JPH06154750A - Method for separating chloride ion - Google Patents

Method for separating chloride ion

Info

Publication number
JPH06154750A
JPH06154750A JP33948192A JP33948192A JPH06154750A JP H06154750 A JPH06154750 A JP H06154750A JP 33948192 A JP33948192 A JP 33948192A JP 33948192 A JP33948192 A JP 33948192A JP H06154750 A JPH06154750 A JP H06154750A
Authority
JP
Japan
Prior art keywords
concentration
ion
chloride
ions
chloride ions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33948192A
Other languages
Japanese (ja)
Inventor
Kenichi Akiba
健一 秋葉
Hitoshi Mimura
均 三村
Hiroyuki Hashimoto
裕之 橋本
Manabu Shindo
学 進藤
Nobuhiko Aiba
伸彦 相羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku Electric Power Co Inc
Toagosei Co Ltd
Original Assignee
Tohoku Electric Power Co Inc
Toagosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Electric Power Co Inc, Toagosei Co Ltd filed Critical Tohoku Electric Power Co Inc
Priority to JP33948192A priority Critical patent/JPH06154750A/en
Publication of JPH06154750A publication Critical patent/JPH06154750A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatment Of Liquids With Adsorbents In General (AREA)
  • Treatment Of Water By Ion Exchange (AREA)

Abstract

PURPOSE:To selectively separate chloride ions forming the cause of corrosion of stainless piping or the like by bringing a fluid containing sulfate ions and chloride ions into contact with phophate of lead hydroxide in a manner that pH after contact represents a specified value in a factory drainage or the like. CONSTITUTION:When chloride ions are separated from liquid such as factory drainage containing sulfate ions and chloride ions, the liquid is brought into contact with phosphate of lead hydroxide in a manner that pH after contact is in the range of more than four (4) and less twelve (12). As for phosphate of lead hydroxide, for example, a substance which belongs to Pb10(PO4)6 (O family P63/m and provided with apatite crystal structure) is used. The ratio of the phophate of lead hydroxide is, for example, 10g or more per one (1) mol of chloride ion, and the contact time of liquid with phosphate of lead hydroxide is set for several minutes to several hours. Chloride ions forming the cause of corrosion of the stainless piping, concentrate and the like are separated selectively to protect the piping and a concentrater from getting corrosion.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、工場排水等で硫酸イオ
ン及び塩化物イオンを含有する液体から、ステンレス製
の配管、濃縮器等の腐食の原因となる塩化物イオンを、
水酸化燐酸鉛を用いて分離する方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention removes chloride ions, which cause corrosion of stainless steel pipes, concentrators, etc., from a liquid containing sulfate ions and chloride ions in factory wastewater, etc.
The present invention relates to a method for separation using lead hydroxyphosphate.

【0002】[0002]

【従来の技術】工場排水等に含まれる塩化物イオンは、
ステンレス製の配水管、排水貯蔵槽等を腐食させる原因
となっている。例えば、原子力発電所や核燃料再処理工
場等の原子力施設では、洗濯排水を再利用するために前
処理及び蒸発による濃縮を行っているが、この洗濯排水
には汗などの塩分による塩化物イオンが存在しており、
その濃度が1500ppm を超える場合、ステンレス製の濃縮
器が腐食する危険がある。そのため、防食対策として、
排水の濃縮率を制限し、塩化物イオン濃度を1500ppm 以
下に保っている。しかし、廃液を減少させるには、更に
一層の高濃縮化が求められるが、現在塩化物イオン濃度
に制約されており、洗濯排水中の塩化物イオンの分離が
必要となっている。又、洗濯排水は、濃縮する前に凝集
沈澱処理を行っているため凝集剤の成分である硫酸イオ
ンを多量に含んでおり、更に、pHが11〜12のアル
カリ性水溶液であるため、硫酸イオンが共存し、かつ、
アルカリ性領域である条件下で塩化物イオンを選択的に
分離することが求められている。
2. Description of the Related Art Chloride ions contained in factory wastewater are
It is a cause of corrosion of stainless steel water pipes and drainage storage tanks. For example, in nuclear facilities such as nuclear power plants and nuclear fuel reprocessing plants, washing wastewater is subjected to pretreatment and concentration by evaporation in order to reuse it, but this wash wastewater contains chloride ions due to salt such as sweat. Exists,
If the concentration exceeds 1500ppm, there is a risk of corroding the stainless steel concentrator. Therefore, as an anticorrosion measure,
The concentration rate of wastewater is limited and the chloride ion concentration is kept below 1500ppm. However, in order to reduce the waste liquid, even higher concentration is required, but at present, the chloride ion concentration is limited, and it is necessary to separate the chloride ion in the laundry drainage. In addition, the laundry wastewater contains a large amount of sulfate ions, which are the components of the coagulant, because it is subjected to coagulation-precipitation treatment before being concentrated. Further, since it is an alkaline aqueous solution having a pH of 11 to 12, Coexist and
It is required to selectively separate chloride ions under conditions that are in the alkaline region.

【0003】塩化物イオンを分離する方法として、イオ
ン交換樹脂を用いることが考えられるが、イオン交換樹
脂と陰イオンの親和性は、樹脂の骨格構造の影響や交換
基の種類で異なるものの、一般に SO4 2-> I- > NO3 - > CrO4 2 - > Cl - > F- の序列といわれている。このため、硫酸イオンが共存す
る液体にイオン交換樹脂を用いると、硫酸イオンを優先
的に分離してしまい、塩化物イオンを優先的に分離する
ことは殆ど不可能である。
As a method for separating chloride ions, it is possible to use an ion exchange resin, but the affinity between the ion exchange resin and the anion is generally different although it depends on the skeleton structure of the resin and the kind of the exchange group. SO 4 2-> I -> NO 3 -> CrO 4 2 -> Cl -> F - is said to order of. Therefore, when an ion exchange resin is used for a liquid in which sulfate ions coexist, sulfate ions are preferentially separated, and it is almost impossible to preferentially separate chloride ions.

