevitably lowered. On the other hand, it is not impossible to give, for example, shear liquid crystallinity to the polyphenylene by the combination of the molecular design of the polyphenylene of the present application and the molding conditions, and in that case, the melt viscosity of 1000 poise or less is not accompanied by the deterioration of the physical properties. Can be more easily injection molded. However, imparting liquid crystallinity to the polyphenylene of the present application is not always preferable when it is desired to obtain a molded product having an isotropically high elastic modulus because the molded product obtained tends to have anisotropy.

【0022】本発明のポリフェニレンは、通常の市販の
射出成形機を用いて容易に射出成形して任意の形状の成
形体を得ることが出来る。射出成形法にも特殊な方法や
技術を用いる事なく、ポリマーによって最適条件は異な
るが、例えば約250℃〜400℃の樹脂温度、及び室
温〜約200℃の金型温度の範囲で成形するのが好まし
い。尚、これらの条件は成形機の種類や目的の成形体の
形状等により大きく左右され得るものであり、これらの
成形条件に限定されるものではない。また目的により特
に大型の成形片を得る場合には、射出成形後プレス成形
を行う射出プレス成形や、射出成形と圧縮成形を同時に
行う射出圧縮成形等、射出成形を改良した成形法を用い
たり、射出成形と例えば押し出し成形等の他成形法を組
み合わせて成形し、成形体を得ることもできる。
The polyphenylene of the present invention can be easily injection-molded using an ordinary commercially available injection molding machine to obtain a molded product having an arbitrary shape. Optimum conditions vary depending on the polymer without using any special method or technique in the injection molding method, but for example, molding is performed at a resin temperature of about 250 ° C. to 400 ° C. and a mold temperature of room temperature to about 200 ° C. Is preferred. It should be noted that these conditions can be greatly influenced by the type of molding machine, the shape of the target molded article, etc., and are not limited to these molding conditions. If a particularly large molded piece is to be obtained for the purpose, use a molding method with improved injection molding, such as injection press molding that performs press molding after injection molding or injection compression molding that simultaneously performs injection molding and compression molding. It is also possible to obtain a molded product by combining injection molding with another molding method such as extrusion molding.

【0023】射出成形法では、一般にポリマー融液と金
型間のせん断によりポリマー鎖のせん断配向が起こり易
いが、本発明のポリマーでは、せん断配向が他の高弾性
率ポリマー、特に液晶ポリマーに比べて起こり難く、等
方的に高弾性率の成形体を得易い。しかし、あまりにも
細い流路を高速でポリマー融液が通るようにすると、せ
ん断配向による異方性が生じ易くなるので、金型設計の
工夫等により異方性が生じないようにすると良い。本発
明で示されるポリマーを用いて、さらに好ましくは金型
形状等の工夫を行えば、容易に少なくとも一つの平面内
の曲げ弾性率が任意方向に於て、5GPa以上及び/ま
たはそれら曲げ弾性率の偏差が±20%以内である成形
体を得ることが出来る。
In the injection molding method, in general, shear orientation of polymer chains easily occurs due to shear between the polymer melt and the mold, but in the polymer of the present invention, the shear orientation is higher than that of other high elastic modulus polymers, especially liquid crystal polymers. Is less likely to occur and it is easy to obtain a molded product having a high elastic modulus isotropically. However, if the polymer melt is made to pass through a too thin channel at a high speed, anisotropy due to shear orientation is likely to occur. Therefore, it is advisable to prevent anisotropy by devising a die design or the like. If the polymer shown in the present invention is used, and more preferably the shape of the mold is devised, the bending elastic modulus in at least one plane can easily be 5 GPa or more and / or the bending elastic modulus in any direction. It is possible to obtain a molded product having a deviation of ± 20% or less.

