JPH06154837A - Descaling method - Google Patents

Descaling method

Info

Publication number
JPH06154837A
JPH06154837A JP33983292A JP33983292A JPH06154837A JP H06154837 A JPH06154837 A JP H06154837A JP 33983292 A JP33983292 A JP 33983292A JP 33983292 A JP33983292 A JP 33983292A JP H06154837 A JPH06154837 A JP H06154837A
Authority
JP
Japan
Prior art keywords
liquid
pressure
nozzle
jet
descaling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33983292A
Other languages
Japanese (ja)
Other versions
JP3149583B2 (en
Inventor
Yoshiaki Takeishi
芳明 武石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP33983292A priority Critical patent/JP3149583B2/en
Publication of JPH06154837A publication Critical patent/JPH06154837A/en
Application granted granted Critical
Publication of JP3149583B2 publication Critical patent/JP3149583B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Cleaning By Liquid Or Steam (AREA)

Abstract

PURPOSE:To efficiently descale steel products under a relatively low pressure by using liquid in which bubbles are dispersed at a specific volume ratio under the atm. pressure as a pressurized jet liquid. CONSTITUTION:The liquid is reduced in pressure down to the atm. pressure in a nozzle outlet and, therefore, gas expands if the liquid in which the bubbles are dispersed at least at >=1% volume ratio under the atm. pressure is pressurized and ejected from the nozzle 9. The liquid jet is parted by such expansion to liquid drops. The liquid drops are further accelerated from the ejection speed from the nozzle 9 by the rapid expansion of the bubbles. Then, the foamed gas parts the liquid jet to form discontinuous jets. Since the foamed gas accelerates the parted liquid drops, the collision pressure against the steel products 10 increases additionally. The descaling with high efficiency under the low pressure is possible if such gas dispersed liquid mixture jets are applied to the descaling. This method is thus advantagenous for quality improvement.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えば鋼材、特に鋼
板、鋼管、条鋼、あるいは型鋼の製造過程で発生する酸
化スケールを効率的に除去可能な方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method capable of efficiently removing oxide scale generated in the manufacturing process of, for example, steel materials, particularly steel plates, steel pipes, bar steels, and mold steels.

【0002】[0002]

【従来の技術】鋼板、鋼管、条鋼、あるいは型鋼等の熱
間製造過程においては、これら鋼材の表面に酸化スケー
ルが発生するが、このスケールは圧延工程での押し込み
等による表面疵防止の観点から圧延前に除去しなければ
ならない。鋼材の製造過程で発生するスケールは、鋼材
の加熱過程すなわち加熱炉内で発生する1次スケール、
1次スケール除去後圧延過程で発生する2次スケール、
さらに圧延後の冷却過程で発生する3次スケールに大別
される。
2. Description of the Related Art Oxidized scales are generated on the surface of steel sheets, steel pipes, bar steels, or shaped steels during the hot manufacturing process. These scales are used to prevent surface flaws due to indentation in the rolling process. Must be removed before rolling. The scale generated in the steel manufacturing process is the primary scale generated in the heating process of the steel, that is, in the heating furnace.
Secondary scale generated in the rolling process after removal of the primary scale,
Further, it is roughly classified into a tertiary scale generated in the cooling process after rolling.

【0003】1次スケールは、材質や在炉時間によって
も異なるが一般的に厚く、数mmにも達する。2次スケ
ールは、圧延速度や圧延温度によっても異なるが一般的
に1次スケールより薄く、数百μm程度である。さら
に、3次スケールは、鋼材温度が前二者に比べて低くス
ケール生成速度が低下しているので、百μm以下と薄く
なる。
The primary scale is generally thick, although it depends on the material and the time spent in the furnace, and reaches several mm. The secondary scale is generally thinner than the primary scale and is about several hundred μm, although it varies depending on the rolling speed and rolling temperature. Furthermore, since the steel material temperature of the tertiary scale is lower than that of the former two and the scale generation rate is reduced, it becomes as thin as 100 μm or less.

