JPH06155443A - Fiber reinforced resin large diameter deformed rod and manufacture thereof - Google Patents

Fiber reinforced resin large diameter deformed rod and manufacture thereof

Info

Publication number
JPH06155443A
JPH06155443A JP4318434A JP31843492A JPH06155443A JP H06155443 A JPH06155443 A JP H06155443A JP 4318434 A JP4318434 A JP 4318434A JP 31843492 A JP31843492 A JP 31843492A JP H06155443 A JPH06155443 A JP H06155443A
Authority
JP
Japan
Prior art keywords
rod
resin
fiber bundle
diameter
concrete
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4318434A
Other languages
Japanese (ja)
Inventor
Mitsuo Mayahara
光郎 馬屋原
Toshihiro Hamada
敏裕 浜田
Kiyomi Otsuka
清美 大塚
Tadayuki Yamamoto
忠之 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP4318434A priority Critical patent/JPH06155443A/en
Publication of JPH06155443A publication Critical patent/JPH06155443A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide large diameter FRP rod, which is used for reinforcing concrete, excellent in fixing properties in the concrete and the adhesion between the rod and the concrete and especially excellent as earth anchor. CONSTITUTION:In rod 1, in which a fiber bundle made of high strength organic synthetic fibers paralleled to one direction is impregnated with resin and hardened, the mean outer diameter of the rod 1 is 18mm or larger and projecting parts, each of which is made of resin and extends to the direction intersecting with the longitudinal direction of the rod 1, are characteristically formed on the outer periphery of the rod in order to produce the fiber reinforced resin deformed rod concerned.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、有機合成繊維補強され
た樹脂から構成された土木、建築分野に好適な補強材用
太径の異形ロッドに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a large-diameter deformed rod for reinforcing material, which is suitable for the field of civil engineering and construction, which is composed of a resin reinforced with organic synthetic fibers.

【0002】[0002]

【従来の技術】土木建築の分野において、コンクリート
の補強材として異形鉄筋が多く使用されているが、異形
鉄筋は強度や弾性率は高いものの、重いため取り扱いに
くく、安全性や労働力等の点から嫌われている。さら
に、異形鉄筋の大きな欠点として、酸、アルカリ、塩等
を含む水、土塊等と接触することにより、あるいは電気
の発生する電気軌道路床等の補強材として用いられてい
る場合などには、極部電池の生成により錆を発生し、コ
ンクリートのひび割れを招き、鉄筋の補強性が失われる
と言う耐久性の面での欠点が挙げられる。この鉄筋の欠
点を解消するために、各種の有機合成繊維を使用し、樹
脂で固めて一体化した引き抜き成型のいわゆる繊維補強
樹脂(以下FRPと称す)製ロッドが開発されている。
しかし引き抜き成型法では、均一硬化が出来ない、硬化
時間が長く必要で製造しにくい、コンクリート等での定
着、接着効率の低い物しか出来ない等の理由で平均直径
18mm以上のもの、特に20mm以上のものが作りに
くいという欠点を有している。
2. Description of the Related Art In the field of civil engineering and construction, deformed bar is often used as a reinforcing material for concrete. Although deformed bar has high strength and elastic modulus, it is difficult to handle because it is heavy, and safety and labor are important points. Hated by Further, as a major drawback of the deformed bar, when it is used as a reinforcing material for an electric orbital subgrade or the like in which electricity is generated, by contact with water containing an acid, an alkali, salt, etc., an earth mass, etc., There is a drawback in terms of durability that rust is generated due to the formation of the electrode battery, cracking of concrete is caused, and reinforcing property of the reinforcing bar is lost. In order to solve the drawbacks of the reinforcing bars, a so-called fiber-reinforced resin (hereinafter referred to as FRP) rod made by pull-out molding, in which various kinds of organic synthetic fibers are used and solidified and integrated with resin, has been developed.
However, in the pultrusion molding method, the average diameter is 18 mm or more, especially 20 mm or more, because uniform curing cannot be performed, curing time is long and it is difficult to manufacture, fixing on concrete, etc. It is difficult to make things.

【0003】[0003]

