JPH0615461A - Method for detecting welding fault - Google Patents

Method for detecting welding fault

Info

Publication number
JPH0615461A
JPH0615461A JP17437592A JP17437592A JPH0615461A JP H0615461 A JPH0615461 A JP H0615461A JP 17437592 A JP17437592 A JP 17437592A JP 17437592 A JP17437592 A JP 17437592A JP H0615461 A JPH0615461 A JP H0615461A
Authority
JP
Japan
Prior art keywords
welding
high frequency
defect
variation time
fault
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17437592A
Other languages
Japanese (ja)
Inventor
Hiroyuki Yoshikawa
博之 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP17437592A priority Critical patent/JPH0615461A/en
Publication of JPH0615461A publication Critical patent/JPH0615461A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

PURPOSE:To provide the method which can precisely and simply detect a welding fault. CONSTITUTION:A high frequency voltage of a high frequency power source 1 is detected by a detector 2, measured by a frequency counter 3 and stored in a digital memory 4. Then, the variation time of this frequency is obtained by a variation time arithmetic unit 5, and the displacement distance in the variation time is obtained by multiplying this data by a velocity data of a velocity meter 7 by a short circuit distance arithmetic unit 6. This value is compared with reference value by a comparing unit 8, if it exceeds a reference value, the marking is executed at the fault generation position by a marking device 10 based on the command of a follow-up device 9, and a recorder 11 records the generation of fault.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は高周波電縫溶接法におけ
る溶接欠陥の検出方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for detecting welding defects in high frequency electric resistance welding.

【0002】[0002]

【従来の技術】高周波電縫溶接法は、金属製の帯状材を
その幅方向の両端面がV字形を形成するようにロール等
で成形し、この両端面に高周波電流を通じて加熱溶融さ
せ、次いでロールによってこの両端面を衝合溶接して溶
接管を得るものである。この方法は非常に高能率なプロ
セスとして広く採用されている。
2. Description of the Related Art In the high frequency electric resistance welding method, a metal strip material is formed by rolls so that both end surfaces in the width direction thereof form a V shape, and the both end surfaces are heated and melted by applying a high frequency current, and then, The both ends are abutted and welded by a roll to obtain a welded pipe. This method is widely adopted as a very efficient process.

【0003】ところでこのような高周波電縫溶接法にお
いて発生する溶接欠陥にはペネトレータ及び冷接欠陥が
ある。ペネトレータは被溶接端面の高温酸化により生成
された酸化物が溶接面に残ることによる溶接欠陥であ
り、主に溶接入熱過大である場合に多く発生する。一
方、冷接欠陥は溶接入熱が不十分な場合に発生するもの
であり、接合強度は脆弱である。これらは拡管,曲げ等
の加工における加工性能を極端に劣化させることは無
論、溶接部靱性,耐食性をも劣化させ実用上問題であ
る。
By the way, welding defects which occur in such a high frequency electric resistance welding method include a penetrator and a cold welding defect. The penetrator is a welding defect caused by the oxide generated by the high-temperature oxidation of the end surface to be welded remaining on the welding surface, and often occurs when the welding heat input is excessive. On the other hand, cold welding defects occur when the welding heat input is insufficient, and the joint strength is weak. Needless to say, these do not extremely deteriorate the processing performance in the processing such as pipe expansion and bending, and also deteriorate the toughness and corrosion resistance of the welded portion, which is a practical problem.

【0004】以上のような溶接欠陥を防止するため、溶
接作業者は常にビードの色などの溶接状況を監視しつつ
溶接作業を行っており、また最近では溶接温度等の溶接
状況の監視による自動溶接入熱制御が実施されている。
しかしながら、外部から溶接点への異物噛み込みなどに
より生じる偶発的な溶接欠陥は上述の如き方法では防止
することは困難である。そこで実際には目視,非破壊検
査を行って欠陥発生部位を特定し除去するのが一般的で
あるが、欠陥の形状や大きさによっては検出不可能な場
合がある。
In order to prevent the above-mentioned welding defects, the welding operator always carries out the welding operation while monitoring the welding condition such as the color of the bead, and recently, the welding operator automatically monitors the welding condition such as the welding temperature. Welding heat input control is implemented.
However, it is difficult to prevent accidental welding defects caused by foreign matter being caught in the welding point from the outside by the method described above. Therefore, in practice, it is common to perform visual inspection and non-destructive inspection to identify and remove the defect occurrence site, but it may not be detectable depending on the shape and size of the defect.