【0004】従来、この熱間スケールの除去には高圧水
ジェットを噴射する方法が用いられている。そして、こ
の高圧水ジェットを噴射する方法では、1次スケール
は、加熱炉から出た直後で鋼材の温度が1000℃以上
であるとともに、搬送速度も10〜100m/分と遅い
ため、脱スケール圧力は比較的低圧でも可能であり、一
般的に100〜150kg/cm2 で行われている。ま
た、2次スケールになると、温度も若干低下し、さらに
圧延速度も100〜600m/分と高速になるので、脱
スケール圧力は150〜200kg/cm2 が必要とい
われている。また、3次スケールの除去には、温度も5
00〜600℃以下と低く、速度も600〜1000m
/分と非常に高速になるので、250〜400kg/c
2 の高圧が必要といわれている。なお、鋼材走行中の
接触、衝突によるノズルの損傷防止の観点から、高圧水
噴射ノズルは鋼材から通常200〜700mm離して設
置される。
Conventionally, a method of injecting a high-pressure water jet has been used for removing the hot scale. In the method of injecting the high-pressure water jet, the descaling pressure of the primary scale is that the temperature of the steel material is 1000 ° C. or higher immediately after it comes out of the heating furnace and the transport speed is slow at 10 to 100 m / min. Can be performed at a relatively low pressure, and is generally performed at 100 to 150 kg / cm 2 . Further, when it comes to a secondary scale, the temperature is slightly lowered and the rolling speed is also high at 100 to 600 m / min. Therefore, it is said that the descaling pressure is required to be 150 to 200 kg / cm 2 . In addition, the temperature is 5 for removing the third scale.
It is as low as 00-600 ℃ or less, and the speed is 600-1000m.
Very high speeds of up to 250/400 kg / c
It is said that a high pressure of m 2 is required. In addition, from the viewpoint of preventing damage to the nozzle due to contact and collision during traveling of the steel material, the high-pressure water injection nozzle is usually installed 200 to 700 mm away from the steel material.

【0005】近年、鋼材の多様化、高機能化、高性能化
が進み、種々の元素が添加された合金鋼が多用されはじ
めた。このような合金鋼のスケール構造は、従来の一般
炭素鋼と異なり地鉄への付着力が増加するので、上述し
た脱スケール圧力を備えた現状設備ではスケールの除去
が不十分であり、スケール疵が発生するという問題が起
こりはじめた。これに対処するため、脱スケール圧力の
増圧が検討されているが、合金鋼のスケールを完全に除
去するには1次あるいは2次スケールでも400〜70
0kg/cm2 以上の高圧が必要となる。しかし、この
ような高圧化には、現設備(高圧ポンプ、配管、アキュ
ムレータ、ヘッダー、ノズル等)のリプレースが必要で
あり、設備コストは言うまでもなく、メンテナンスも大
変になる。従って、低圧で高効率に脱スケールが可能な
方法及び装置が強く望まれている。
In recent years, steel materials have been diversified, highly functionalized, and have high performance, and alloy steels to which various elements have been added have been widely used. Unlike the conventional general carbon steel, the scale structure of such alloy steel increases the adhesion to the base steel, so the scale removal is insufficient with the current equipment equipped with the descaling pressure described above, and scale defects The problem that occurs occurs. In order to deal with this, increasing the descaling pressure has been studied, but in order to completely remove the scale of the alloy steel, even the primary or secondary scale is 400 to 70.
A high pressure of 0 kg / cm 2 or higher is required. However, in order to increase the pressure, it is necessary to replace the existing equipment (high-pressure pump, piping, accumulator, header, nozzle, etc.), not to mention the equipment cost and the maintenance becomes difficult. Therefore, there is a strong demand for a method and apparatus capable of highly efficiently descaling under low pressure.