【0004】その他に、塩化物イオンを分離する方法と
して、無機イオン交換体を用いることが考えられ、又、
塩化物イオンに対して吸着能力を有する無機イオン交換
体として、水酸化燐酸鉛、含水酸化硝酸ビスマス、含水
酸化ビスマス、ハイドロタルサイト及び含水酸化ジルコ
ニウム等が知られている。しかし、硫酸イオンが共存す
る条件下で塩化物イオンを選択的に分離する方法は見出
されていなかった。
In addition, it is possible to use an inorganic ion exchanger as a method for separating chloride ions.
As an inorganic ion exchanger having an adsorption ability for chloride ions, lead hydroxide phosphate, hydrous oxide bismuth nitrate, hydrous bismuth oxide, hydrotalcite, hydrous zirconium oxide and the like are known. However, a method for selectively separating chloride ions under the condition that sulfate ions coexist has not been found.

【0005】[0005]

【発明が解決しようとする課題】本発明は、工場排水等
の硫酸イオン及び塩化物イオンを含む液体からステンレ
ス製の配管、濃縮器等の腐食の原因となる塩化物イオン
を除去するに際して、硫酸イオンが共存する水溶液中か
ら塩化物イオンを選択的に分離する方法を提供するもの
である。
SUMMARY OF THE INVENTION According to the present invention, when removing chloride ions, which cause corrosion of stainless steel pipes, concentrators, etc., from a liquid containing sulfate ions and chloride ions, such as factory wastewater, sulfuric acid is used. It is intended to provide a method for selectively separating chloride ions from an aqueous solution in which ions coexist.

【0006】[0006]

【課題を解決するための手段】本発明者等は鋭意検討し
た結果、硫酸イオン及び塩化物イオンを含む液体を、塩
化物イオンに対し優れた吸着特性を有する無機イオン交
換体である水酸化燐酸鉛と接触後のpHが4以上12以
下になるよう接触させることにより、塩化物イオンを優
先的に分離することができることを見出し、本発明を完
成するに至った。即ち、本発明は、硫酸イオン及び塩化
物イオンを含有する液体を、水酸化燐酸鉛と接触後のp
Hが4以上12以下になるよう接触させることを特徴と
する、塩化物イオンの分離方法である。以下、本発明に
ついて詳細に説明する。
Means for Solving the Problems As a result of intensive investigations by the present inventors, a liquid containing a sulfate ion and a chloride ion was used as an inorganic ion exchanger having excellent adsorption properties for a chloride ion, phosphoric acid hydroxide. The inventors have found that chloride ions can be preferentially separated by contacting with lead so that the pH after contacting is 4 or more and 12 or less, and has completed the present invention. That is, according to the present invention, a liquid containing a sulfate ion and a chloride ion is mixed with lead hydroxyphosphate to obtain a p
The method for separating chloride ions is characterized in that H is brought to 4 or more and 12 or less. Hereinafter, the present invention will be described in detail.

【0007】○水酸化燐酸鉛 本発明において用いる水酸化燐酸鉛は、次の組成式で表
され、六方晶系P63/mに属するアパタイト結晶構造を有
するものである。 Pb10(PO4 6 (OH)2 本発明において用いる水酸化燐酸鉛の製造方法は、特に
制限はなく、好ましい製造方法を例にすると、以下の例
がある。即ち、硝酸鉛水溶液と燐酸ナトリウム水溶液
を、Pb/Pモル比が好ましくは1. 0〜2. 5、より
好ましくは1. 5〜1. 9になるように混合し、好まし
くは20〜80℃で熟成することにより得られる。熟成
する時間は、特に制限はないが、水酸化燐酸鉛の結晶化
を進めるために、数分以上が好ましく、1時間以上が更
に好ましい。又、その他の例として、ヒドロキシアパタ
イト〔Ca10(PO4 6 (OH)2 〕を硝酸鉛と硝酸
の混合液で処理する方法等がある。
Lead Hydroxyl Phosphate The lead hydroxyphosphate used in the present invention is represented by the following composition formula, and has an apatite crystal structure belonging to the hexagonal system P6 3 / m. Pb 10 (PO 4 ) 6 (OH) 2 The method for producing lead hydroxide phosphate used in the present invention is not particularly limited, and the preferred examples are as follows. That is, an aqueous solution of lead nitrate and an aqueous solution of sodium phosphate are mixed so that the Pb / P molar ratio is preferably 1.0 to 2.5, more preferably 1.5 to 1.9, and preferably 20 to 80 ° C. It is obtained by aging at. The aging time is not particularly limited, but is preferably several minutes or more and more preferably 1 hour or more in order to promote crystallization of lead hydroxyphosphate. As another example, there is a method of treating hydroxyapatite [Ca 10 (PO 4 ) 6 (OH) 2 ] with a mixed solution of lead nitrate and nitric acid.

【0008】本発明で用いる水酸化燐酸鉛の形状には、
特に限定はなく、粉末状であっても良いが、本発明の硫
酸イオン及び塩化物イオンを含有する液体中の塩化物イ
オンの分離を容易にするため、即ち硫酸イオン及び塩化
物イオンを含有する液体との接触後の分離や、カラム通
液をしやすくするため、結合剤等を用いて粉末を粒状や
ペレット状に成形したもの、あるいは粉末を担体に担持
したものであっても良い。この場合特に、特開平3−1
31349記載の、結合剤として粘土鉱物と金属アルコ
キシド加水分解物を併用して、粉末を粒状に成形したも
のは、塩化物イオンを除去する効果が優れ、かつ、強度
的に安定であるので好ましい。この場合、使用する粘土
鉱物としては、セピオライトが好ましく、金属アルコキ
シド加水分解物としては、エチルシリケート加水分解物
が好ましい。
The lead hydroxyphosphate used in the present invention has the following shape.
It is not particularly limited and may be in the form of powder, but for facilitating separation of chloride ion in the liquid containing sulfate ion and chloride ion of the present invention, that is, containing sulfate ion and chloride ion In order to facilitate separation after contact with a liquid and passage through the column, the powder may be formed into a granular or pellet form using a binder or the like, or the powder may be supported on a carrier. In this case, especially, Japanese Patent Laid-Open No. 3-1
The one described in No. 31349, in which a clay mineral and a metal alkoxide hydrolyzate are used together as a binder, and the powder is formed into particles is excellent in the effect of removing chloride ions and is stable in strength, which is preferable. In this case, the clay mineral used is preferably sepiolite, and the metal alkoxide hydrolyzate is preferably ethyl silicate hydrolyzate.