【発明が解決しようとする課題】太径のロッドを製造す
る方法としては、細径のロッドを複数本束ねる方法や細
径のロッドを複数本合わせて撚をかける方法などが知ら
れている。しかし、これらの方法を用いて得られる太径
ロッドは、鉄筋の欠点である錆や重たいという問題に関
しては解消されているが、コンクリートの補強、アース
アンカー等に使用する場合の端末定着部でのコンクリー
トとの接着力や定着力が不十分であるということから、
本来の目的である補強効果が発揮できない。その最大の
原因は、上記方法では一般に接着力の確保のために太径
ロッドの表面に細径のロッドを斜交巻等により巻き付
け、太径ロッドの表面に該細径ロッドによる凸部を作っ
ているが、斜交巻した細径ロッドとロッド本体との一体
化が不足していて、凸部を有している効果が十分には発
揮されていない点にある。特に太径となると斜交巻部が
ロッド本体からはがれ易くなり、この問題点を解決する
ことが一層重要となる。
As a method of manufacturing a rod having a large diameter, a method of bundling a plurality of rods having a small diameter, a method of twisting a plurality of rods having a small diameter, and the like are known. However, the large-diameter rods obtained by using these methods have been solved regarding the problems of rust and heavyness that are the drawbacks of reinforcing bars, but at the terminal fixing part when used for reinforcement of concrete, earth anchors, etc. Since the adhesive strength and fixing strength with concrete are insufficient,
The original effect of reinforcement cannot be achieved. The main reason for this is that in the above method, in general, in order to secure the adhesive force, a small diameter rod is wound around the surface of the large diameter rod by oblique winding or the like, and a convex portion by the small diameter rod is formed on the surface of the large diameter rod. However, there is a lack of integration of the slenderly wound small diameter rod and the rod body, and the effect of having the convex portion is not sufficiently exerted. Especially when the diameter is large, the oblique winding portion is easily peeled off from the rod body, and it is more important to solve this problem.

【0004】[0004]

【課題を解決するための手段】本発明は、この問題点を
解決するものであり、それによりコンクリートの接着
力、定着力に優れ、補強効果の極めて大きい太径のロッ
ドを提供することにある。すなわち本発明は、有機合成
繊維が一方向に引き揃えられている繊維束に樹脂が含浸
・硬化されているFRP製ロッドにおいて、該ロッドの
平均外径が18mm以上、好ましくは20mm以上であ
り、且つ該ロッドの外周には、該樹脂からなり該ロッド
の長さ方向と交わる方向に伸びる凸部が形成されている
ことを特徴とするFRP製異形ロッドであり、また本発
明は、有機合成繊維が80万デニール以上、好ましくは
100万デニール以上の太さに引き揃えられ、硬化性の
未硬化樹脂が含浸されている繊維束を型枠に入れて成型
硬化させるFRP製異形ロッドの製造方法において、該
型枠が、該繊維束が入る平均直径18mm以上、好まし
くは20mm以上の溝および該溝の表面に溝の長さ方向
と交わる方向に伸びる凹部を有する型枠であることを特
徴とするFRP製異形ロッドの製造方法である。
SUMMARY OF THE INVENTION The present invention is intended to solve this problem and provides a rod having a large diameter which is excellent in the adhesive strength and anchoring strength of concrete and has an extremely large reinforcing effect. . That is, the present invention is an FRP rod in which a resin is impregnated and cured in a fiber bundle in which organic synthetic fibers are aligned in one direction, and the average outer diameter of the rod is 18 mm or more, preferably 20 mm or more, Further, a deformed rod made of FRP, characterized in that a convex portion made of the resin and extending in a direction intersecting the length direction of the rod is formed on the outer periphery of the rod, and the present invention also provides an organic synthetic fiber. In the method for producing a deformed rod made of FRP, wherein a fiber bundle having a thickness of 800,000 denier or more, and preferably 1,000,000 denier or more is aligned, and a fiber bundle impregnated with a curable uncured resin is put into a mold and molded and cured. The mold is a mold having a groove having an average diameter of 18 mm or more, preferably 20 mm or more, in which the fiber bundle is inserted, and a recess extending on a surface of the groove in a direction intersecting a length direction of the groove. It is a manufacturing method of the FRP profiled rods, characterized in.

【0005】つまり本発明は、有機合成繊維製の太径F
RPロッドの平均直径(ロッドの横断面形状が円形でな
い場合にはその断面積相当円の直径)が18mm以上、
好ましくは20mm以上となるように有機合成繊維を多
数本引き揃え、そしてそれに合成樹脂を含浸、または有
機合成繊維の多数本を樹脂含浸しながら平均直径が18
mm以上、好ましくは20mm以上になるように引き揃
えることにより得た繊維束を上述したような異形をもつ
型枠に入れ、樹脂を硬化させ、脱型して得られるもので
ある。以下、本発明を詳細に説明する。
That is, the present invention relates to a large diameter F made of organic synthetic fiber.
The average diameter of the RP rod (the diameter of the circle corresponding to the cross-sectional area when the rod is not circular in cross section) is 18 mm or more,
Preferably, a large number of organic synthetic fibers are aligned so as to have a size of 20 mm or more, and synthetic resin is impregnated therein, or an average diameter is 18 while impregnating a large number of organic synthetic fibers with resin.
It is obtained by putting the fiber bundle obtained by pulling and aligning the fiber bundle to have a size of not less than 20 mm, preferably not less than 20 mm, into a mold having the above-mentioned irregular shape, curing the resin, and releasing the mold. Hereinafter, the present invention will be described in detail.