【0005】一般に異物の噛み込みが発生した場合、高
周波電流経路はV字形の頂点を通らず、異物により短絡
することが知られている。図3は被溶接物に異物の噛み
込みが発生した場合の電流経路を示す模式図である。V
字形の頂点に位置するWは溶接点であり、広がり部の両
側に給電点P1 ,P2 がある。本来の電流経路は溶接点
Wを介してP1 −W−P2 であるが、給電点P1 ,P2
から溶接点Wまでの間に異物Eが存在すると電流経路は
短絡点S1 ,S2 を介したP1 −S1 −S2 −P2 とな
る(図3(a))。
It is generally known that when foreign matter is caught, the high frequency current path does not pass through the apex of the V-shape and is short-circuited by the foreign matter. FIG. 3 is a schematic diagram showing a current path when foreign matter is caught in a workpiece. V
W located at the apex of the character is a welding point, and there are feeding points P 1 and P 2 on both sides of the spread portion. The original current path is P 1 -W-P 2 via the welding point W, but the feeding points P 1 , P 2
A current path when the foreign object E is present until the welding point W is the P 1 -S 1 -S 2 -P 2 via the short-circuit point S 1, S 2 from (Figure 3 (a)).

【0006】そうすると溶接が進行して (図3(b))短絡
点S1 , S2 が溶接点Wに達するまでは短絡点S1 , S
2 から溶接点Wまでの間は電流が流れず、結果的にこの
部分は入熱不足となって局所的な冷接欠陥が発生する。
[0006] Then the welding progresses (FIG. 3 (b)) short-circuit point S 1, S 2 is short-circuit point is to reach the welding points W S 1, S
No current flows from 2 to the welding point W, and as a result, heat input is insufficient in this portion, and a local cold welding defect occurs.

【0007】特公昭59-10871号公報には高周波電源回路
の高周波特性値の計測を行い、予め設定された溶接特性
値の管理値と比較することによって溶接異常を検出する
方法が開示されている。また特公平3-23085 号公報には
高周波電源の発振周波数の変化率を検出し、この変化率
が設定値以上となる時系列頻度を求めて冷接欠陥を検知
する方法が開示されている。
Japanese Patent Publication No. 59-10871 discloses a method of detecting a welding abnormality by measuring a high frequency characteristic value of a high frequency power supply circuit and comparing it with a preset control value of the welding characteristic value. . Further, Japanese Patent Publication No. 3-23085 discloses a method of detecting a change rate of an oscillation frequency of a high frequency power source and detecting a time series frequency at which the change rate is a set value or more to detect a cold welding defect.

【0008】[0008]

【発明が解決しようとする課題】ところがこれら従来の
方法は高周波電圧又は高周波電流の発振周波数等の高周
波特性値を検出してその変動量, 変動率から溶接欠陥を
検出するので欠陥発生に至らないものまでも検出してし
まい、歩留りを低下させていた。例えば異物の噛み込み
発生位置が溶接点Wに近い場合、溶接点Wへ電流が流れ
ない時間が短いため溶接欠陥とはならない。これは溶接
の進行に伴って給電点P1 ,P2 から溶接点Wへ移動す
る時間内に供給された全電力量が溶接入熱として作用す
るためごく短時間電流が供給されなくても総溶接入熱量
は大幅には減少しないためである。
However, since these conventional methods detect high frequency characteristic values such as the oscillating frequency of the high frequency voltage or high frequency current and detect the welding defect from the variation amount and the variation rate, no defect is generated. Even the things were detected, and the yield was reduced. For example, when the position where the foreign matter is caught is close to the welding point W, a welding defect does not occur because the time during which no current flows to the welding point W is short. This is because the total amount of electric power supplied during the time of moving from the power feeding points P 1 and P 2 to the welding point W as welding progresses acts as welding heat input, so that the total current is supplied even for a very short time. This is because the welding heat input does not decrease significantly.