【0009】○塩化物イオンの分離方法 硫酸イオン及び塩化物イオンを含有する液体中の塩化物
イオンを分離するには、本発明における水酸化燐酸鉛
を、硫酸イオン及び塩化物イオンを含有する液体と接触
させなければならない。
Method for separating chloride ion In order to separate chloride ion in a liquid containing a sulfate ion and a chloride ion, the lead hydroxide phosphate in the present invention is separated from the liquid containing a sulfate ion and a chloride ion. Must be in contact with.

【0010】本発明において、水酸化燐酸鉛と硫酸イオ
ン及び塩化物イオンを含有する液体とを接触させる好ま
しい時間は、処理すべき対象により一概には決められな
いが、数分から数時間、場合によっては数日である。
又、両者を接触させる温度は、特に制限はなく、水酸化
燐酸鉛のイオン交換特性に影響を及ぼさない温度なら良
い。
In the present invention, the preferable time for contacting the lead hydroxide phosphate with the liquid containing the sulfate ion and the chloride ion is not unconditionally determined depending on the object to be treated, but may be from several minutes to several hours, depending on the case. Is a few days.
The temperature at which they are brought into contact with each other is not particularly limited, and may be any temperature that does not affect the ion exchange characteristics of lead hydroxide phosphate.

【0011】本発明において水酸化燐酸鉛と接触させる
硫酸イオン及び塩化物イオンを含有する液体のpHは、
水酸化燐酸鉛との接触後において4以上12以下であれ
ば良い。又、液体が、水酸化燐酸鉛との接触後において
pHが4未満又は12を越えるものである場合、あらか
じめ共存させても差障りのないアルカリ又は酸を用いる
等の前処理により、水酸化燐酸鉛との接触後においてp
Hが4以上12以下になるよう適宜調整すれば良い。液
体が、水酸化燐酸鉛との接触後においてpHが4未満で
ある場合、水酸化燐酸鉛の成分である鉛が溶出する恐れ
があり、又、pHが12を越える場合、水酸化燐酸鉛の
成分である鉛が溶出する恐れと、水酸化燐酸鉛の塩化物
イオンの分離効果が著しく低下する恐れがある。
In the present invention, the pH of the liquid containing sulfate ion and chloride ion to be brought into contact with lead hydroxide phosphate is
After contacting with lead hydroxyphosphate, it may be 4 or more and 12 or less. In addition, when the liquid has a pH of less than 4 or more than 12 after contact with lead hydroxyphosphate, the phosphoric acid hydroxide can be prepared by pretreatment such as using an alkali or an acid that can coexist in advance. P after contact with lead
It may be appropriately adjusted so that H becomes 4 or more and 12 or less. If the liquid has a pH of less than 4 after contact with lead hydroxide phosphate, lead which is a component of lead hydroxide phosphate may be eluted, and if the liquid has a pH of more than 12, lead hydroxide phosphate may be dissolved. There is a risk that lead, which is a component, may elute, and that the chloride ion separation effect of lead hydroxide phosphate may be significantly reduced.

【0012】硫酸イオン及び塩化物イオンを含有する液
体と、これに接触させる水酸化燐酸鉛の使用割合は、水
酸化燐酸鉛の形状等によっても異なるが、塩化物イオン
の1mmol当り、水酸化燐酸鉛を10g以上とするこ
とが好ましく、塩化物イオンを分離する条件、例えば水
酸化燐酸鉛と液体との接触時間、接触方法又は接触温
度、あるいは液体のpH、共存イオンの種類や量等によ
って適宜調整すれば良い。
The ratio of the liquid containing the sulfate ion and the chloride ion to the lead hydroxide phosphate to be brought into contact with the liquid varies depending on the shape of the lead hydroxide phosphate and the like. It is preferable that the amount of lead is 10 g or more, and it may be appropriately selected depending on the conditions for separating chloride ions, such as the contact time between lead hydroxide phosphate and liquid, the contact method or contact temperature, the pH of the liquid, and the type and amount of coexisting ions Just adjust it.

【0013】又、水酸化燐酸鉛以外の成分として、無機
陽イオン交換体として知られており、下記一般式で表さ
れる含水五酸化アンチモン又は燐酸スズを共存させて使
用すると、特に優れた塩化物イオンの分離効果が生じる
ので好ましい。 含水五酸化アンチモン Sb2 5 ・nH2 O (但し、nは4以下の正数であ
る。) 燐酸スズ H2 Sn(PO4 2 ・mH2 O (但し、mは正数で
ある。)
Further, as a component other than lead hydroxide phosphate, it is known as an inorganic cation exchanger, and when a water-containing antimony pentoxide represented by the following general formula or tin phosphate is used together, excellent chlorination is achieved. It is preferable because the effect of separating product ions is produced. Hydrous antimony pentoxide Sb 2 O 5 .nH 2 O (where n is a positive number of 4 or less) Tin phosphate H 2 Sn (PO 4 ) 2 .mH 2 O (where m is a positive number). )

【0014】含水五酸化アンチモンは、結晶質、非晶質
及びガラス状の3種が知られているが、本発明において
水酸化燐酸鉛と共存させて用いる場合、化学的に安定な
結晶質(立方晶)のものを用いることが好ましい。この
場合、含水五酸化アンチモンの割合は、水酸化燐酸鉛1
00重量部(以下、部と略す)に対し、1〜60部が好
ましく、2〜30部が更に好ましい。1部未満では含水
五酸化アンチモンの共存に寄与する効果は殆どなく、6
0部を越えると含水五酸化アンチモンから放出される水
素イオンの影響により、液体のpHが4未満になり水酸
化燐酸鉛の成分である鉛が溶出する恐れがあり、又、水
酸化燐酸鉛の塩化物イオンの分離効果が著しく低下する
恐れがある。
Three types of hydrous antimony pentoxide are known, crystalline, amorphous and glassy. When used together with lead hydroxide phosphate in the present invention, a chemically stable crystalline ( It is preferable to use cubic crystals. In this case, the ratio of hydrous antimony pentoxide is 1
1 to 60 parts are preferable, and 2 to 30 parts are more preferable, relative to 00 parts by weight (hereinafter abbreviated as parts). If it is less than 1 part, there is almost no effect of contributing to the coexistence of hydrous antimony pentoxide.
If it exceeds 0 parts, the pH of the liquid may be less than 4 due to the effect of hydrogen ions released from hydrous antimony pentoxide, and lead, which is a component of lead hydroxide phosphate, may be eluted. The separation effect of chloride ions may be significantly reduced.