【0006】使用する有機合成繊維としては、ポリビニ
ルアルコール系繊維、全芳香族ポリエステル系繊維(い
わゆるアリレート系繊維)、全芳香族ポリアミド系繊維
(いわゆるアラミド系繊維)、ポリアクリロニトリル系
繊維、ポリオレフィン系繊維などが挙げられ、その強度
としては7g/d以上、特に12g/d以上が好まし
い。もちろん二種以上の繊維を併用することもできる。
たとえばロッドの外層部を構成する繊維を強度の高い繊
維とし、内部を構成する繊維として比較的強度の低い繊
維を用いることにより、またロッドの外層部を耐アルカ
リ性に優れた繊維とし、内部を比較的耐アルカリ性に劣
る繊維とすること等により、種々の使用目的にあったロ
ッドとすることができる。繊維の太さとしては1.0〜
1500dが集合体(ロッド)としたときの屈曲強度や
取り扱い性等の点で好ましい。繊維を引き揃える方法と
してはビームスタンド方式、クリールスタンド方式等が
ある。そして引き揃えた後の繊維束の太さとしては80
万d以上が必要であり、好ましくは100万d以上であ
る。
The organic synthetic fibers used include polyvinyl alcohol fibers, wholly aromatic polyester fibers (so-called arylate fibers), wholly aromatic polyamide fibers (so-called aramid fibers), polyacrylonitrile fibers, and polyolefin fibers. And the like, and the strength thereof is preferably 7 g / d or more, particularly preferably 12 g / d or more. Of course, two or more kinds of fibers can be used together.
For example, by using fibers with high strength as the fibers forming the outer layer of the rod and fibers with relatively low strength as the fibers forming the inner part, and by using fibers with excellent alkali resistance for the outer layer of the rod, compare the inside. By making the fiber inferior in alkaline resistance, a rod suitable for various purposes can be obtained. The thickness of the fiber is 1.0-
1500d is preferable in terms of bending strength, handleability, and the like when the assembly (rod) is formed. There are a beam stand method, a creel stand method and the like as a method for aligning fibers. And the thickness of the fiber bundle after being aligned is 80
It is required to be 10,000 d or more, preferably 1 million d or more.

【0007】ロッドを構成する樹脂としては、エポキシ
系樹脂、不飽和ポリエステル系樹脂、ビニルエステル系
樹脂、フェノール系樹脂、メラミン系樹脂、尿素系樹脂
などの熱硬化性樹脂が挙げられる。なかでも繊維との接
着性や強度等の点からエポキシ系樹脂が好ましい。
Examples of the resin constituting the rod include thermosetting resins such as epoxy resins, unsaturated polyester resins, vinyl ester resins, phenol resins, melamine resins and urea resins. Of these, epoxy resins are preferable from the viewpoint of adhesiveness to fibers, strength, and the like.

【0008】このように有機合成繊維を多数本引き揃え
た繊維束を熱硬化性樹脂液中に浸漬含浸後、余分な樹脂
を搾液し、太さ18mm以上、好ましくは20mm以上
の太さの棒状樹脂含浸繊維束を得る。樹脂含浸繊維束中
に占める樹脂の体積割合としては30〜50%程度が好
ましい。その理由は、補強材としての繊維の力を発揮す
るためであり、連続繊維を用いた複合則よりマトリック
ス成分である樹脂が少ない方が複合材の引張強度、ヤン
グ率が高まるからである。前述したように、繊維束の太
さとしては80万d以上であることが必要、好ましくは
100万d以上であるが、このような繊維束を一度に樹
脂液中に浸漬して繊維束の内部にまで均一に樹脂を含浸
することは通常困難であり、したがって、細い繊維束を
樹脂液中に浸漬して得られる樹脂含浸細径繊維束を後で
束ねて80万d以上、好ましくは100万d以上の太径
繊維束とする方法が好ましい。この方法を用いると太径
繊維束の内部まで均一に樹脂が入り込んだ太径繊維束を
容易に製造することができる。また樹脂の含浸性を向上
させるためには樹脂粘度を室温で10〜50cpの範囲
内とすることや繊維束を構成する繊維として、例えば1
00〜1500dの比較的太い繊維を用いる等の方法も
ある。また繊維束を強度及びコストの点で中空にしても
よい。中空とした場合には、後で行う型枠に入れて加熱
硬化させる際に、中空部が押し潰されないように、中空
のパイプを用い、そのまわりに繊維束層を形成すること
により、中空繊維束を形成する方法を用いるのが好まし
い。図3に、中空のパイプとしてポリ塩化ビニルからな
る中空パイプ3を用い、その回りに樹脂含浸させた繊維
束層からなるロッド本体1が形成されており、その外側
に異形部2を形成させた太径FRPロッドの断面を示
す。
As described above, a fiber bundle in which a large number of organic synthetic fibers are drawn and aligned is dipped and impregnated in a thermosetting resin liquid, and then excess resin is squeezed to obtain a thickness of 18 mm or more, preferably 20 mm or more. A rod-shaped resin-impregnated fiber bundle is obtained. The volume ratio of the resin in the resin-impregnated fiber bundle is preferably about 30 to 50%. The reason is that the strength of the fiber as a reinforcing material is exerted, and the tensile strength and Young's modulus of the composite material are increased as the amount of the resin as the matrix component is smaller than that of the composite rule using continuous fibers. As described above, the thickness of the fiber bundle is required to be 800,000 d or more, preferably 1 million d or more. It is usually difficult to uniformly impregnate the resin even inside the resin. Therefore, a resin-impregnated small-diameter fiber bundle obtained by immersing a thin fiber bundle in a resin liquid is bundled later to 800,000 d or more, preferably 100 A method of forming a large diameter fiber bundle of 10,000 d or more is preferable. By using this method, it is possible to easily manufacture a large-diameter fiber bundle in which the resin is evenly introduced into the large-diameter fiber bundle. Further, in order to improve the impregnating property of the resin, the resin viscosity is set to be in the range of 10 to 50 cp at room temperature, and as the fiber constituting the fiber bundle, for example, 1
There is also a method of using a relatively thick fiber of 00 to 1500 d. The fiber bundle may be hollow in terms of strength and cost. When it is hollow, by using a hollow pipe and forming a fiber bundle layer around it to prevent the hollow part from being crushed when it is placed in a mold and cured by heating, hollow fibers are formed. Preference is given to using the method of forming bundles. In FIG. 3, a hollow pipe 3 made of polyvinyl chloride is used as a hollow pipe, and a rod body 1 made of a resin-impregnated fiber bundle layer is formed around the hollow pipe 3, and a deformed portion 2 is formed on the outside thereof. The cross section of a large diameter FRP rod is shown.