【0009】しかしながら高周波電圧の発振周波数を初
めとする高周波特性値は変動するため従来方法では欠陥
として検出する。また被溶接部に異物の噛み込みが発生
した場合でも、一旦短絡が発生した後、異物の飛散によ
って直ちに短絡状態が解消されることがある。図4はこ
の場合の電流経路を模式的に示したものであり、図4
(a) は短絡発生時、図4(b) は短絡解消時を示す。図4
(a) に示す短絡発生時の高周波特性値は電流経路が大幅
に変更されるため変動し、従来方法では、その後の短絡
解消がない場合と同様の検出結果を示す。
However, since the high frequency characteristic value including the oscillation frequency of the high frequency voltage fluctuates, it is detected as a defect in the conventional method. Further, even if foreign matter is caught in the welded portion, the short-circuited state may be immediately resolved by the scattering of the foreign matter after the short circuit occurs once. FIG. 4 schematically shows a current path in this case.
(a) shows a short circuit, and Fig. 4 (b) shows a short circuit. Figure 4
The high-frequency characteristic value when a short circuit occurs shown in (a) fluctuates because the current path is significantly changed, and the conventional method shows the same detection result as when there is no subsequent short circuit elimination.

【0010】図5は従来方法により検出を行った結果の
一例を示すグラフであって、欠陥判定のためのパラメー
タを高周波電源の発振周期 (1/周波数)の変動量とし
ている。横軸にこの発振周期の変動量をとり、縦軸に欠
陥長さをとって示す。また○はサイズがφ267.4 ×t6.
6 の管の場合を示し、△はサイズがφ406.4 ×t7.1の
管の場合を示す。前者では発振周期の変動量が20nsec.
以上のとき欠陥が発生し、後者では30nsec. 以上のとき
発生しており、サイズの相違により基準値を変更する必
要があることがわかる。
FIG. 5 is a graph showing an example of the result of detection by the conventional method, in which the parameter for defect determination is the variation of the oscillation period (1 / frequency) of the high frequency power supply. The horizontal axis represents the fluctuation amount of this oscillation period, and the vertical axis represents the defect length. The size of ○ is φ267.4 × t6.
6 shows the case of the pipe, and △ shows the case of the pipe of size φ406.4 × t7.1. In the former, the fluctuation amount of the oscillation cycle is 20 nsec.
In the above case, the defect occurs, and in the latter case, it occurs at 30 nsec. Or more, and it can be seen that it is necessary to change the reference value due to the difference in size.

【0011】またこのような基準値を越えていても溶接
欠陥の発生に至らないものも見られる。これは前述した
如く異物の飛散により短絡が解消するなどの原因による
と推測される。このように発振周期の変動量と欠陥長さ
とは同じ管サイズでも1対1の対応を示さず、また管サ
イズが異なるとその対応が異なり、性格に溶接欠陥を検
出することは困難である。よって従来方法では生産能率
及び歩留りの低下を免れなかった。
In addition, there are some cases in which welding defects do not occur even if such a reference value is exceeded. This is presumed to be due to the cause such as the elimination of the short circuit due to the scattering of the foreign matter as described above. As described above, even if the fluctuation amount of the oscillation period and the defect length do not show a one-to-one correspondence even with the same pipe size, and the correspondence differs when the pipe size is different, it is difficult to detect welding defects in character. Therefore, the conventional method inevitably suffers from a decrease in production efficiency and yield.

【0012】また被溶接材料のサイズ,被溶接端面の突
き合わせ形状及び溶接機の特性等の条件により高周波電
源のインピーダンスが異なるために、電気的な変動量を
管理値とする従来方法では膨大な管理値テーブル,条件
式が必要であり、その設定には膨大な工数を要する。ま
たこれらは製造毎に微妙に異なる被溶接材料の形状,ロ
ール設定位置,給電点位置などの条件によっても影響を
受けるため、その都度、基準値の変更が必要であり、再
現性も悪かった。
Further, since the impedance of the high frequency power source varies depending on the conditions such as the size of the material to be welded, the shape of the end face to be welded, the characteristics of the welding machine, etc., a huge amount of control is required in the conventional method using the amount of electrical fluctuation as a control value. A value table and conditional expressions are required, and setting them requires a huge number of man-hours. Further, since these are also affected by conditions such as the shape of the material to be welded, the roll setting position, and the feeding point position that are subtly different for each manufacturing, it is necessary to change the reference value each time and the reproducibility is poor.