【0024】しかし逆に、目的により異方性は強くても
ある方向には高弾性率が必要である場合には、射出速度
を速めたり金型面間の距離を短くしてせん断配向が起こ
り易いようにして、より高弾性率の成形体も得ることが
できる。この場合には、少なくとも一方向の曲げ弾性率
が10GPa以上となる成形体を容易に得ることが出来
る。
On the contrary, when a high elastic modulus is required in a certain direction even if the anisotropy is strong depending on the purpose, shearing occurs by increasing the injection speed or shortening the distance between the mold surfaces. A molded body having a higher elastic modulus can be obtained by making it easier. In this case, it is possible to easily obtain a molded product having a bending elastic modulus of at least 10 GPa in at least one direction.

【0025】本発明では、ポリマー中に強化や異方性低
下のための無機物フィラーを添加せずに前述の高弾性率
や低異方性が発現するのであり、その方が軽量性、リサ
イクル性の点で非常に好ましいが、これらの軽量性やリ
サイクル性よりも弾性率やコスト等がより重要である場
合には、GF,CF,シリカ,マイカ等の無機物フィラ
ーを添加しても構わない。
In the present invention, the above-mentioned high elastic modulus and low anisotropy are exhibited without adding an inorganic filler for strengthening or lowering anisotropy in the polymer, which is lighter and more recyclable. However, if the elastic modulus and cost are more important than the lightness and recyclability, inorganic fillers such as GF, CF, silica and mica may be added.

【0026】本発明の射出成形体は、軽量かつ高弾性率
でしかも低異方性材料であるので、金属,セラミックな
どの無機材料を代替する材料として、車両・船舶・航空
機用の部品・外板及び内壁材料、住宅・建築物用壁材
料、基板・外装材・各種部品等の電気・電子材料等、非
常に多くの分野での利用が可能である。
Since the injection-molded article of the present invention is lightweight and has a high elastic modulus and a low anisotropic material, it can be used as a material for replacing inorganic materials such as metals and ceramics in parts for vehicles, ships, aircraft and exterior parts. It can be used in a very large number of fields such as plate and inner wall materials, wall materials for houses and buildings, electric and electronic materials such as substrates, exterior materials and various parts.

【0027】[0027]

【実施例】以下、実施例により本発明をさらに詳しく説
明する。なお、以下「部」は、「重量部」を表す。 (参考例1)2,5−ジクロロ安息香酸をチオニルクロ
リドと反応させ、対応する酸クロリドを合成した。次に
この酸クロリド化合物とベンゼンまたはジフェニルエー
テルとを塩化アルミニウムの存在下フリーデルクラフツ
反応させ、それぞれの反応粗生成物をエタノールで2回
再結晶して、ジクロロ体モノマーである、それぞれ2,
5−ジクロロベンゾフェノン(モノマー1)、2,5−
ジクロロ−4′−フェノキシベンゾフェノン(モノマー
2)の精製物を得た。
The present invention will be described in more detail with reference to the following examples. In the following, “part” means “part by weight”. (Reference Example 1) 2,5-Dichlorobenzoic acid was reacted with thionyl chloride to synthesize the corresponding acid chloride. Next, this acid chloride compound and benzene or diphenyl ether are subjected to Friedel-Crafts reaction in the presence of aluminum chloride, and each reaction crude product is recrystallized twice with ethanol to obtain dichloro-form monomers, respectively 2,
5-dichlorobenzophenone (monomer 1), 2,5-
A purified product of dichloro-4'-phenoxybenzophenone (monomer 2) was obtained.

【0028】(参考例2)モノマー1(2890部)、
NiCl2 (50部)、トリフェニルフォスフィン(7
50部)、ヨウ化ナトリウム(150部)、亜鉛粉末
(1200部)をNMP(15000部)中に撹拌しな
がら分散させ、加温し、95℃で2時間反応させた。粘
ちょう溶液をメタノール/希塩酸に析出させ残存金属を
溶解後、水、メタノール、アセトンで洗浄して、ポリマ
ー1をほぼ定量的に回収した。NMP溶媒中(30℃)
で測定したηinhは1.8dl/gであり、また32
0℃、剪断速度1000/秒における溶融粘度は4万ポ
イズであった。
Reference Example 2 Monomer 1 (2890 parts),
NiCl 2 (50 parts), triphenylphosphine (7
50 parts), sodium iodide (150 parts), and zinc powder (1200 parts) were dispersed in NMP (15000 parts) with stirring, heated, and reacted at 95 ° C for 2 hours. After the viscous solution was precipitated in methanol / dilute hydrochloric acid to dissolve the residual metal, it was washed with water, methanol and acetone to recover polymer 1 almost quantitatively. In NMP solvent (30 ° C)
Ηinh measured at 1.8 dl / g, and 32
The melt viscosity at 0 ° C. and a shear rate of 1000 / sec was 40,000 poise.