【0009】以上のようにして得られた樹脂含浸繊維束
を異形を持つ棒状の型枠にいれ加熱硬化させる。棒状の
断面の形状は、円形、長円形、楕円形、正方形、長方
形、六角形、台形、L字形、H字形、T字形、Y字形等
のいずれでもよく、要は硬化後ロッド脱型ができる形状
であればよい。異形(凸部を意味する)の形状として
は、凸が大きくロッド本体との一体性が良好でしかもコ
ンクリートとの接着性が良好であることが要求される。
これらの要求を満足する凸部としては、凸部高さが1〜
10mm、凸部幅が2〜20mmでロッドの長さ方向と
交わる方向、好ましくはロッドの長さ方向に対して45
度以上の角度で交わる方向に伸びる凸部が隣り合う凸部
との間隔5〜50mmで形成されているような場合が好
ましく、特に、図1及び図2に示すように凸部が竹の節
状、又は螺旋状となっているが好ましく、そしてその凸
部形状が、凸部高さ(図2で示す異形部高さ)が3〜8
mm、凸部幅(底部での幅、図2で示す異形部幅)が4
〜8mm、隣り合う凸部との間隔(図2で示すピッチ)
が10〜30mmであるような凸部が好ましい。図1お
よび図2において、1がロッド本体、2が異形部を示
す。
The resin-impregnated fiber bundle obtained as described above is put in a rod-shaped mold having an irregular shape and cured by heating. The shape of the rod-shaped cross section may be circular, oval, oval, square, rectangular, hexagonal, trapezoidal, L-shaped, H-shaped, T-shaped, Y-shaped, etc. Any shape will do. The shape of the irregular shape (meaning a convex portion) is required to have a large convexity, good integration with the rod body, and good adhesiveness with concrete.
As a convex portion that satisfies these requirements, the convex portion height is 1 to
10 mm, a protrusion width of 2 to 20 mm, and a direction intersecting the length direction of the rod, preferably 45 with respect to the length direction of the rod.
It is preferable that the convex portions extending in a direction intersecting at an angle of at least 5 degrees are formed with an interval of 5 to 50 mm between the adjacent convex portions, and in particular, the convex portions are bamboo nodes as shown in FIGS. 1 and 2. Shape or spiral shape is preferable, and the convex shape has a convex height (height of irregular shape shown in FIG. 2) of 3 to 8
mm, the width of the convex portion (width at the bottom portion, width of the deformed portion shown in FIG. 2) is 4
~ 8 mm, spacing between adjacent protrusions (pitch shown in FIG. 2)
Is preferably 10 to 30 mm. In FIGS. 1 and 2, 1 indicates a rod body and 2 indicates a deformed portion.

【0010】型枠の中に、樹脂含浸繊維束を入れて樹脂
を硬化させる場合、異形部分を構成する樹脂が含浸され
た樹脂だけでは樹脂量が不足し、十分な形状の異形を形
成することが難しい場合があるが、このような場合に
は、樹脂含浸繊維束を型枠に入れる前に該樹脂と同一の
樹脂を型枠内に入れておくのが好ましい。もちろんこの
場合においても、硬化後のロッドにおける樹脂体積率が
前記樹脂体積率の範囲内となるようにするのが好まし
い。型枠内に入れられた樹脂含浸繊維束は、異形ロッド
形状となるように加圧され、そしてその形状で樹脂を硬
化させるため加熱される。加熱温度としては、樹脂が硬
化反応する温度であればよく、たとえば60〜180℃
が用いられる。硬化反応が完了又はほぼ完了した後に型
枠から取り出す。なお得られたロッドとコンクリートと
の接着性や定着性をより高めるために、ロッド表面に砂
等の無機粒子を付着させてもよい。
When the resin-impregnated fiber bundle is put into the mold to cure the resin, the resin amount which is impregnated with the resin forming the odd-shaped portion is insufficient and a sufficiently-shaped irregular shape is formed. However, in such a case, it is preferable that the same resin as the resin is put in the mold before putting the resin-impregnated fiber bundle in the mold. Of course, in this case as well, it is preferable that the resin volume ratio of the rod after curing is within the range of the resin volume ratio. The resin-impregnated fiber bundle placed in the mold is pressed into a deformed rod shape and heated to cure the resin in that shape. The heating temperature may be a temperature at which the resin undergoes a curing reaction, for example, 60 to 180 ° C.
Is used. After the curing reaction is completed or almost completed, it is taken out from the mold. Inorganic particles such as sand may be attached to the surface of the rod in order to further improve the adhesiveness and fixing property of the obtained rod and concrete.