【0015】又、燐酸スズを共存させて用いる場合、燐
酸スズの割合は、水酸化燐酸鉛100部に対し1〜80
部が好ましく、2〜40部が更に好ましい。1部未満で
は燐酸スズの共存に寄与する効果は殆どなく、80部を
越えると燐酸スズから放出される水素イオンの影響によ
り液体のpHが4未満になり、水酸化燐酸鉛の成分であ
る鉛が溶出する恐れがある。
When tin phosphate is used together, the proportion of tin phosphate is 1-80 with respect to 100 parts of lead hydroxide phosphate.
Parts are preferable, and 2 to 40 parts are more preferable. If it is less than 1 part, there is almost no effect of contributing to the coexistence of tin phosphate, and if it exceeds 80 parts, the pH of the liquid becomes less than 4 due to the effect of hydrogen ions released from tin phosphate, and it is a component of lead hydroxide phosphate. May be eluted.

【0016】硫酸イオン及び塩化物イオンを含有する液
体から水酸化燐酸鉛を用いて塩化物イオンを分離する方
法の具体例としては、本発明における水酸化燐酸鉛を、
硫酸イオン及び塩化物イオンを含有する液体に添加し攪
拌することにより、硫酸イオン及び塩化物イオンを含有
する液体と接触させた後、水酸化燐酸鉛を分離する方
法、及びカラム等に水酸化燐酸鉛を充填し、硫酸イオン
及び塩化物イオンを含有する液体を通液する方法があ
る。
As a specific example of the method for separating chloride ions from a liquid containing sulfate ions and chloride ions using lead hydroxide phosphate, the lead hydroxide phosphate in the present invention is
A method of separating lead hydroxide phosphate after contacting with a liquid containing sulfate ions and chloride ions by adding to a liquid containing sulfate ions and chloride ions and stirring, and a method of separating phosphoric acid hydroxide into a column, etc. There is a method of filling lead and passing a liquid containing sulfate ions and chloride ions.

【0017】又、本発明の塩化物イオンの分離方法の適
用できる分野として、工場排水等の硫酸イオン及び塩化
物イオンを含有する液体からの塩化物イオンの分離があ
り、具体的には以下の例がある。例えば、原子力発電所
や核燃料再処理工場等の原子力施設では、洗濯排水を再
利用するために前処理及び蒸発による濃縮を行っている
が、ステンレス製の濃縮器の腐食の原因となる塩化物イ
オンを洗濯排水から除去する際に、本発明の塩化物イオ
ンの分離方法を適用することができる。又、スルホン酸
基を有する化合物を含有する種々の水処理剤、例えば洗
剤、分散剤、凝集剤又はスケール防止剤等を用いて処理
された、一般排水中からも塩化物イオンを分離すること
ができる。一般排水とは、原子力発電所等の原子力施設
を除く、一般の工場、家庭、各種試験施設等から排出さ
れる排水である。
Further, as a field to which the method for separating chloride ion of the present invention can be applied, there is separation of chloride ion from a liquid containing sulfate ion and chloride ion such as industrial wastewater. There is an example. For example, in nuclear facilities such as nuclear power plants and nuclear fuel reprocessing plants, pre-treatment and concentration by evaporation are performed to reuse laundry wastewater, but chloride ions that cause corrosion of stainless steel concentrators are used. The method for separating chloride ions according to the present invention can be applied to the removal of the wastewater from the laundry drainage. It is also possible to separate chloride ions from general wastewater treated with various water treatment agents containing a compound having a sulfonic acid group, such as detergents, dispersants, flocculants or scale inhibitors. it can. General wastewater is wastewater discharged from general factories, households, various test facilities, etc., excluding nuclear facilities such as nuclear power plants.

【0018】[0018]

【実施例及び比較例】以下、実施例及び比較例を挙げて
本発明を更に具体的に説明する。
EXAMPLES AND COMPARATIVE EXAMPLES Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples.

【0019】実施例1 濃度20000mg/lの硫酸イオン及び濃度100mg/lの
塩化物イオンを含有するNa2SO4/NaCl水溶液50mlを、
水酸化燐酸鉛(以下、PBPと略す)2. 0gと、温度
25℃のもとで接触させた。24時間後、PBPを濾別
し、濾液中の塩化物イオンの濃度をイオンクロマトグラ
フィー(DIONEX社製)で測定し、更に濾液のpHをpH
計で測定し、濾液中に溶出したPbの濃度を原子吸光光
度計で測定した。その結果を下記表1に示した。
Example 1 50 ml of an aqueous Na 2 SO 4 / NaCl solution containing sulfate ions with a concentration of 20000 mg / l and chloride ions with a concentration of 100 mg / l,
The mixture was contacted with 2.0 g of lead hydroxyphosphate (hereinafter abbreviated as PBP) at a temperature of 25 ° C. After 24 hours, PBP was filtered off, the chloride ion concentration in the filtrate was measured by ion chromatography (manufactured by DIONEX), and the pH of the filtrate was adjusted to pH.
The concentration of Pb eluted in the filtrate was measured with an atomic absorption spectrophotometer. The results are shown in Table 1 below.