【0013】本発明者は研究を重ねた結果溶接欠陥の長
さ,形状とよく対応するのは高周波特性値の変動量の如
き値ではなく、電流経路が短絡してから定常状態に復帰
するまでに、その短絡部が移動した距離、即ち異物の噛
み込みにより溶接電流の短絡が発生してから定常状態に
戻るまでの変化時間に溶接速度を乗じた値であることを
見い出した。
As a result of repeated research by the inventor of the present invention, it is not the value such as the variation of the high frequency characteristic value that corresponds well with the length and shape of the welding defect, but from the time when the current path is short-circuited until it returns to the steady state. It was found that the welding speed was multiplied by the distance traveled by the short-circuited portion, that is, the change time from the occurrence of short-circuiting of the welding current due to the entrapment of foreign matter to the return to the steady state.

【0014】本発明は斯かる知見に基づいてなされたも
のであり、溶接点へ高周波電流が供給されない時間内に
被溶接物が移動する距離に基づいて溶接欠陥を検出する
ことにより、精度よく、簡便に溶接欠陥の検出が行える
方法を提供することを目的とする。
The present invention has been made on the basis of such knowledge, and by accurately detecting a welding defect based on the distance traveled by the object to be welded within the time when the high frequency current is not supplied to the welding point, It is an object of the present invention to provide a method capable of simply detecting a welding defect.

【0015】[0015]

【課題を解決するための手段】本発明に係る溶接欠陥の
検出方法は、高周波電縫溶接において、高周波電源回路
の特性値の変動時間を検出し、該変動時間における被溶
接物の移動距離を求め、該移動距離に基づいて溶接欠陥
を検出することを特徴とする。
A welding defect detecting method according to the present invention detects a variation time of a characteristic value of a high frequency power supply circuit in high frequency electric resistance welding, and detects a moving distance of an object to be welded during the variation time. It is characterized in that the welding defect is obtained and the welding defect is detected based on the moving distance.

【0016】[0016]

【作用】本発明にあっては異物噛み込みによる高周波電
流の短絡を高周波電源回路の特性値の変動により検知
し、この変動時間を求め、この変動時間内に、即ち溶接
点へ高周波電流が供給されない時間内に被溶接物が移動
する距離に基づいて溶接欠陥を検出することにより、溶
接欠陥を正確に検出することが可能となる。また前記距
離は被溶接材料のサイズを初めとする種々の条件の影響
を受けることが少なくため、判定基準値変更の頻度が大
幅に減少し、このため基準値を変更するための工数も大
幅に減少し、簡便に検出が行える。
According to the present invention, a short circuit of the high frequency current due to foreign matter biting is detected by the variation of the characteristic value of the high frequency power supply circuit, the variation time is obtained, and the high frequency current is supplied to the welding point within this variation time. The welding defect can be accurately detected by detecting the welding defect on the basis of the distance that the workpiece is moved within the non-removed time. Further, the distance is less likely to be affected by various conditions such as the size of the material to be welded, so the frequency of changing the judgment reference value is greatly reduced, and the man-hours for changing the reference value are also greatly reduced. It is reduced and detection can be done easily.

【0017】[0017]

【実施例】以下本発明をその実施例を示す図面に基づい
て説明する。図1は本発明に係る溶接欠陥の検出方法の
実施に用いる検出機器の構成を示すブロック図である。
図中1は高周波抵抗溶接に用いる高周波電源であり、こ
の高周波電源1は被溶接部の広がり部に配したコンタク
トチップC1 ,C2 を介してオープンパイプOPに高周波
電流を供給する。この高周波電源1の高周波電圧を検出
すべく検出器2を設けてあり、検出された高周波電圧信
号を周波数カウンタ3へ与えるべく接続してある。そし
てこの周波数カウンタ3が1msec. 毎に周波数を測定
し、この周波数信号をデジタルメモリ4へ与えるように
なしてある。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the drawings showing its embodiments. FIG. 1 is a block diagram showing the configuration of a detection device used for carrying out the welding defect detection method according to the present invention.
In the figure, 1 is a high frequency power source used for high frequency resistance welding, and this high frequency power source 1 supplies a high frequency current to the open pipe OP through contact tips C 1 and C 2 arranged in the widened portion of the welded portion. A detector 2 is provided to detect the high frequency voltage of the high frequency power source 1, and is connected to provide the detected high frequency voltage signal to the frequency counter 3. The frequency counter 3 measures the frequency every 1 msec. And supplies the frequency signal to the digital memory 4.