【0011】本発明において、異形部分とロッド本体と
の一体化は、繊維束含浸樹脂と異形部分の樹脂が同一組
成であり、硬化を同時に行うことが本発明の最も大きな
特徴点であり、ロッド本体と異形部分が異なる樹脂から
構成されている場合や硬化を別々に行った場合には、ロ
ッド本体と異形部分とで実質的に化学的結合を有してい
ないため、異形部分がロッド本体から剥がれ易く、コン
クリート中での定着性に劣ることとなる。
In the present invention, the integral feature of the deformed portion and the rod body is that the fiber bundle-impregnated resin and the resin of the deformed portion have the same composition, and curing is performed at the same time. When the main body and the odd-shaped portion are made of different resins, or when they are cured separately, the odd-shaped portion does not have a chemical bond, so the odd-shaped portion is separated from the rod main body. It is easily peeled off, resulting in poor fixability in concrete.

【0012】図4および5は従来の太径FRPロッドの
断面図および側面図を示す。この図から明らかなよう
に、従来の太径FRPロッドは、細い樹脂含浸繊維束を
ロッドの回りに斜交巻にした細径ロッドを複数本束ねて
(図4及び5では7本)、太径FRPロッドとした場合
である。このようなロッドの場合、細径ロッド間で剥離
が生じ易く、さらに斜交巻した繊維束が細径ロッド表面
から剥がれ易く、したがってコンクリート中で定着性に
劣ることとなる。
4 and 5 show a sectional view and a side view of a conventional large diameter FRP rod. As is clear from this figure, the conventional large-diameter FRP rod is obtained by bundling a plurality of small-diameter rods (7 in FIGS. 4 and 5) in which thin resin-impregnated fiber bundles are obliquely wound around the rod. This is the case where a diameter FRP rod is used. In the case of such a rod, peeling is likely to occur between the small diameter rods, and further, the obliquely wound fiber bundle is likely to be peeled from the surface of the small diameter rods, and thus the fixing property in concrete is poor.

【0013】以下実施例により本発明を説明する。 実施例1〜8、比較例1〜2 実施例1として、7万dの高強力ポリビニルアルコール
繊維(クラレ社製品番7901、切断強度17.5g/
dr、切断伸度4.9%、引張り弾性率350g/dr
からなるトウ(単繊維デニール1.8dr)にエポキシ
樹脂(油化シエルエポキシ社製、エピコート828を1
00重量部、硬化剤LX−IN30重量部の混合物)を
含浸し、サク液ノズルを通してサク液と集束を行い16
1万dの繊維束とした。これを、型枠最小径21mmφ
の異形型枠に投入し加熱炉で100℃で加熱硬化し、表
1に示す異形部を有する有機合成繊維製太径FRP異形
ロッドを作製した。ロッド中の樹脂の体積割合は45%
であった。
The present invention will be described below with reference to examples. Examples 1-8, Comparative Examples 1-2 As Example 1, high-strength polyvinyl alcohol fiber of 70,000 d (Kuraray Co., Ltd. product number 7901, cutting strength 17.5 g /
dr, breaking elongation 4.9%, tensile modulus 350g / dr
Tow (single fiber denier 1.8 dr) consisting of epoxy resin (Epicote 828 manufactured by Yuka Shell Epoxy Co., Ltd.
A mixture of 00 parts by weight and 30 parts by weight of a curing agent LX-IN) is impregnated, and the solution is converged with the solution of Saku through a solution nozzle.
The fiber bundle was 10,000 d. This is the minimum diameter of the form 21mmφ
It was placed in the modified mold of No. 2 and heat-cured at 100 ° C. in a heating furnace to produce a large-diameter FRP deformed rod made of organic synthetic fiber having a deformed portion shown in Table 1. The volume ratio of resin in the rod is 45%
Met.