【0020】実施例2 濃度20000mg/lの硫酸イオン及び濃度100mg/lの
塩化物イオンを含有するNa2SO4/NaCl水溶液50mlを、
PBP2. 0g 及び下記の組成式を有する含水五酸化ア
ンチモン(以下、SBOと略す)0. 2g と、温度25
℃のもとで接触させた。 含水五酸化アンチモン Sb2 5 ・2H2 O 24時間後、PBP及びSBOを濾別し、濾液中の塩化
物イオンの濃度をイオンクロマトグラフィー(DIONEX社
製)で測定し、更に濾液のpHをpH計で測定し、濾液
中に溶出したPbの濃度を原子吸光光度計で測定した。
その結果を下記表1に示した。
Example 2 50 ml of an aqueous Na 2 SO 4 / NaCl solution containing sulfate ions with a concentration of 20000 mg / l and chloride ions with a concentration of 100 mg / l,
2.0 g of PBP and 0.2 g of hydrous antimony pentoxide (hereinafter abbreviated as SBO) having the following composition formula, and a temperature of 25
Contacted at 0 ° C. After 24 hours of hydrous antimony pentoxide Sb 2 O 5 .2H 2 O, PBP and SBO were filtered off, the concentration of chloride ion in the filtrate was measured by ion chromatography (manufactured by DIONEX), and the pH of the filtrate was further measured. The pH was measured with a pH meter, and the concentration of Pb eluted in the filtrate was measured with an atomic absorption spectrophotometer.
The results are shown in Table 1 below.

【0021】実施例3 濃度20000mg/lの硫酸イオン及び濃度100mg/lの
塩化物イオンを含有するNa2SO4/NaCl水溶液50mlを、
PBP2. 0g 及び下記の組成式を有する燐酸スズ(以
下、SNPと略す)0. 2g と、温度25℃のもとで接
触させた。 燐酸スズ H2 Sn(PO4 2 ・H2 O 24時間後、PBP及びSNPを濾別し、濾液中の塩化
物イオンの濃度をイオンクロマトグラフィー(DIONEX社
製)で測定し、更に濾液のpHをpH計で測定し、濾液
中に溶出したPbの濃度を原子吸光光度計で測定した。
その結果を下記表1に示した。
Example 3 50 ml of an aqueous Na 2 SO 4 / NaCl solution containing sulfate ions with a concentration of 20000 mg / l and chloride ions with a concentration of 100 mg / l,
The mixture was contacted with 2.0 g of PBP and 0.2 g of tin phosphate (hereinafter abbreviated as SNP) having the following composition formula at a temperature of 25 ° C. After 24 hours of tin phosphate H 2 Sn (PO 4 ) 2 · H 2 O, PBP and SNP were separated by filtration, and the concentration of chloride ion in the filtrate was measured by ion chromatography (manufactured by DIONEX). The pH was measured with a pH meter, and the concentration of Pb eluted in the filtrate was measured with an atomic absorption photometer.
The results are shown in Table 1 below.

【0022】比較例1 濃度20000mg/lの硫酸イオン及び濃度100mg/lの
塩化物イオンを含有するNa2SO4/NaCl水溶液50mlを、
強塩基性陰イオン交換樹脂であるアンバーライトIRA-40
0T(ロームアンドハース社製商品名)2. 0g と、温度
25℃のもとで接触させた。24時間後、IRA-400Tを濾
別し、濾液中の塩化物イオンの濃度をイオンクロマトグ
ラフィー(DIONEX社製)で測定し、更に濾液のpHをp
H計で測定し、その結果を下記表1に示した。
Comparative Example 1 50 ml of an aqueous Na 2 SO 4 / NaCl solution containing a sulfate ion having a concentration of 20000 mg / l and a chloride ion having a concentration of 100 mg / l,
Amberlite IRA-40, a strongly basic anion exchange resin
It was contacted with 2.0 g of 0T (trade name, manufactured by Rohm and Haas Company) at a temperature of 25 ° C. After 24 hours, IRA-400T was filtered off, the chloride ion concentration in the filtrate was measured by ion chromatography (manufactured by DIONEX), and the pH of the filtrate was adjusted to p.
It was measured with an H meter and the results are shown in Table 1 below.

【0023】比較例2 濃度20000mg/lの硫酸イオン及び濃度100mg/lの
塩化物イオンを含有するNa2SO4/NaCl水溶液50mlを、
下記の組成を有する含水酸化硝酸ビスマス(〓)(以
下、BINと略す)2. 0g と、温度25℃のもとで接
触させた。含水酸化硝酸ビスマス(〓)Bi6 6 (O
H)4.2 (NO3 1.8 ・H2 O24時間後、BINを
濾別し、濾液中の塩化物イオンの濃度をイオンクロマト
グラフィー(DIONEX社製)で測定し、更に濾液のpHを
pH計で測定し、その結果を下記表1に示した。
Comparative Example 2 50 ml of an aqueous Na 2 SO 4 / NaCl solution containing sulfate ions with a concentration of 20000 mg / l and chloride ions with a concentration of 100 mg / l,
2.0 g of bismuth hydrous oxide nitrate (hereinafter, abbreviated as BIN) having the following composition was contacted at a temperature of 25 ° C. Hydroxylated Bismuth nitrate (〓) Bi 6 O 6 (O
H) 4.2 (NO 3 ) 1.8 · H 2 O 24 hours later, BIN was filtered off, the concentration of chloride ion in the filtrate was measured by ion chromatography (manufactured by DIONEX), and the pH of the filtrate was measured by a pH meter. The measurement was performed and the results are shown in Table 1 below.

【0024】比較例3 濃度20000mg/lの硫酸イオン及び濃度100mg/lの
塩化物イオンを含有するNa2SO4/NaCl水溶液50mlを、
BIN2. 0g 及びSBO2. 0g と、温度25℃のも
とで接触させた。24時間後、BIN及びSBOを濾別
し、濾液中の塩化物イオンの濃度をイオンクロマトグラ
フィー(DIONEX社製)で測定し、更に濾液のpHをpH
計で測定し、その結果を下記表1に示した。
Comparative Example 3 50 ml of an aqueous Na 2 SO 4 / NaCl solution containing a sulfate ion having a concentration of 20000 mg / l and a chloride ion having a concentration of 100 mg / l,
It was contacted with 2.0 g of BIN and 2.0 g of SBO at a temperature of 25 ° C. After 24 hours, BIN and SBO were filtered off, the chloride ion concentration in the filtrate was measured by ion chromatography (manufactured by DIONEX), and the pH of the filtrate was adjusted to pH.
The results were shown in Table 1 below.