【0006】そこで、低圧で高効率の脱スケール法とし
て、特開昭59−76615号公報に記載されている
「ノズルを鋼材に近接させて鋼材面への衝突力を増加さ
せる方法」、特開昭59−20480号公報に記載さ
れている「粒径0.3mm以下の研掃材を投射する方
法」、特開昭61−119322号公報に記載されて
いる「高圧水ジェットに研掃材スラリーを混入噴射する
方法」、特開昭61−1410号公報に記載されてい
る「ブラシロールによる機械的除去方法」、特開昭5
8−128216号公報に記載されている「上記の方
法と他(例えば上記)の方法を併せた方法」等が提案
されている。
Therefore, as a low-pressure and high-efficiency descaling method, there is disclosed in Japanese Unexamined Patent Publication No. 59-76615, "a method of bringing a nozzle close to a steel material to increase a collision force to a steel material surface". Japanese Unexamined Patent Publication No. Sho 59-20480, "Method of projecting abrasives having a particle size of 0.3 mm or less", and Japanese Patent Laid-Open No. 61-119322, "Slurry of abrasives in high-pressure water jet". And a method of mixing and injecting "a method of mechanically removing with a brush roll" described in JP-A-61-1410.
"Method in which the above method and another (for example, the above) method are combined" described in 8-128216 is proposed.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、上記
の方法は、前述した鋼材走行時の接触、衝突によるノズ
ル損傷防止対策が必要であるとともに、本発明者の実
験、検討によればノズル近接化による衝突力の増加にも
限度があり、上記したような合金鋼の脱スケールにはや
はり水ジェットの増圧が必要であった。
However, the above method requires measures to prevent nozzle damage due to contact and collision during traveling of the steel material described above, and according to experiments and studies conducted by the present inventor, it is possible to use nozzle proximity. There is a limit to the increase in the collision force, and the descaling of the alloy steel as described above also required the pressure increase of the water jet.

【0008】また、及びの方法は、低圧での高効率
脱スケールは可能であるが、脱スケール後、研掃材のク
リーニングを十分に行わないと研掃材による押し込み疵
が発生し易い。また、跳ね返った研掃材による周辺機器
設備の摩耗も発生するため、その防護設備が必要であ
り、そのメンテナンスも大変である。
The methods (1) and (2) enable high-efficiency descaling at low pressure, but if the cleaning material is not sufficiently cleaned after descaling, indentation defects due to the polishing material are likely to occur. In addition, since the peripheral cleaning equipment is also worn by the abrasive cleaning material that has bounced back, it is necessary to provide protective equipment therefor and maintenance thereof is difficult.

【0009】また、の方法は、ブラシの損耗が激し
く、頻繁にブラシの交換を行わなければならず、メンテ
ナンスコストが高くなる。さらに、の方法は、スケー
ルの除去効率は非常に良いものの、上述した欠点をそれ
ぞれ兼ね備えており、メンテナンスの問題が大きい。
In the method (1), the brush is heavily worn and the brush must be replaced frequently, resulting in high maintenance cost. Further, although the method (2) has very good scale removal efficiency, it also has the above-mentioned drawbacks, and thus has a large problem of maintenance.

【0010】本発明は、上記した問題点の全くない、低
圧で高効率の脱スケール方法を提供することを目的とし
ている。
It is an object of the present invention to provide a low-pressure, high-efficiency descaling method that does not have the above-mentioned problems at all.

【0011】[0011]

【課題を解決するための手段】液体を一定の圧力でノズ
ルから噴射する定常ジェット(連続ジェット)に比べ
て、この定常ジェットに時間的変動を付与した非定常ジ
ェット(不連続ジェット)では、水撃作用の発現により
物体への衝突圧力が増大することはよく知られている。
ちなみに、非定常ジェットでは、持続時間は短いが、そ
の衝突圧力は定常ジェットと比較して約一桁大きくな
る。従って、この非定常ジェットを加工、洗浄、破壊に
利用することが考えられ、定常ジェットに機械的、電気
的、あるいは自励共振的振動を加える種々の方法が考案
されている(山本勝弘、能美基彦;非定常高速水噴流に
ついて,ターボ機械,第17巻第11号,1989年1
1月)。
[Means for Solving the Problems] Compared with a steady jet (continuous jet) in which a liquid is jetted from a nozzle at a constant pressure, the unsteady jet (discontinuous jet) in which the steady jet is temporally changed is It is well known that the impact pressure on an object increases due to the onset of the striking action.
By the way, the unsteady jet has a short duration, but its collision pressure is about an order of magnitude higher than that of the steady jet. Therefore, it is considered to use this unsteady jet for processing, cleaning, and destruction, and various methods of applying mechanical, electrical, or self-excited resonant vibration to the steady jet have been devised (Katsuhiro Yamamoto, Nomi) Motohiko; On unsteady high-speed water jet, Turbo Machine, Vol. 17, No. 11, 1989 1
January).