【0029】(参考例3)参考例2のモノマー1の代わ
りにモノマー2を3950部を使用した以外には参考例
2と同様にしてポリマー2を合成し、ポリマー2をほぼ
定量的に回収した。NMP溶媒中(30℃)で測定した
ηinhは2.3dl/gであり、また280℃、剪断
速度1000/秒における溶融粘度は、6千ポイズであ
った。このポリマーを光散乱法によりNMP溶媒中で測
定すると、Mwは68000、慣性半径は300〓であ
り、このポリマーがこの溶媒中で完全に伸びきった状態
であると仮定して慣性半径より求めたMnは19000
であった。
Reference Example 3 Polymer 2 was synthesized in the same manner as in Reference Example 2 except that 3950 parts of Monomer 2 was used instead of Monomer 1 of Reference Example 2, and Polymer 2 was recovered almost quantitatively. . Ηinh measured in an NMP solvent (30 ° C.) was 2.3 dl / g, and the melt viscosity at 280 ° C. and a shear rate of 1000 / sec was 6,000 poise. When this polymer was measured by a light scattering method in an NMP solvent, the Mw was 68,000 and the radius of gyration was 300 〓. It was calculated from the radius of gyration assuming that the polymer was completely extended in this solvent. Mn is 19000
Met.

【0030】(比較例1)参考例2のモノマー1の代わ
りに市販の2,5−ジクロロトルエンを1850部使用
した以外は参考例と同様にしてポリマーを合成し、ポリ
マー3の粉末を回収した。このポリマーは400℃まで
は不融であった。
Comparative Example 1 A polymer was synthesized in the same manner as in Reference Example except that 1850 parts of commercially available 2,5-dichlorotoluene was used in place of Monomer 1 of Reference Example 2, and a powder of Polymer 3 was recovered. . This polymer was infusible up to 400 ° C.

【0031】(実施例1)ポリマー2と同じモノマーを
用い、かつモノマーの純度を変化させた他は、ポリマー
2と同様の方法で分子量分布の異なるポリマーを各種合
成し、溶液粘度、溶融粘度及びGPCにより分子量分布
を測定した。尚、ηinhは0.5g/dl,30℃,
NMP溶媒中で測定した。また、溶融粘度は280℃、
γ=1000における値である。Mw,Mnは、NMP
溶媒中、40℃においてポリスチレン換算で求めた。
Example 1 Various polymers having different molecular weight distributions were synthesized in the same manner as the polymer 2 except that the same monomer as the polymer 2 was used and the purity of the monomer was changed, and the solution viscosity, melt viscosity and The molecular weight distribution was measured by GPC. Incidentally, ηinh is 0.5 g / dl, 30 ° C.,
Measured in NMP solvent. The melt viscosity is 280 ° C,
It is a value at γ = 1000. Mw and Mn are NMP
It was calculated in terms of polystyrene in a solvent at 40 ° C.

【0032】[0032]

【表1】 [Table 1]

【0033】(比較例2)ポリマー2と同じモノマーを
用い、実施例1と同様に分子量分布の異なるポリマーを
各種合成し、実施例1と同様の方法で溶液粘度、溶融粘
度及びGPCにより分子量分布を測定した。
Comparative Example 2 Using the same monomer as Polymer 2, various polymers having different molecular weight distributions were synthesized in the same manner as in Example 1, and the solution viscosity, melt viscosity and GPC were used to determine the molecular weight distribution in the same manner as in Example 1. Was measured.