【0025】比較例4 濃度20000mg/lの硫酸イオン及び濃度100mg/lの
塩化物イオンを含有するNa2SO4/NaCl水溶液50mlを、
下記の組成を有するアルミニウム−マグネシウム複合酸
化物(以下、ALMGと略す)2. 0g と、温度25℃
のもとで接触させた。アルミニウム -マク゛ネシウム 複合酸化物 Mg0.7 Al0.3 1.15
・0.13H2 O 24時間後、ALMGを濾別し、濾液中の塩化物イオン
の濃度をイオンクロマトグラフィー(DIONEX社製)で測
定し、更に濾液のpHをpH計で測定し、その結果を下
記表1に示した。
Comparative Example 4 50 ml of an aqueous Na 2 SO 4 / NaCl solution containing sulfate ions with a concentration of 20000 mg / l and chloride ions with a concentration of 100 mg / l,
Aluminum-magnesium composite oxide having the following composition (hereinafter abbreviated as ALMG) 2.0 g and temperature 25 ° C.
Contacted under. Aluminum-magnesium composite oxide Mg 0.7 Al 0.3 O 1.15
-After 24 hours of 0.13 H 2 O, ALMG was filtered off, the concentration of chloride ion in the filtrate was measured by ion chromatography (manufactured by DIONEX), and the pH of the filtrate was measured by a pH meter. The results are shown in Table 1 below.

【0026】比較例5 濃度20000mg/lの硫酸イオン及び濃度100mg/lの
塩化物イオンを含有するNa2SO4/NaCl水溶液50mlを、
下記の組成を有する含水酸化ジルコニウム(以下、ZR
Oと略す)2. 0g と、温度25℃のもとで接触させ
た。 含水酸化ジルコニウム ZrO2 ・2H2 O 24時間後、ZROを濾別し、濾液中の塩化物イオンの
濃度をイオンクロマトグラフィー(DIONEX社製)で測定
し、更に濾液のpHをpH計で測定し、その結果を下記
表1に示した。
Comparative Example 5 50 ml of a Na 2 SO 4 / NaCl aqueous solution containing a sulfate ion having a concentration of 20000 mg / l and a chloride ion having a concentration of 100 mg / l,
Hydrous zirconium oxide having the following composition (hereinafter, ZR
(Abbreviated as O) 2.0 g was contacted at a temperature of 25 ° C. After 24 hours of hydrous zirconium oxide ZrO 2 · 2H 2 O, ZRO was filtered off, the concentration of chloride ions in the filtrate was measured by ion chromatography (manufactured by DIONEX), and the pH of the filtrate was measured by a pH meter. The results are shown in Table 1 below.

【0027】比較例6 濃度20000mg/lの硫酸イオン及び濃度100mg/lの
塩化物イオンを含有するNa2SO4/NaCl水溶液50mlを、
PBP2. 0g 及びSBO1. 4g と、温度25℃のも
とで接触させた。24時間後、PBP及びSBOを濾別
し、濾液中の塩化物イオンの濃度をイオンクロマトグラ
フィー(DIONEX社製)で測定し、更に濾液のpHをpH
計で測定し、濾液中に溶出したPbの濃度を原子吸光光
度計で測定した。その結果を下記表1に示した。
Comparative Example 6 50 ml of an aqueous Na 2 SO 4 / NaCl solution containing a sulfate ion having a concentration of 20000 mg / l and a chloride ion having a concentration of 100 mg / l,
It was contacted with 2.0 g of PBP and 1.4 g of SBO at a temperature of 25 ° C. After 24 hours, PBP and SBO were filtered off, the chloride ion concentration in the filtrate was measured by ion chromatography (manufactured by DIONEX), and the pH of the filtrate was adjusted to pH.
The concentration of Pb eluted in the filtrate was measured with an atomic absorption spectrophotometer. The results are shown in Table 1 below.

【0028】比較例7 濃度20000mg/lの硫酸イオン及び濃度100mg/lの
塩化物イオンを含有するNa2SO4/NaCl水溶液50mlを、
PBP2. 0g 及びSNP1. 8g と、温度25℃のも
とで接触させた。24時間後、PBP及びSNPを濾別
し、濾液中の塩化物イオンの濃度をイオンクロマトグラ
フィー(DIONEX社製)で測定し、更に濾液のpHをpH
計で測定し、濾液中に溶出したPbの濃度を原子吸光光
度計で測定した。その結果を下記表1に示した。
Comparative Example 7 50 ml of an aqueous Na 2 SO 4 / NaCl solution containing a sulfate ion having a concentration of 20000 mg / l and a chloride ion having a concentration of 100 mg / l,
It was contacted with 2.0 g of PBP and 1.8 g of SNP at a temperature of 25 ° C. After 24 hours, PBP and SNP were filtered off, the chloride ion concentration in the filtrate was measured by ion chromatography (manufactured by DIONEX), and the pH of the filtrate was adjusted to pH.
The concentration of Pb eluted in the filtrate was measured with an atomic absorption spectrophotometer. The results are shown in Table 1 below.

【0029】比較例8 濃度20000mg/lの硫酸イオン及び濃度100mg/lの
塩化物イオンを含有するNa2SO4/NaCl/0.01M-HNO3水溶
液50mlを、PBP2. 0g と、温度25℃のもとで接
触させた。24時間後、PBPを濾別し、濾液中の塩化
物イオンの濃度をイオンクロマトグラフィー(DIONEX社
製)で測定し、更に濾液のpHをpH計で測定し、濾液
中に溶出したPbの濃度を原子吸光光度計で測定した。
その結果を下記表1に示した。
Comparative Example 8 50 ml of an aqueous Na 2 SO 4 /NaCl/0.01M-HNO 3 solution containing sulfate ions with a concentration of 20000 mg / l and chloride ions with a concentration of 100 mg / l was added to 2.0 g of PBP at a temperature of 25 ° C. The original contact was made. After 24 hours, PBP was filtered off, the concentration of chloride ions in the filtrate was measured by ion chromatography (manufactured by DIONEX), and the pH of the filtrate was measured by a pH meter to determine the concentration of Pb eluted in the filtrate. Was measured with an atomic absorption spectrophotometer.
The results are shown in Table 1 below.