【0014】実施例2として、繊維束の中心部に外径1
0mmφの塩ビ中空パイプを挿入し、それを型枠最小径
23.5mmφの異形型枠に投入した以外は実施例1と
同様にして加熱炉で加熱硬化し、有機合成繊維製の太径
FRP異形ロッドを作製した。その型状を図1、図2に
示した。異形の形状の寸法は表1に示した。ロッド中の
樹脂の体積割合は45%であった。以下実施例3〜8
は、実施例1と同様の操作で、異形の形状のみが表1に
示すように異なる。得られたロッド中の樹脂の体積割合
は42〜48%の範囲内である。
As Example 2, an outer diameter of 1 is provided at the center of the fiber bundle.
Large-diameter FRP variant made of organic synthetic fiber, which was heat-cured in a heating furnace in the same manner as in Example 1 except that a 0 mmφ PVC hollow pipe was inserted and the mold was placed in a profiled mold with a minimum diameter of 23.5 mmφ. A rod was made. The shape is shown in FIGS. 1 and 2. The dimensions of the irregular shape are shown in Table 1. The volume ratio of the resin in the rod was 45%. Examples 3 to 8 below
In the same operation as in Example 1, only different shapes are different as shown in Table 1. The volume ratio of the resin in the obtained rod is in the range of 42 to 48%.

【0015】比較例1として、1800デニール/10
00フィラメントからなる高強力ポリビニルアルコール
繊維(クラレ社製品番7901、切断強度17.5g/
dr、切断伸度4.9%、引張り弾性率350g/d
r)マルチヤーンを128本引揃え(230万400
d)繊維束となし、この繊維束にエポキシ樹脂(油化シ
エルエポキシ社製エピコート828を100重量部、硬
化剤LX−IN30重量部の混合物)を含浸し、そして
成形ノズルに通し単線の内径6mmを引抜き成形し、こ
の上に、同一繊維のマルチヤーン3本(18000d/
1000f×3本)を30回/mに撚糸し、上記と同一
の樹脂を含浸した繊維束を上記ロッド表面に1cmピッ
チとなるように2本交互に綾巻し、加熱炉で加熱硬化
し、図4に示した単線の形状を得た。図4には綾巻糸5
が巻き付けられた単線4が示されている。綾巻糸5によ
り所定の太さにでき、かつ、摩擦抵抗を高めている。該
る本数の単線を所要の長さに切断し、単線に上記配合の
エポキシ樹脂を塗布し、6本を単線芯材周辺に均一に配
置し紐で束ね一夜空気中に放置することにより硬化結束
し一体化した有機合成繊維製太径ロッドを得た。この太
径ロッド中の樹脂の体積割合は42%であった。その形
状を図4および5に示す。
As Comparative Example 1, 1800 denier / 10
High-strength polyvinyl alcohol fiber consisting of 00 filaments (Kuraray Co., Ltd. product number 7901, cutting strength 17.5 g /
dr, cutting elongation 4.9%, tensile modulus 350g / d
r) Assortment of 128 multi yarns (2.3400 million)
d) A fiber bundle, which is impregnated with an epoxy resin (a mixture of 100 parts by weight of Epicoat 828 manufactured by Yuka Shell Epoxy Co., Ltd. and 30 parts by weight of a curing agent LX-IN), and is passed through a molding nozzle to have an inner diameter of a single wire of 6 mm. Was pultruded and 3 multi-yarns (18000d /
1000 f × 3) is twisted at 30 times / m, and two fiber bundles impregnated with the same resin as above are alternately wound on the surface of the rod at a pitch of 1 cm, and heat-cured in a heating furnace. The shape of the single wire shown in FIG. 4 was obtained. Twill winding yarn 5 is shown in FIG.
A single wire 4 wrapped around is shown. The twilled yarn 5 has a predetermined thickness and increases frictional resistance. Cut the required number of single wires to the required length, apply the above-prepared epoxy resin to the single wires, evenly arrange the six wires around the single wire core material, bundle them with a string, and leave them in the air overnight. Then, a large diameter rod made of organic synthetic fiber was obtained. The volume ratio of the resin in this large diameter rod was 42%. Its shape is shown in FIGS.

【0016】比較例2として、実施例1において、異形
のない21mm直径の型枠に投入する以外は実施例1と
同様の方法により、異形を持たない太径ロッドを得た。
As Comparative Example 2, a large-diameter rod having no irregular shape was obtained by the same method as in Example 1, except that the rod was placed in a mold having a 21 mm diameter without irregular shape.