【0012】本発明者は、上記した知見に鑑み、高速水
ジェットの壊食特性に関して種々の調査、実験検討を行
い、上記した外部変動付与方式に対して、液体の内部か
らの変動発生方法を発明し、以下の本発明を成立させ
た。
In view of the above findings, the present inventor has conducted various investigations and experiments on the erosion characteristics of high-speed water jets, and has developed a method for generating fluctuations from the inside of a liquid in the above external fluctuation imparting method. Invented and established the following invention.

【0013】すなわち、本発明の脱スケール方法は、加
圧した液体をノズルから噴射させることにより形成する
高圧液体ジェットを対象物に衝突させてスケールを除去
する脱スケール方法において、前記液体として、気泡を
大気圧下における体積割合で少なくとも1%以上分散さ
せた液体を使用することを要旨とするものである。本発
明方法において、ノズルから噴射させる液体に所要径以
下の気泡を大気圧下における体積割合で少なくとも1%
以上分散させるのは、後述する実験結果に基づくもので
ある。
That is, the descaling method of the present invention is a descaling method in which a high-pressure liquid jet formed by ejecting a pressurized liquid from a nozzle is made to collide with an object to remove scale, and the bubbles are liquids. The gist of the present invention is to use a liquid in which is dispersed at least 1% in volume ratio under atmospheric pressure. In the method of the present invention, bubbles having a required diameter or less are at least 1% in volume ratio under atmospheric pressure in the liquid ejected from the nozzle.
The above dispersion is based on the experimental results described later.

【0014】[0014]

【作用】微量の気泡を分散混合した液体を加圧してノズ
ルから噴出すると、ノズル出口において前記液体は大気
圧まで減圧されるので、気体は発泡する。この発泡によ
り液体ジェットは分断されて液滴となるとともに、気泡
の急膨張により液滴はノズルからの噴出速度よりさらに
加速される。
When a liquid in which a small amount of air bubbles are dispersed and mixed is pressurized and jetted from a nozzle, the liquid is depressurized to the atmospheric pressure at the nozzle outlet, so that the gas foams. This foaming divides the liquid jet into droplets, and the rapid expansion of the bubbles accelerates the droplets further than the ejection speed from the nozzle.

【0015】すなわち、ノズル直上の流速がノズルから
の噴出速度に比べて十分小さいとしてこれを無視した場
合、ノズルから噴射される液体ジェットの速度Vl (m
/秒)は、ノズル直上の圧力をP0(Pa)、噴出され
る液体ジェット部の雰囲気圧力をPa(Pa)、液体の
密度をρl (kg/m3 )とすると、下記数式1で表さ
れる。なお、数式1でCはノズルの流量係数であり、ノ
ズルの形状や仕上げ状況によって異なるが、良好に仕上
げられた円形ノズルでは0.9〜1である。
That is, if the flow velocity immediately above the nozzle is sufficiently smaller than the ejection velocity from the nozzle and is ignored, then the velocity Vl (m of the liquid jet ejected from the nozzle is
/ Sec) is represented by the following formula 1 where P0 (Pa) is the pressure immediately above the nozzle, Pa (Pa) is the atmospheric pressure of the jetted liquid jet, and ρl (kg / m 3 ) is the density of the liquid. It It should be noted that in Equation 1, C is a nozzle flow coefficient, which varies depending on the shape of the nozzle and the finishing condition, but is 0.9 to 1 for a well-finished circular nozzle.