【0030】比較例9 濃度20000mg/lの硫酸イオン及び濃度100mg/lの
塩化物イオンを含有するNa2SO4/NaCl/0.1M-HNO3 水溶
液50mlを、PBP2. 0g と、温度25℃のもとで接
触させた。24時間後、PBPを濾別し、濾液中の塩化
物イオンの濃度をイオンクロマトグラフィー(DIONEX社
製)で測定し、更に濾液のpHをpH計で測定し、濾液
中に溶出したPbの濃度を原子吸光光度計で測定した。
その結果を下記表1に示した。
Comparative Example 9 50 ml of an aqueous Na 2 SO 4 /NaCl/0.1M-HNO 3 solution containing a sulfate ion having a concentration of 20,000 mg / l and a chloride ion having a concentration of 100 mg / l was added to 2.0 g of PBP at a temperature of 25 ° C. The original contact was made. After 24 hours, PBP was filtered off, the chloride ion concentration in the filtrate was measured by ion chromatography (manufactured by DIONEX), the pH of the filtrate was further measured by a pH meter, and the concentration of Pb eluted in the filtrate was measured. Was measured with an atomic absorption spectrophotometer.
The results are shown in Table 1 below.

【0031】実施例4 濃度20000mg/lの硫酸イオン及び濃度100mg/lの
塩化物イオンを含有するNa2SO4/NaCl/0.1M-HNO3 水溶
液50mlに、1M-NaOH 水溶液5. 6mlを添加し、更にP
BP2. 0g と、温度25℃のもとで接触させた。24
時間後、PBPを濾別し、濾液中の塩化物イオンの濃度
をイオンクロマトグラフィー(DIONEX社製)で測定し、
更に濾液のpHをpH計で測定し、濾液中に溶出したP
bの濃度を原子吸光光度計で測定した。その結果を下記
表1に示した。
Example 4 To 50 ml of a Na 2 SO 4 /NaCl/0.1M-HNO 3 aqueous solution containing a sulfate ion of a concentration of 20000 mg / l and a chloride ion of a concentration of 100 mg / l, 5.6 ml of a 1M-NaOH aqueous solution was added. And then P
It was contacted with 2.0 g of BP at a temperature of 25 ° C. 24
After a lapse of time, PBP was filtered off, and the concentration of chloride ion in the filtrate was measured by ion chromatography (manufactured by DIONEX),
Further, the pH of the filtrate was measured with a pH meter, and P eluted in the filtrate
The concentration of b was measured with an atomic absorption photometer. The results are shown in Table 1 below.

【0032】比較例10 濃度20000mg/lの硫酸イオン及び濃度100mg/lの
塩化物イオンを含有するNa2SO4/NaCl/0.1M-NaOH 水溶
液50mlを、PBP2. 0g と、温度25℃のもとで接
触させた。24時間後、PBPを濾別し、濾液中の塩化
物イオンの濃度をイオンクロマトグラフィー(DIONEX社
製)で測定し、更に濾液のpHをpH計で測定し、濾液
中に溶出したPbの濃度を原子吸光光度計で測定した。
その結果を下記表1に示した。
Comparative Example 10 50 ml of an aqueous Na 2 SO 4 /NaCl/0.1M-NaOH solution containing a sulfate ion having a concentration of 20000 mg / l and a chloride ion having a concentration of 100 mg / l was added to 2.0 g of PBP at a temperature of 25 ° C. Contacted with. After 24 hours, PBP was filtered off, the chloride ion concentration in the filtrate was measured by ion chromatography (manufactured by DIONEX), the pH of the filtrate was further measured by a pH meter, and the concentration of Pb eluted in the filtrate was measured. Was measured with an atomic absorption spectrophotometer.
The results are shown in Table 1 below.

【0033】実施例5 濃度20000mg/lの硫酸イオン及び濃度100mg/lの
塩化物イオンを含有するNa2SO4/NaCl/0.1M-NaOH 水溶
液50mlに、1M-H2SO4水溶液2. 7mlを添加し、更にP
BP2. 0g と、温度25℃のもとで接触させた。24
時間後、PBPを濾別し、濾液中の塩化物イオンの濃度
をイオンクロマトグラフィー(DIONEX社製)で測定し、
更に濾液のpHをpH計で測定し、濾液中に溶出したP
bの濃度を原子吸光光度計で測定した。その結果を下記
表1に示した。
Example 5 2.7 ml of 1M-H 2 SO 4 aqueous solution was added to 50 ml of Na 2 SO 4 /NaCl/0.1M-NaOH aqueous solution containing sulfate ions of 20000 mg / l concentration and chloride ions of 100 mg / l concentration. Is added, and P
It was contacted with 2.0 g of BP at a temperature of 25 ° C. 24
After a lapse of time, PBP was filtered off, and the concentration of chloride ion in the filtrate was measured by ion chromatography (manufactured by DIONEX),
Further, the pH of the filtrate was measured with a pH meter, and P eluted in the filtrate
The concentration of b was measured with an atomic absorption photometer. The results are shown in Table 1 below.

【0034】[0034]

【表1】 [Table 1]

【0035】上記表1から、硫酸イオン及び塩化物イオ
ンを含有する液体をイオン交換体と接触させた後におい
て、液体中の塩化物イオンの濃度は、比較例1〜6に比
較して、実施例1,2,3の場合の方が減少しているこ
とがわかる。又、液体中の塩化物イオンの濃度は、共存
する硫酸イオンの濃度に比較して格段に小さいにもかか
わらず減少していることから、塩化物イオンが優先的に
分離されていることが分かる。更に、液体中に溶出した
水酸化燐酸鉛の成分のPbの濃度は、比較例6,7に比
較して、実施例1,2,3の場合の方が著しく小さいこ
とが分かる。又、上記表1から、水酸化燐酸鉛との接触
後の液体のpHを4以上12以下に調整した実施例4,
5において、液体中に溶出した水酸化燐酸鉛の成分のP
bの濃度は、pHを4以上12以下に調整していない比
較例8〜10の場合と比較し、著しく小さいことが分か
る。更に、実施例1,4,5においては、陰イオン交換
反応が起こりにくいアルカリ性領域でも、塩化物イオン
がほぼ完全に分離されていることが分かる。
From Table 1 above, after the liquid containing the sulfate ion and the chloride ion was contacted with the ion exchanger, the concentration of the chloride ion in the liquid was compared with that in Comparative Examples 1 to 6 and It can be seen that the numbers in Examples 1, 2, and 3 are decreased. In addition, since the chloride ion concentration in the liquid is significantly lower than the coexisting sulfate ion concentration, it is clear that chloride ions are preferentially separated. . Further, it can be seen that the Pb concentration of the component of lead hydroxyphosphate eluted in the liquid is significantly smaller in the cases of Examples 1, 2 and 3 than in Comparative Examples 6 and 7. In addition, from Table 1 above, Example 4 in which the pH of the liquid after contact with lead hydroxyphosphate was adjusted to 4 or more and 12 or less
5, P of the component of lead hydroxyphosphate eluted in the liquid
It can be seen that the concentration of b is significantly smaller than that of Comparative Examples 8 to 10 in which the pH is not adjusted to 4 or more and 12 or less. Furthermore, in Examples 1, 4, and 5, it is found that chloride ions are almost completely separated even in the alkaline region where the anion exchange reaction is difficult to occur.