【0018】デジタルメモリ4の記憶容量は有限である
ため、周波数が定常値より一定値以上大きくなった場合
に周波数カウンタ3はこの周波数信号を検出してこの検
出時点でデジタルメモリ4へトリガ信号を送出し、デジ
タルメモリ4はこのトリガ信号を受けた場合のみ記憶を
開始するようにしてある。またトリガ設定レベルは電源
直流入力の商用周波数整流リップルにより生じる定常状
態での発振周波数の変動量を下限としてできるだけ小さ
な値が好ましく、本実施例では1kHz とした。
Since the storage capacity of the digital memory 4 is limited, the frequency counter 3 detects this frequency signal when the frequency becomes larger than the steady value by a certain value or more, and a trigger signal is sent to the digital memory 4 at this detection time. The digital memory 4 is sent out and starts storing only when it receives this trigger signal. Further, the trigger setting level is preferably as small as possible with the amount of fluctuation of the oscillation frequency in the steady state caused by the commercial frequency rectification ripple of the DC input of the power supply as the lower limit, and in this embodiment, it is set to 1 kHz.

【0019】デジタルメモリ4で記憶された周波数信号
を変動時間算出装置5が読み出し、さらに周波数が変動
を開始してから定常状態へ戻るまでの時間を求め、短絡
距離算出装置6へこの変動時間データを与えるようにし
てある。一方製管の移送経路途中に、管に接触回転して
溶接速度を求めるべく速度計7を設けておき、この速度
データは短絡距離算出装置6へ与えられるようになして
ある。短絡距離算出装置6では前記変動時間データを前
記速度データに乗じ、変動時間内における被溶接物の移
動距離を求めるようにしてある。比較装置8はこの移動
距離と基準値とを比較し、移動距離が基準値を越えた場
合、リジェクト信号を追従装置9へ発するようにしてあ
る。
The frequency signal stored in the digital memory 4 is read by the fluctuation time calculation device 5, and the time from the start of the frequency fluctuation to the return to the steady state is calculated, and the fluctuation time data is sent to the short circuit distance calculation device 6. Is given. On the other hand, a speedometer 7 is provided in the middle of the transfer path of the pipe making to obtain the welding speed by rotating the pipe in contact with the pipe, and the speed data is given to the short-circuit distance calculating device 6. The short-circuit distance calculating device 6 multiplies the speed data by the fluctuation time data to obtain the moving distance of the workpiece within the fluctuation time. The comparing device 8 compares the moving distance with the reference value, and when the moving distance exceeds the reference value, it outputs a reject signal to the tracking device 9.

【0020】この追従装置9は管の移送方向の移動を可
能にしてあり、管にマーキングを行うべく設けたマーキ
ング装置10の追従及び溶接欠陥の記録を行うべく設けた
記録計11の記録を制御するために設けてある。また追従
装置9は前記速度計7の速度データが与えられ、比較装
置8からリジェクト信号を受けるとこの速度データに応
じて溶接欠陥の位置を表す位置信号をマーキング装置10
及び記録計11へ発する。この位置信号を受けるとマーキ
ング装置10は欠陥発生位置へ追従し、管の欠陥発生箇所
にスプレーマーキングを行い、記録計11は欠陥発生の記
録を行う。
The follow-up device 9 is capable of moving the pipe in the transfer direction, and controls the marking device 10 provided for marking the pipe and recording by the recorder 11 provided for recording the welding defect. It is provided to do this. Further, the follow-up device 9 is provided with the speed data of the speedometer 7, and when receiving the reject signal from the comparison device 8, the marking device 10 outputs a position signal indicating the position of the welding defect according to the speed data.
And call to recorder 11. Upon receiving this position signal, the marking device 10 follows the defect occurrence position, performs spray marking on the defect occurrence position of the pipe, and the recorder 11 records the defect occurrence.