【0016】[0016]

【数1】Vl =C〔2(P0−Pa)/ρl 〕1/2 ## EQU1 ## Vl = C [2 (P0-Pa) /. Rho.l] 1/2

【0017】一方、ノズル直上の流速がノズルからの噴
出速度に比べて十分小さいとしてこれを無視した場合、
ノズルから噴射される気体ジェットのノズル出口直後で
の速度Vg(m/秒)は、噴出される気体ジェット部の
雰囲気温度をTa(K)、気体の比熱比をκ(−)、ガ
ス定数をR(J/kg/K)とすると、下記数式2で表
される。
On the other hand, if the flow velocity just above the nozzle is sufficiently smaller than the jet velocity from the nozzle and this is ignored,
The velocity Vg (m / sec) of the gas jet ejected from the nozzle immediately after the nozzle exit is Ta (K), the atmospheric temperature of the ejected gas jet portion, κ (−) the specific heat ratio of the gas, and the gas constant When R (J / kg / K) is given, it is represented by the following mathematical formula 2.

【0018】[0018]

【数2】 [Equation 2]

【0019】ちなみに、100kg/cm2 のノズル圧
力で大気中に噴射した場合、常温の水ではノズルの流量
係数を1とすると吐出流速は140m/秒であるが、常
温の空気では798m/秒と水の約5.7倍の速度にな
るとともに、衝撃波の発生を伴う。
By the way, when jetting into the atmosphere at a nozzle pressure of 100 kg / cm 2 , the discharge flow velocity is 140 m / sec when the nozzle flow rate coefficient is 1 for normal temperature water, but it is 798 m / sec for normal temperature air. The speed is about 5.7 times that of water and a shock wave is generated.

【0020】そこで、気体を分散混合した液体をノズル
から噴射すると、急減圧のため、気体は発泡してその速
度は液体よりも速くなる。従って、発泡気体は液体ジェ
ットを分断して不連続ジェットを形成するとともに、発
泡気体が分断液滴を加速するので物体への衝突圧力はよ
り増加する。
Then, when a liquid in which gas is dispersed and mixed is jetted from a nozzle, the gas is foamed due to a sudden pressure reduction, and the speed thereof is higher than that of the liquid. Therefore, the bubbling gas breaks the liquid jet to form a discontinuous jet, and the bubbling gas accelerates the broken droplets, so that the collision pressure on the object is further increased.

【0021】以上より、かかる気体分散混合液体ジェッ
トを脱スケールに応用すれば、低圧で高能率のスケール
除去が可能となる。本発明方法は、上記した気体分散混
合液体ジェットを利用したものである。
As described above, if such a gas-dispersed mixed liquid jet is applied to descaling, it is possible to remove scale with high efficiency at low pressure. The method of the present invention utilizes the gas dispersion mixed liquid jet described above.

【0022】[0022]

【実施例】以下、本発明を添付図面に示す実施例に基づ
いて説明する。図1は本発明方法を実施する装置の1実
施例を示す説明図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below based on the embodiments shown in the accompanying drawings. FIG. 1 is an explanatory view showing one embodiment of an apparatus for carrying out the method of the present invention.

【0023】図1において、1は噴射液体の供給配管で
あり、この供給配管1を通ってタンク3内に供給される
噴射液体は液体流量調整弁2により供給量が調節され
る。また、このタンク3には圧縮空気の供給配管4を通
って圧縮空気が供給されるが、この圧縮空気は気体流量
調整弁5によって供給量を調節した後、例えばセラミッ
クフィルター6を介してバブリングさせ、例えば300
μm以下の微小気泡を噴射液体中に分散混合させてい
る。
In FIG. 1, reference numeral 1 is a supply pipe for the injection liquid, and the supply amount of the injection liquid supplied into the tank 3 through the supply pipe 1 is adjusted by a liquid flow rate adjusting valve 2. Compressed air is supplied to the tank 3 through a compressed air supply pipe 4, and the compressed air is bubbled through, for example, a ceramic filter 6 after the supply amount is adjusted by a gas flow rate adjusting valve 5. , For example 300
Micro bubbles having a size of μm or less are dispersed and mixed in the jet liquid.