【0034】[0034]

【表2】 [Table 2]

【0035】(実施例2)ポリマー2及びポリマー3を
用いて、成形温度290℃、金型温度120℃で射出成
形を行い、成形片(30×3×1mm厚)を得、その曲
げ物性を測定した。尚、曲げ物性は、ASTM−D−7
90に準じて測定した。 ポリマー2:曲げ弾性率15.5GPa,曲げ強度19
5MPa、曲げ歪1.3% ポリマー3:曲げ弾性率16.6GPa,曲げ強度24
1MPa、曲げ歪1.6%
Example 2 Polymer 2 and polymer 3 were used for injection molding at a molding temperature of 290 ° C. and a mold temperature of 120 ° C. to obtain a molded piece (30 × 3 × 1 mm thick), and its bending properties were evaluated. It was measured. Bending properties are ASTM-D-7
It measured according to 90. Polymer 2: Bending elastic modulus 15.5 GPa, bending strength 19
5 MPa, bending strain 1.3% Polymer 3: bending elastic modulus 16.6 GPa, bending strength 24
1 MPa, bending strain 1.6%

【0036】(比較例3)ポリマー8を用いて、成形温
度290℃、金型温度120℃で射出成形を行い、成形
片(30×3×1mm厚)を得、その曲げ物性を実施例
2と同様に測定した。 ポリマー8:曲げ弾性率13.0GPa,曲げ強度13
6MPa、曲げ歪1.1%
Comparative Example 3 Polymer 8 was injection-molded at a molding temperature of 290 ° C. and a mold temperature of 120 ° C. to obtain molded pieces (thickness of 30 × 3 × 1 mm), the bending properties of which were determined in Example 2. It measured similarly to. Polymer 8: Flexural modulus 13.0 GPa, flexural strength 13
6 MPa, bending strain 1.1%

【0037】(実施例3)ポリマー2と同じモノマーを
用いて合成したポリマー4(ηinh:3.6,溶融粘
度:1万ポイズ(シェアーレート=1000/sec,
280℃)を成形温度350℃、金型温度140℃で射
出成形して各種成形片を得、それらの曲げ物性を測定し
た。 80mm×80mm×3mm厚の平板の場合:曲げ弾性
率は、MD方向,TD方向,及びそれらから互いに45
°方向において、それぞれ8.8GPa,6.8GPa
及び7.6GPaであった。また、曲げ強度はそれぞ
れ、90MPa,71MPa,65MPaであり、曲げ
歪はそれぞれ、1.1%,1.1%,0.9%であっ
た。 1/8in.ASTM1型ダンベル片の場合:曲げ弾性
率14.0GPa,曲げ強度;91MPa,曲げ歪;
2.9%であった。 80mm×80mm×3mm厚の平板の成形収縮率:M
D方向 −0.26%TD方向 −0.48%であっ
た。尚、成形収縮率はJIS−K−6911で測定し
た。
Example 3 Polymer 4 synthesized using the same monomer as polymer 2 (ηinh: 3.6, melt viscosity: 10,000 poise (share rate = 1000 / sec,
(280 ° C.) was injection-molded at a molding temperature of 350 ° C. and a mold temperature of 140 ° C. to obtain various molded pieces, and their bending properties were measured. In the case of a flat plate having a thickness of 80 mm × 80 mm × 3 mm: the bending elastic modulus is 45 in the MD direction, the TD direction, and from them
8.8 GPa and 6.8 GPa respectively in the ° direction
And 7.6 GPa. The bending strengths were 90 MPa, 71 MPa, and 65 MPa, respectively, and the bending strains were 1.1%, 1.1%, and 0.9%, respectively. 1/8 in. In the case of ASTM type 1 dumbbell piece: Flexural modulus 14.0 GPa, flexural strength; 91 MPa, flexural strain;
It was 2.9%. Molding shrinkage rate of flat plate 80 mm x 80 mm x 3 mm: M
It was −0.26% in the D direction and −0.48% in the TD direction. The molding shrinkage was measured according to JIS-K-6911.