【0017】以上のようにして得た太径ロッドの異形部
形状、強力、ヤング率、コンクリートとの接着力、コン
クリートに埋め込んだロッドを引き抜いた場合の異形部
の破壊状況を表1および表2に示す。なお、表2におい
て、コンクリートとの接着性、異形部の破壊状況は、コ
ンクリートとしてレデーミクトコンクリート(JIS
A 5308−1978)標準品、普通コンクリート、
空気量4%、粗骨材最大寸法20mmで、スランプ10
cm、呼び強度150kg/cm2、210kg/c
2、300kg/cm2を用い、それにロッド埋め込み
深さ10cmとして、埋め込み硬化物を作製した。そし
てその硬化物からロッドを引き抜き、強力を測定し接着
力と引き抜き後の異形部のロッド本体との剥離程度を観
察した。ロッド引き抜き強力測定に用いた装置を図6に
示す。異形部の破壊状況に関しては、異形部埋め込み部
が実質的に全て破壊された場合を×、半分以上が破壊さ
れた場合を△、一部破壊された場合を○、実質的に殆ど
破壊されなかった場合を◎として示した。
Table 1 and Table 2 show the shape of the deformed portion of the large-diameter rod obtained as described above, the strength, the Young's modulus, the adhesive strength with concrete, and the breaking condition of the deformed portion when the rod embedded in the concrete is pulled out. Shown in. In Table 2, the adhesiveness to concrete and the state of fracture of the deformed portion are shown as ready-mixed concrete (JIS
A 5308-1978) Standard product, ordinary concrete,
Slump 10 with air volume 4%, maximum size of coarse aggregate 20mm
cm, nominal strength 150 kg / cm 2 , 210 kg / c
An embedded cured product was prepared by using m 2 and 300 kg / cm 2 and setting the rod embedding depth to 10 cm. Then, the rod was pulled out from the cured product, the strength was measured, and the adhesive force and the degree of peeling between the deformed portion and the rod body after the pulling were observed. The apparatus used for measuring the rod pull-out strength is shown in FIG. Regarding the state of destruction of the deformed portion, x is the case where the embedded portion of the deformed portion is substantially all destroyed, Δ is the case where more than half is destroyed, ○ is the case where it is partially destroyed, and there is virtually no destruction. The case is shown as ⊚.

【0018】[0018]

【表1】 [Table 1]

【0019】[0019]

【表2】 [Table 2]

【0020】実施例のものは、コンクリート強度が大き
くなっても、異形によるアンカー効果で接着力が向上す
るのに対し、比較例のものは異形部が破壊されたり、異
形のない場合にはコンクリートとの接着力が向上しな
い。
In the examples, even if the concrete strength increases, the adhesive strength is improved by the anchor effect due to the irregular shape, whereas in the comparative examples, the irregular portion is destroyed or when there is no irregular shape, the concrete strength is improved. The adhesive strength with does not improve.

【0021】[0021]

【発明の効果】本発明により、コンクリート埋め込み後
引き抜き時に、異形部の破壊が少なく、接着力の非常に
大きい太径ロッドが得られた。その結果、本発明の太径
ロッドは以下〜の優れた特性を有することが判っ
た。 アースアンカー使用時の端末定着が小さく効率よく
できる。 接着力が大きいためにアース効果が増大する。 コンクリートの補強に使用すればクラックの拡大の
ない靭性のある部材の作製ができる。 錆の発生がなく、軽量で取り扱い性に優れる。
According to the present invention, it is possible to obtain a large-diameter rod in which the deformed portion is less destroyed and the adhesive strength is very large when the concrete is embedded and then pulled out. As a result, it was found that the large diameter rod of the present invention had the following excellent properties. Terminal fixation when using the ground anchor is small and efficient. Due to the high adhesive strength, the earth effect is increased. If it is used to reinforce concrete, it is possible to produce a tough member without crack expansion. Has no rust, is lightweight and has excellent handleability.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の太径異形ロッドの断面図である。FIG. 1 is a sectional view of a large-diameter deformed rod of the present invention.

【図2】本発明の太径異形ロッドの側面図である。FIG. 2 is a side view of the large-diameter deformed rod of the present invention.

【図3】本発明の太径中空異形ロッドの断面図である。FIG. 3 is a sectional view of a large-diameter hollow variant rod of the present invention.

【図4】従来の斜交巻細径ロッドを束ね太径ロッドとし
たものの断面図である。
FIG. 4 is a cross-sectional view of a large diameter rod obtained by bundling the conventional obliquely wound small diameter rods.

【図5】図4に示す太径ロッドの側面図である。5 is a side view of the large-diameter rod shown in FIG.

【図6】ロッド引き抜き強度を測定する装置の図であ
る。
FIG. 6 is a view of an apparatus for measuring rod pullout strength.

【符号の説明】[Explanation of symbols]

1.ロッド本体、 2.異形部、 3.中空パイプ、
4.斜交巻繊維束、5.単線、 7.油圧ポンプ、
8.油圧ゲージ、 9.定着治具、 10.座金、 1
1.センターポールジャッキ、 12.コンクリート、
13.ロッド
1. Rod body, 2. Deformed portion, 3. Hollow pipe,
4. Obliquely wound fiber bundle, 5. Single line, 7. Hydraulic pump,
8. Hydraulic gauge, 9. Fixing jig, 10. Washer, 1
1. Center pole jack, 12. concrete,
13. rod