【0024】そして、微小気泡を分散混合させた噴射液
体は、高圧ポンプユニット7に導かれ、ここで噴射所要
圧力まで加圧された後、脱スケール用ノズルヘッダー8
a・8bに供給されて、ノズル9から鋼材10の表裏面
に向けて噴射される。
The jet liquid in which fine bubbles are dispersed and mixed is guided to the high-pressure pump unit 7, where it is pressurized to the required jet pressure, and then the descaling nozzle header 8 is added.
It is supplied to a · 8b and jetted from the nozzle 9 toward the front and back surfaces of the steel material 10.

【0025】この噴射過程において、噴射液体中に分散
混合した微小気泡は液体ジェットを分断するとともに液
滴を加速し、衝突力が強化された状態で鋼材10に衝突
し、良好な脱スケール能力を発揮する。
In this jetting process, the fine bubbles dispersed and mixed in the jetted liquid divide the liquid jet and accelerate the liquid droplets, and collide with the steel material 10 in a state where the collision force is strengthened, and a good descaling ability is obtained. Demonstrate.

【0026】次に、本発明方法を実施した場合の効果を
実験的に検討した結果を、従来方法と比較して説明す
る。実験は、鋼材を電気炉により大気雰囲気下で加熱し
てスケールを発生させた後、本発明方法による非定常ジ
ェットを噴射してスケールの剥離除去状況を観察するこ
とにより行った。
Next, the results of an experimental examination of the effect of the method of the present invention will be described in comparison with the conventional method. The experiment was carried out by heating a steel material in an electric furnace in an air atmosphere to generate a scale, and then injecting an unsteady jet according to the method of the present invention to observe the peeling removal state of the scale.

【0027】使用した鋼材は、ファイヤライト(2Fe
O・SiO2 )の発生によりスケールの剥離除去性が悪
いと言われている、下記表1に示す化学成分を有する、
Siキルド鋼を用いた。
The steel material used is firelite (2Fe
O. SiO 2 ) has a chemical composition shown in Table 1 below, which is said to have poor scale removability due to the generation of O.
Si killed steel was used.

【0028】[0028]

【表1】 [Table 1]

【0029】本実験で用いた本発明方法は、下記の諸元
の、図1に示す装置を用いて行った。 記 タンクの内容積 ;100リットル 高圧ポンプユニット ;55KW電動機駆動の能力が5
00Kg/cm2×52l/分の三連プランジャーポンプ セラミックフィルター;100メッシュ
The method of the present invention used in this experiment was carried out using the apparatus shown in FIG. 1 having the following specifications. Note Tank internal volume: 100 liters High pressure pump unit; 55KW Electric motor drive capacity is 5
00Kg / cm 2 × 52l / min Triple Plunger Pump Ceramic Filter; 100mesh

【0030】本実験では、ノズルは内径が1.5mmの
ものを使用し、圧縮空気駆動のリニアーシリンダーに取
り付けて、前記鋼材上を一定の速度で移動させることに
よってスケールの除去を行った。また、従来方法は、タ
ンクでの空気バブリングを行わずに気泡混入のない水を
直接高圧ユニットに供給することにより行った。実験の
結果を下記表2に示す。本実験では、表2のように、脱
スケールの評価は、脱スケール部(ジェットが当たった
部分)のスケール残存率を目視判定により行った。表2
において、◎はスケール残存率が1〜2%未満を、○は
同じく2〜5%を、△は5〜10%を、×は10%を超
えたものを示している。
In this experiment, a nozzle having an inner diameter of 1.5 mm was used, and the nozzle was attached to a linear cylinder driven by compressed air, and the scale was removed by moving it on the steel material at a constant speed. In addition, the conventional method was carried out by directly supplying water without air bubbles to the high pressure unit without performing air bubbling in the tank. The results of the experiment are shown in Table 2 below. In this experiment, as shown in Table 2, descaling was evaluated by visually observing the scale remaining rate of the descaling portion (the portion hit by the jet). Table 2
In the table, ⊚ indicates that the scale residual rate is 1 to less than 2%, ∘ indicates 2 to 5%, Δ indicates 5 to 10%, and x indicates that the percentage exceeds 10.