【0038】(比較例4)市販液晶ポリマー(ポリエチ
レンテレフタレートとオキシ安息香酸とからなる液晶ポ
リエステル)を成形温度300℃、金型温度100℃で
射出成形して、得られた各種成形片の曲げ物性を測定し
た。 80mm×80mm×3mm厚の平板の場合:曲げ弾性
率は、MD方向,TD方向,及びそれらから互いに45
°方向において、それぞれ6.4GPa,1.7GPa
及び2.2GPaであった。また、曲げ強度はそれぞ
れ、101MPa,46MPa,55MPaであり、曲
げ歪はそれぞれ、3.4%,6.6%,4.5%であっ
た。 1/8in.ASTM1型ダンベル片の場合:曲げ弾性
率6.9GPa,曲げ強度;104MPa,曲げ歪;
3.1%であった。 80mm×80mm×3mm厚の平板の成形収縮率:M
D方向 −0.06%TD方向 −1.20%であっ
た。
Comparative Example 4 A commercially available liquid crystal polymer (a liquid crystal polyester composed of polyethylene terephthalate and oxybenzoic acid) was injection-molded at a molding temperature of 300 ° C. and a mold temperature of 100 ° C., and bending properties of various molded pieces obtained. Was measured. In the case of a flat plate having a thickness of 80 mm × 80 mm × 3 mm: the bending elastic modulus is 45 in the MD direction, the TD direction, and from them
6.4 GPa and 1.7 GPa in the ° direction
And 2.2 GPa. The bending strength was 101 MPa, 46 MPa, 55 MPa, and the bending strains were 3.4%, 6.6%, and 4.5%, respectively. 1/8 in. For ASTM type 1 dumbbell piece: Flexural modulus 6.9 GPa, flexural strength; 104 MPa, flexural strain;
It was 3.1%. Molding shrinkage rate of flat plate 80 mm x 80 mm x 3 mm: M
It was −0.06% in the D direction and −1.20% in the TD direction.

【0039】[0039]

【発明の効果】本発明の射出成形体は、軽量かつ高弾性
率であり、しかも機械的物性の異方性が低いため、金
属,セラミックなどの無機材料の代替として各種分野に
利用可能である。
INDUSTRIAL APPLICABILITY The injection-molded article of the present invention is lightweight and has a high elastic modulus and has a low anisotropy of mechanical properties, so that it can be used in various fields as a substitute for inorganic materials such as metals and ceramics. .

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 主として下記一般式で示される構成単位
(A)からなるポリフェニレンを射出成形して得られる
ポリフェニレンの成形体。 【化1】 (式中Rは、ハロゲン原子、アルキル基又はアルコキシ
基で置換されていてもよい炭素数6〜10の芳香族基1
〜3個を直接結合、−O−,−CO−,−COO−,−
OCO−,−CONH−,−N=N−,−CH=N−及
び−S−のうちから選ばれる少くとも1つの結合により
連結してなる1価の炭化水素基を表わす。Xは、直接結
合、−O−,−CO−,−COO−,−OCO−,−C
ONH−,−N=N−,−CH=N−及び−S−のうち
から選ばれる少くとも1つの結合を表わす。mは1〜4
の整数を表わす。)
1. A molded product of polyphenylene obtained by injection molding a polyphenylene mainly composed of a structural unit (A) represented by the following general formula. [Chemical 1] (In the formula, R is an aromatic group 1 having 6 to 10 carbon atoms which may be substituted with a halogen atom, an alkyl group or an alkoxy group.
~ 3 are directly bonded, -O-, -CO-, -COO-,-
It represents a monovalent hydrocarbon group formed by connecting at least one bond selected from OCO-, -CONH-, -N = N-, -CH = N- and -S-. X is a direct bond, -O-, -CO-, -COO-, -OCO-, -C.
It represents at least one bond selected from ONH-, -N = N-, -CH = N- and -S-. m is 1 to 4
Represents the integer. )
【請求項2】 構成単位(A)のうち少くとも90モル
%が下記一般式で表わされる構成単位であることを特徴
とする、請求項1記載の成形体。 【化2】
2. The molded product according to claim 1, wherein at least 90 mol% of the structural unit (A) is a structural unit represented by the following general formula. [Chemical 2]
【請求項3】 構成単位(A)のうち少くとも90モル
%が下記一般式で表わされる構成単位であることを特徴
とする請求項1記載の成形体。 【化3】
3. The molded product according to claim 1, wherein at least 90 mol% of the structural unit (A) is a structural unit represented by the following general formula. [Chemical 3]
【請求項4】 構成単位(A)が全構成単位の70モル
%以上であることを特徴とする、請求項1記載の成形
体。
4. The molded product according to claim 1, wherein the structural unit (A) accounts for 70 mol% or more of all structural units.
【請求項5】 ポリフェニレンの分子量分布{重量平均
分子量Mwと数平均分子量Mnとの比(Mw/Mn)}
が4以下であることを特徴とする、請求項1ないし4の
いずれかに記載の成形体。
5. Polyphenylene molecular weight distribution {ratio of weight average molecular weight Mw to number average molecular weight Mn (Mw / Mn)}
Is 4 or less, The molded object according to any one of claims 1 to 4.
【請求項6】 ポリフェニレンの剪断速度1000/秒
における溶融粘度が250〜400℃において1000
〜50,000ポイズであることを特徴とする、請求項
1ないし5のいずれかに記載の成形体。
6. The melt viscosity of polyphenylene at a shear rate of 1000 / sec is 1000 at 250 to 400 ° C.
The molded product according to any one of claims 1 to 5, which has a porosity of 50,000 poises.
【請求項7】 樹脂温度250〜400℃において射出
成形することを特徴とする、請求項1ないし6のいずれ
かに記載の成形体の製造方法。
7. The method for producing a molded article according to claim 1, wherein the molding is performed at a resin temperature of 250 to 400 ° C.
JP31022292A 1992-11-19 1992-11-19 Molded article of polyphenylene and its production Pending JPH06157726A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31022292A JPH06157726A (en) 1992-11-19 1992-11-19 Molded article of polyphenylene and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31022292A JPH06157726A (en) 1992-11-19 1992-11-19 Molded article of polyphenylene and its production