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山本 忠之 岡山市海岸通1丁目2番1号 株式会社ク ラレ内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Tadayuki Yamamoto 1-2-1 Kaigan-dori, Okayama-shi Kuraray Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 有機合成繊維が一方向に引き揃えられて
いる繊維束に樹脂が含浸・硬化されているロッドにおい
て、該ロッド平均外径が18mm以上であり、且つ該ロ
ッドの外周には、該樹脂からなり該ロッドの長さ方向と
交わる方向に伸びる凸部が形成されていることを特徴と
する繊維補強樹脂製異形ロッド。
1. A rod in which a resin is impregnated and cured in a fiber bundle in which organic synthetic fibers are aligned in one direction, and the rod has an average outer diameter of 18 mm or more, and the outer circumference of the rod is A deformed rod made of a fiber-reinforced resin, comprising a convex portion made of the resin and extending in a direction intersecting the length direction of the rod.
【請求項2】 有機合成繊維が80万デニール以上の太
さに引き揃えられ、硬化性の未硬化樹脂が含浸されてい
る繊維束を型枠に入れて成型硬化させ繊維補強樹脂製ロ
ッドを製造する方法において、該型枠が、該繊維束が入
る平均直径18mm以上の溝および該溝の表面に溝の長
さ方向と交わる方向に伸びる凹部を有する型枠であるこ
とを特徴とする繊維補強樹脂製異形ロッドの製造方法。
2. A fiber reinforced resin rod is manufactured by placing a fiber bundle in which organic synthetic fibers are aligned in a thickness of 800,000 denier or more and impregnated with a curable uncured resin into a mold to be molded and cured. In the method described above, the mold is a mold having a groove having an average diameter of 18 mm or more in which the fiber bundle is inserted, and a concave portion extending on a surface of the groove in a direction intersecting a longitudinal direction of the groove. Manufacturing method of resin deformed rod.
JP4318434A 1992-11-27 1992-11-27 Fiber reinforced resin large diameter deformed rod and manufacture thereof Pending JPH06155443A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4318434A JPH06155443A (en) 1992-11-27 1992-11-27 Fiber reinforced resin large diameter deformed rod and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4318434A JPH06155443A (en) 1992-11-27 1992-11-27 Fiber reinforced resin large diameter deformed rod and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH06155443A true JPH06155443A (en) 1994-06-03

Family

ID=18099111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4318434A Pending JPH06155443A (en) 1992-11-27 1992-11-27 Fiber reinforced resin large diameter deformed rod and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH06155443A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10786971B2 (en) 2010-10-27 2020-09-29 Richard W. Roberts Method for making a running board having an in-situ foam core

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63138052A (en) * 1986-12-01 1988-06-10 三菱レイヨン株式会社 Rod material made of fiber reinforced resin
JPH02158321A (en) * 1988-12-13 1990-06-18 Kumagai Gumi Co Ltd Manufacture of concrete reinforcing member
JPH03218817A (en) * 1989-11-02 1991-09-26 Nippon Petrochem Co Ltd Fiber reinforced plastic rod with ridge on surface and its manufacture
JPH0610444A (en) * 1992-06-26 1994-01-18 Takenaka Komuten Co Ltd Fiber reinforcer and structure material therewith

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63138052A (en) * 1986-12-01 1988-06-10 三菱レイヨン株式会社 Rod material made of fiber reinforced resin
JPH02158321A (en) * 1988-12-13 1990-06-18 Kumagai Gumi Co Ltd Manufacture of concrete reinforcing member
JPH03218817A (en) * 1989-11-02 1991-09-26 Nippon Petrochem Co Ltd Fiber reinforced plastic rod with ridge on surface and its manufacture
JPH0610444A (en) * 1992-06-26 1994-01-18 Takenaka Komuten Co Ltd Fiber reinforcer and structure material therewith

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10786971B2 (en) 2010-10-27 2020-09-29 Richard W. Roberts Method for making a running board having an in-situ foam core

Similar Documents

Publication Publication Date Title
US5077113A (en) Filament-reinforced resinous structural rod
WO1997002393A1 (en) Laminated composite reinforcing bar and method of manufacture
KR101043809B1 (en) Fiber reinforced polymer rod, manufacturing method thereof, and reinforcing method of concrete structure using the same
KR100808938B1 (en) A hybrid fiber reinforced plastic rebar for concrete
JP2005029991A (en) Reinforcing method of concrete structure
JP2923221B2 (en) Fiber reinforced plastic rod
JP3679590B2 (en) Method for reinforcing concrete structures
JPH0132058B2 (en)
JPH06155443A (en) Fiber reinforced resin large diameter deformed rod and manufacture thereof
JP2629130B2 (en) FRP rock bolt
JPH0474494B2 (en)
JP3520117B2 (en) FRP steel replacement material and method of manufacturing the same
JPH03249287A (en) Twisted structure made of fiber-reinforced thermosetting resin and its production
JPH0555676B2 (en)
JPH11320696A (en) Reinforcing-fiber reinforcing bar and its manufacture
JP6965404B1 (en) Prestressed concrete pole, its manufacturing method and fixing device for manufacturing prestressed concrete pole
JP3173119B2 (en) Method for producing fiber reinforced plastic reinforcement
JP2934162B2 (en) Combination of fiber reinforced plastic hollow rod and wedge for end enlargement
JP2696939B2 (en) Anchoring body for prestressed concrete
JPH11200798A (en) Rock bolt
JP3121424U (en) Carbon fiber concrete reinforcement
JPH05321406A (en) Thick diameter rod made of organic synthetic fiber
JPH0413140B2 (en)
JPH0318555Y2 (en)
JPH11342543A (en) Production of connecting material