【0021】図2は図1に示す検出機器を用いて本発明
方法を実施した場合の結果の一例を示すグラフであり、
横軸に移動距離(mm)をとり、縦軸に欠陥長さ(mm)をとっ
て示してある。なお、○はサイズがφ267.4 ×t6.6 の
管、△はφ406.4 ×t7.1 の管を製造した場合を示す。
図5より明らかな如く管サイズが異なっても移動距離に
対応する欠陥長さは同一であり、本実施例では移動距離
が5mm以上の場合にいずれも欠陥が発生している。また
短絡が発生しても溶接欠陥とならない(欠陥長さ=0m
m) のは移動距離が5mm以下の場合であることが判り、
本実施例の場合、基準値を5mmと設定すればよい。
FIG. 2 is a graph showing an example of the result when the method of the present invention is carried out using the detection equipment shown in FIG.
The horizontal axis represents the moving distance (mm), and the vertical axis represents the defect length (mm). In addition, ∘ indicates the case where a pipe having a size of φ267.4 x t6.6 was manufactured, and Δ indicates a case where a pipe having a size of φ406.4 × t7.1 was manufactured.
As is clear from FIG. 5, the defect length corresponding to the moving distance is the same even if the tube size is different, and in this embodiment, a defect is generated when the moving distance is 5 mm or more. Even if a short circuit occurs, no welding defect will occur (defect length = 0 m
It is understood that m) is when the movement distance is 5 mm or less,
In the case of this embodiment, the reference value may be set to 5 mm.

【0022】以上より本発明方法によると管サイズや溶
接速度に関係なく1つの基準値(本実施例では5mm)で
欠陥の検出が可能であり、また従来方法のような過剰検
出も認められない。なお高周波電流経路の短絡は高周波
電源回路の高周波電圧若しくは高周波電流の実効値、発
振周波数又は位相差等の高周波特性値に影響を及ぼす。
よって本実施例で用いた高周波電圧の発振周波数に限ら
ず、前記短絡の検知が可能な高周波特性値を用いて本発
明に示す溶接欠陥の検出を行っても同様の効果が得られ
る。
As described above, according to the method of the present invention, it is possible to detect defects with one reference value (5 mm in this embodiment) regardless of the pipe size and welding speed, and no excessive detection as in the conventional method is recognized. . The short circuit of the high frequency current path affects the effective value of the high frequency voltage or high frequency current of the high frequency power supply circuit, the high frequency characteristic value such as the oscillation frequency or the phase difference.
Therefore, not only the oscillation frequency of the high frequency voltage used in the present embodiment but also the high frequency characteristic value capable of detecting the short circuit is used to detect the welding defect according to the present invention, and the same effect can be obtained.

【0023】また誘導加熱コイルを用いた高周波電縫溶
接においても、高周波電流経路が短絡した場合、前述の
如き高周波電源回路の特性値は変動する。従って本発明
方法は本実施例に示す直接通電による抵抗加熱方式のみ
ならず、誘導加熱方式にも適用可能である。
Also in the high frequency electric resistance welding using the induction heating coil, when the high frequency current path is short-circuited, the characteristic value of the high frequency power supply circuit as described above varies. Therefore, the method of the present invention can be applied not only to the resistance heating method by direct energization shown in this embodiment but also to the induction heating method.

【0024】[0024]

【発明の効果】以上の如く本発明方法にあっては短絡し
ている時間、即ち溶接点へ高周波電流が供給されない時
間内に被溶接物が移動する距離に基づいて溶接欠陥を検
出するので、管サイズ,溶接速度等の溶接条件によって
判定基準値を変更する必要がなく、また過剰検出を行う
こともなく、歩留りが向上する等本発明は優れた効果を
奏する。
As described above, in the method of the present invention, a welding defect is detected based on the distance traveled by the object to be welded during the short circuit time, that is, the time when the high frequency current is not supplied to the welding point. The present invention has an excellent effect such that it is not necessary to change the judgment reference value depending on the welding conditions such as the pipe size and the welding speed and the excess detection is not performed, and the yield is improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る溶接欠陥の検出方法の実施に用い
る検出機器の構成を示すブロック図である。
FIG. 1 is a block diagram showing a configuration of a detection device used for carrying out a welding defect detection method according to the present invention.

【図2】本発明方法の試験結果の一例を示すグラフであ
る。
FIG. 2 is a graph showing an example of test results of the method of the present invention.