Publications (1)

Publication Number Publication Date
JPH06157726A true JPH06157726A (en) 1994-06-07

Family

ID=18002667

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31022292A Pending JPH06157726A (en) 1992-11-19 1992-11-19 Molded article of polyphenylene and its production

Country Status (1)

Country Link
JP (1) JPH06157726A (en)

Similar Documents

Publication Publication Date Title
JP3969171B2 (en) Liquid crystalline polyester and method for producing the same
US4891167A (en) Block polymers containing a poly(aryl ether ketone) and methods for their production
JPH0395260A (en) Liquid crystal polyester resin composition improved in flowability
EP3533799B1 (en) Compound
WO2005033177A1 (en) Liquid-crystal polyester resin
US4831104A (en) Thermoplastic aromatic polyamideimide copolymer from polyamide diamine
KR20170004256A (en) Phthalonitrile resin
JP3099455B2 (en) Aromatic polyester and method for producing the same
JP6505829B2 (en) Crystalline wholly aromatic polyester and method for producing the same
TW202039798A (en) Liquid crystal polymer, and resin-molded article formed from resin composition containing said liquid crystal polymer
US4772679A (en) Crystalline aromatic polyketone and process for producing the same
CN111886276B (en) Aromatic liquid-crystalline polyester, aromatic liquid-crystalline polyester composition, and molded article
JPH06157726A (en) Molded article of polyphenylene and its production
CN114051508B (en) Polyaryletherketone resin, process for producing the same, and molded article
JP3136771B2 (en) Method for producing aromatic copolyester
WO2018062426A1 (en) Polyester resin composition
JP3573543B2 (en) Thermosetting resin composition
US20210388156A1 (en) Crystalline wholly aromatic polyester and polyester resin composition
US5449739A (en) Method of producing shaped article of aromatic heterocyclic copolymer
JPH05171044A (en) Resin composition
JP7464698B2 (en) Polymers with excellent compatibility with thermoplastic resins
JP2001234053A (en) Resin composition
JP2649192B2 (en) Method for producing aromatic heterocyclic random copolymer
JPH10287807A (en) Polyester amide resin composition
JP3152491B2 (en) Method for producing aromatic heterocyclic block copolymer