【0031】[0031]

【表2】 [Table 2]

【0032】上記表2に示すように、スケールの除去率
の悪いSiキルド鋼において十分な脱スケールを行うた
めには、従来方法では400〜500Kg/cm2の高圧が必
要であったのに対して、本発明方法では気泡混入率を1
%以上にすれば脱スケール効果が現れ、気泡混入率を3
%にすると200〜300Kg/cm2と従来方法の約半分の
圧力で効率良く脱スケールが行えることが確認できた。
なお、本発明方法では、従来法に比べて低圧で効率よく
脱スケールが行えるが、ノズルから噴出後に気体の発泡
が起こるので、従来法に比べてジェット噴出騒音がわず
かに大きくなるが、実用上、差し支えることはない。
As shown in Table 2 above, a high pressure of 400 to 500 Kg / cm 2 was required in the conventional method in order to perform sufficient descaling in Si killed steel having a poor scale removal rate. In the method of the present invention, the bubble inclusion rate is 1
%, The descaling effect will appear, and the bubble inclusion rate will be 3
It was confirmed that the descaling can be efficiently performed at a pressure of about 200 to 300 Kg / cm 2 which is about half the pressure of the conventional method when it is set to%.
In the method of the present invention, descaling can be efficiently performed at a low pressure as compared with the conventional method, but since gas foaming occurs after being jetted from the nozzle, the jet spouting noise is slightly larger than in the conventional method, but in practical use. , There is no hindrance.

【0033】[0033]

【発明の効果】以上説明したように、本発明によれば、
鋼材の脱スケールを比較的低圧で、かつ、効率よく行う
ことができ、品質の向上に有利である。また、従来の方
法、装置を使用して脱スケールを行う場合と比較してコ
ストの低減も図れる。
As described above, according to the present invention,
The descaling of the steel material can be efficiently performed at a relatively low pressure, which is advantageous for quality improvement. Further, the cost can be reduced as compared with the case where descaling is performed using the conventional method and apparatus.

【0034】なお、本実施例では鋼材の脱スケールにつ
いてのみ説明したが、本発明の技術はこれに限らず、構
造物の表面洗浄剥離、すなわち、ビルの内外壁、床、天
井の洗浄、コンクリート面の洗浄剥離、構造物へのコー
ティング材の剥離洗浄、船舶の付着物の剥離洗浄、岩盤
の掘削等への応用も可能である。
In this embodiment, only the descaling of the steel material has been described, but the technique of the present invention is not limited to this, and the surface cleaning and peeling of the structure, that is, the cleaning of the inner and outer walls of the building, the floor and the ceiling, the concrete, It is also applicable to cleaning and peeling of surfaces, peeling and washing of coating materials on structures, peeling and washing of deposits on ships, excavation of rock mass, etc.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明方法実施する装置の1実施例を示す説明
図である。
FIG. 1 is an explanatory view showing one embodiment of an apparatus for carrying out the method of the present invention.

【符号の説明】[Explanation of symbols]

1 噴射液体の供給配管 3 タンク 4 圧縮空気の供給配管 6 セラミックフィルター 7 高圧ポンプユニット 9 ノズル 10 鋼材 1 Injection Liquid Supply Pipe 3 Tank 4 Compressed Air Supply Pipe 6 Ceramic Filter 7 High Pressure Pump Unit 9 Nozzle 10 Steel Material

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 加圧した液体をノズルから噴射させるこ
とにより形成する高圧液体ジェットを対象物に衝突させ
てスケールを除去する脱スケール方法において、前記液
体として、気泡を大気圧下における体積割合で少なくと
も1%以上分散させた液体を使用することを特徴とする
脱スケール方法。
1. A descaling method in which a high-pressure liquid jet formed by ejecting a pressurized liquid from a nozzle is collided with an object to remove scale, and the liquid is bubbles in a volume ratio under atmospheric pressure. A descaling method comprising using a liquid in which at least 1% or more is dispersed.
JP33983292A 1992-11-25 1992-11-25 Descale method Expired - Fee Related JP3149583B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33983292A JP3149583B2 (en) 1992-11-25 1992-11-25 Descale method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33983292A JP3149583B2 (en) 1992-11-25 1992-11-25 Descale method