【0036】実施例6 特開平3−131349記載の、結合剤としてセピオラ
イト及びエチルシリケート加水分解ゾルを併用して、約
0.5〜1.0〓の粒径を有する粒状に成形したPBP
100g を、直径20〓のガラスカラムに充填し、濃度
20000mg/lの硫酸イオンと濃度10mg/lの塩化物イ
オンを含有する、Na2SO4/NaCl水溶液を、SV=5
-1、温度30℃で通液した。カラム出口液の塩化物イ
オン濃度を測定したところ、通液倍率700倍まで1mg
/l以下であった。
Example 6 PBP formed into granules having a particle diameter of about 0.5 to 1.0 liter by using sepiolite as a binder and hydrolyzed ethyl silicate as a binder, as described in JP-A-3-131349.
100 g was packed in a glass column with a diameter of 20 ㎓, and Na 2 SO 4 / NaCl aqueous solution containing sulfate ion with a concentration of 20000 mg / l and chloride ion with a concentration of 10 mg / l was added to SV = 5.
The solution was passed at H -1 and a temperature of 30 ° C. When the chloride ion concentration of the column outlet liquid was measured, it was 1 mg until the liquid passage magnification of 700 times.
It was less than / l.

【0037】[0037]

【発明の効果】本発明の塩化物イオンの分離方法は、工
場排水等の硫酸イオンが共存する液体中から塩化物イオ
ンを選択的に分離できる方法である。さらには、塩化物
イオンにより腐食する危険があるステンレス製の配管、
濃縮器等の防食方法として有用である。
The chloride ion separation method of the present invention is a method capable of selectively separating chloride ions from a liquid such as factory wastewater in which sulfate ions coexist. Furthermore, stainless steel pipes, which may be corroded by chloride ions,
It is useful as an anticorrosion method for concentrators.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 進藤 学 宮城県仙台市青葉区中山7丁目2番1号 (72)発明者 相羽 伸彦 愛知県名古屋市港区船見町1番地の1 東 亞合成化学工業株式会社名古屋総合研究所 内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Manabu Shindo 72-1 Nakayama, Aoba-ku, Sendai City, Miyagi Prefecture (72) Nobuhiko Aiba 1 No. 1 Funami-cho, Minato-ku, Nagoya City, Aichi Toagosei Synthetic Chemistry Industrial Research Institute Nagoya Research Institute

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 硫酸イオン及び塩化物イオンを含有する
液体を、水酸化燐酸鉛と接触後のpHが4以上12以下
になるよう接触させることを特徴とする、塩化物イオン
の分離方法。
1. A method for separating chloride ions, which is characterized in that a liquid containing sulfate ions and chloride ions is contacted with lead hydroxide phosphate so that the pH after contacting is 4 or more and 12 or less.
JP33948192A 1992-11-27 1992-11-27 Method for separating chloride ion Pending JPH06154750A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33948192A JPH06154750A (en) 1992-11-27 1992-11-27 Method for separating chloride ion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33948192A JPH06154750A (en) 1992-11-27 1992-11-27 Method for separating chloride ion

Publications (1)

Publication Number Publication Date
JPH06154750A true JPH06154750A (en) 1994-06-03

Family

ID=18327877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33948192A Pending JPH06154750A (en) 1992-11-27 1992-11-27 Method for separating chloride ion

Country Status (1)

Country Link
JP (1) JPH06154750A (en)

Similar Documents

Publication Publication Date Title
US3723308A (en) Process for removal of ammonia from waste water streams
EP0561998B1 (en) The removal of heavy metals, especially lead, from aqueous systems containing competing ions utilizing amorphous tin and titanium silicates
US5114592A (en) Procedure for separating arsenic from waste material
RU2664939C2 (en) Ion-exchange materials selective to strontium and cesium
EP0575612B1 (en) Method for obtaining composite sorbents
Cook et al. Zeolite A hydrolysis and degradation
Huang et al. Activated carbon for treatment of cadmium wastewater
Dyer et al. Ion exchange of caesium and strontium on a titanosilicate analogue of the mineral pharmacosiderite
US20060249461A1 (en) Inorganic ion exchangers for removing contaminant metal ions from liquid streams
Allen et al. Ion exchange and hydrolysis of type A zeolite in natural waters
US3622268A (en) Method for recovery of metallic cations
EP0426048B1 (en) Production and use of crystalline hydrogen-phosphate compounds having layer structure
EP0476135A1 (en) Selective adsorbent for ammonuim ion and ammonia and preparation thereof
JPH06154750A (en) Method for separating chloride ion
Maslova et al. Acid-base and sorption properties of amorphous titanium phosphate
Sollo Jr et al. Fluoride removal from potable water supplies
RU2330340C9 (en) Method of extracting radionuclides from water solutions
JP3173528B2 (en) Method for immobilizing carbonate ion or bicarbonate ion
EP3988202A1 (en) Water purifying material having iron as main component, and method for manufacturing same
Asabina et al. Study of exchange processes on framework phosphates of NZP type
Zhuravlev et al. Synthesis and characterization of the ion exchange properties of a spherically granulated sodium aluminophosphatesilicate
Campbell et al. Development studies for the treatment of ORNL low-level liquid waste
WO2021194386A1 (en) Method for recycling boric acid
JPH04209715A (en) Fixation of carbonate ion or bicarbonate ion
RU2102803C1 (en) Method for cleaning solutions from radionuclides