【図3】異物噛み込み時の電流経路を示す模式図であ
る。
FIG. 3 is a schematic diagram showing a current path when foreign matter is caught.

【図4】異物噛み込み時の電流経路を示す模式図であ
る。
FIG. 4 is a schematic diagram showing a current path when foreign matter is caught.

【図5】従来方法の試験結果の一例を示すグラフであ
る。
FIG. 5 is a graph showing an example of test results of a conventional method.

【符号の説明】[Explanation of symbols]

1 高周波電源 2 検出器 3 周波数カウンタ 4 デジタルメモリ 5 変動時間算出装置 6 短絡距離算出装置 7 速度計 8 比較装置 9 追従装置 10 マーキング装置 11 記録計 OP オープンパイプ W 溶接点 P1 ,P2 給電点 E 異物 S1 ,S2 短絡点 C1 ,C2 コンタクトチップ1 High frequency power supply 2 Detector 3 Frequency counter 4 Digital memory 5 Fluctuation time calculation device 6 Short circuit distance calculation device 7 Speedometer 8 Comparison device 9 Tracking device 10 Marking device 11 Recorder OP Open pipe W Welding point P 1 , P 2 Feed point E Foreign matter S 1 , S 2 Short-circuit point C 1 , C 2 Contact tip

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 高周波電縫溶接において、高周波電源回
路の特性値の変動時間を検出し、該変動時間における被
溶接物の移動距離を求め、該移動距離に基づいて溶接欠
陥を検出することを特徴とする溶接欠陥の検出方法。
1. In high frequency electric resistance welding, it is possible to detect a variation time of a characteristic value of a high frequency power supply circuit, obtain a moving distance of an object to be welded at the variation time, and detect a welding defect based on the moving distance. Characteristic welding defect detection method.
JP17437592A 1992-07-01 1992-07-01 Method for detecting welding fault Pending JPH0615461A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17437592A JPH0615461A (en) 1992-07-01 1992-07-01 Method for detecting welding fault

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17437592A JPH0615461A (en) 1992-07-01 1992-07-01 Method for detecting welding fault

Publications (1)

Publication Number Publication Date
JPH0615461A true JPH0615461A (en) 1994-01-25

Family

ID=15977517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17437592A Pending JPH0615461A (en) 1992-07-01 1992-07-01 Method for detecting welding fault

Country Status (1)

Country Link
JP (1) JPH0615461A (en)

Similar Documents

Publication Publication Date Title
US5756967A (en) Sensing ARC welding process characteristics for welding process control
US5349156A (en) Sensing of gas metal arc welding process characteristics for welding process control
US6441342B1 (en) Monitor for electric arc welder
US5221825A (en) Sensing of gas metal arc welding process characteristics for welding process control
JPH0732164A (en) Resistance welding control method
JP3588668B2 (en) Estimation method of nugget diameter in spot welding
EP1252962A2 (en) Welding process stability assessment apparatus for pulsed arc welding
US20080237199A1 (en) Spot welding electrode tip wear verification method
KR100760655B1 (en) Welding quality monitoring method and welding quality monitoring apparatus
JPH0615461A (en) Method for detecting welding fault
JP3898811B2 (en) Method and apparatus for determining welding stability of arc welding steady state part
US5742023A (en) Method for monitoring a welding machine, method for regulating the welding machine and device for carrying out the method
JP4642267B2 (en) Pulse arc welding welding stability assessment device
KR19980051209A (en) Welding quality determination device and method
KR100241029B1 (en) A welding quality certification system and method thereof
JPS6024748B2 (en) High frequency electric resistance welding phenomenon monitoring and monitoring control device
JP3588874B2 (en) Resistance welding control method
JP2000102880A (en) Method and device for controlling welding conditions of resistance welding
JPS5940550B2 (en) Spot welding strength monitoring device
JPS5910871B2 (en) Abnormality detection method and device for high frequency electric resistance welding
KR100325354B1 (en) An apparatus and method of estimating welding quality in al flash butt welding device
JP3328378B2 (en) High frequency heating equipment
JPS5817711B2 (en) High frequency electric resistance welding phenomenon monitoring device
CN111715956A (en) Wire electric discharge machining method
JPH0118833B2 (en)