Publications (2)

Publication Number Publication Date
JPH06154837A true JPH06154837A (en) 1994-06-03
JP3149583B2 JP3149583B2 (en) 2001-03-26

Family

ID=18331239

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33983292A Expired - Fee Related JP3149583B2 (en) 1992-11-25 1992-11-25 Descale method

Country Status (1)

Country Link
JP (1) JP3149583B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007136275A (en) * 2005-11-15 2007-06-07 Mitsubishi Electric Corp Washing device
JP2007283183A (en) * 2006-04-14 2007-11-01 Teruo Yahiro Construction method based on water-bubble jet and construction system
JP2010104903A (en) * 2008-10-30 2010-05-13 Teikoku Electric Mfg Co Ltd Cleansing apparatus and cleansing method
CN104169014A (en) * 2012-03-12 2014-11-26 杰富意钢铁株式会社 Descaling system
CN112139155A (en) * 2020-09-03 2020-12-29 孙永林 Continuous gas cracking type derusting process for waste steel plates

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102671978A (en) * 2012-05-22 2012-09-19 莱芜钢铁集团有限公司 Fluid jet system and method for removing surface impurities by utilizing fluid jet system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007136275A (en) * 2005-11-15 2007-06-07 Mitsubishi Electric Corp Washing device
JP2007283183A (en) * 2006-04-14 2007-11-01 Teruo Yahiro Construction method based on water-bubble jet and construction system
JP2010104903A (en) * 2008-10-30 2010-05-13 Teikoku Electric Mfg Co Ltd Cleansing apparatus and cleansing method
CN104169014A (en) * 2012-03-12 2014-11-26 杰富意钢铁株式会社 Descaling system
CN104169014B (en) * 2012-03-12 2016-03-23 杰富意钢铁株式会社 Descale system
CN112139155A (en) * 2020-09-03 2020-12-29 孙永林 Continuous gas cracking type derusting process for waste steel plates

Also Published As

Publication number Publication date
JP3149583B2 (en) 2001-03-26

Similar Documents

Publication Publication Date Title
JP2008087103A (en) Scale remover and scale removing method
WO1996002334A1 (en) Method and apparatus for washing steel plate surfaces
JP3149583B2 (en) Descale method
JPH06269839A (en) Descaling method and rolling method for slab
US4289541A (en) Process of cleaning an austenitic steel surface
JP3149579B2 (en) Descaling method and apparatus
JPH08290211A (en) Descaling device
CN102451844A (en) Mechanical descaling method and device for cold-state band steel
JP2003285115A (en) Descaling method for steel plate and facility used for the same
JP2019526454A (en) Scale remover
JPH07204739A (en) Method and device for drawing metallic wire
JPH10323710A (en) Injection nozzle for liquid jet to remove scale and method of making thereof
JP3872609B2 (en) Hot rolling method for high Si steel
JP3924390B2 (en) Descaling nozzle and descaling method
CN109174984B (en) Continuous casting billet descaling device and descaling method
KR100936184B1 (en) Device for eliminating scale
JP4677056B2 (en) Manufacturing method of hot-rolled steel sheet
CN106637038A (en) Machine for manufacturing nano diamond thin coating film
JP2900765B2 (en) Steel descaling method
JPH0698379B2 (en) Metal scale removal method
JP2000271615A (en) Method and device for cleaning work roll
JP3426943B2 (en) Surface treatment apparatus and surface treatment method in metal material manufacturing process
JPH06142752A (en) Manufacture of thin scale hot rolled steel plate
JPH09271832A (en) Descaling method of hot rolled ferritic stainless steel plate
JP2004167586A (en) Method for manufacturing steel sheet having excellent surface property and steel sheet

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20080119

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20090119

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100119

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees